fix readme
Browse files- check_stats.py +9 -0
- data/predicates.json +0 -0
check_stats.py
CHANGED
@@ -8,6 +8,8 @@ parameters_min_e_freq = [1, 2, 3, 4]
|
|
8 |
parameters_max_p_freq = [100, 50, 25, 10]
|
9 |
|
10 |
stats = []
|
|
|
|
|
11 |
for min_e_freq, max_p_freq in product(parameters_min_e_freq, parameters_max_p_freq):
|
12 |
|
13 |
with open(f"data/t_rex.filter_unified.min_entity_{min_e_freq}_max_predicate_{max_p_freq}.train.jsonl") as f:
|
@@ -21,6 +23,7 @@ for min_e_freq, max_p_freq in product(parameters_min_e_freq, parameters_max_p_fr
|
|
21 |
with open(f"data/t_rex.filter_unified.min_entity_{min_e_freq}_max_predicate_{max_p_freq}.jsonl") as f:
|
22 |
full = [json.loads(i) for i in f.read().split('\n') if len(i) > 0]
|
23 |
df_full = pd.DataFrame(full)
|
|
|
24 |
|
25 |
stats.append({
|
26 |
"data": f"filter_unified.min_entity_{min_e_freq}_max_predicate_{max_p_freq}",
|
@@ -48,6 +51,7 @@ print(df.to_markdown())
|
|
48 |
with open(f"data/t_rex.filter_unified.test.jsonl") as f:
|
49 |
test = [json.loads(i) for i in f.read().split('\n') if len(i) > 0]
|
50 |
df_test = pd.DataFrame(test)
|
|
|
51 |
df_test = pd.DataFrame([{
|
52 |
"number of triples (test)": len(df_test),
|
53 |
"number of unique predicates (test)": len(df_test['predicate'].unique()),
|
@@ -55,6 +59,7 @@ df_test = pd.DataFrame([{
|
|
55 |
list(set(df_test['object'].unique().tolist() + df_test['subject'].unique().tolist()))
|
56 |
)
|
57 |
}])
|
|
|
58 |
for c in df_test.columns:
|
59 |
df_test.loc[:, c] = df_test[c].map('{:,d}'.format)
|
60 |
print(df_test.to_markdown(index=False))
|
@@ -66,3 +71,7 @@ df.pop("number of unique predicates (all)")
|
|
66 |
df.pop("number of unique entities (all)")
|
67 |
df = df[sorted(df.columns)]
|
68 |
df.to_csv("data/stats.csv")
|
|
|
|
|
|
|
|
|
|
8 |
parameters_max_p_freq = [100, 50, 25, 10]
|
9 |
|
10 |
stats = []
|
11 |
+
predicate = {}
|
12 |
+
|
13 |
for min_e_freq, max_p_freq in product(parameters_min_e_freq, parameters_max_p_freq):
|
14 |
|
15 |
with open(f"data/t_rex.filter_unified.min_entity_{min_e_freq}_max_predicate_{max_p_freq}.train.jsonl") as f:
|
|
|
23 |
with open(f"data/t_rex.filter_unified.min_entity_{min_e_freq}_max_predicate_{max_p_freq}.jsonl") as f:
|
24 |
full = [json.loads(i) for i in f.read().split('\n') if len(i) > 0]
|
25 |
df_full = pd.DataFrame(full)
|
26 |
+
predicate[f"min_entity_{min_e_freq}_max_predicate_{max_p_freq}"] = df_full['predicate'].unique().tolist()
|
27 |
|
28 |
stats.append({
|
29 |
"data": f"filter_unified.min_entity_{min_e_freq}_max_predicate_{max_p_freq}",
|
|
|
51 |
with open(f"data/t_rex.filter_unified.test.jsonl") as f:
|
52 |
test = [json.loads(i) for i in f.read().split('\n') if len(i) > 0]
|
53 |
df_test = pd.DataFrame(test)
|
54 |
+
predicate["test"] = df_test['predicate'].unique().tolist()
|
55 |
df_test = pd.DataFrame([{
|
56 |
"number of triples (test)": len(df_test),
|
57 |
"number of unique predicates (test)": len(df_test['predicate'].unique()),
|
|
|
59 |
list(set(df_test['object'].unique().tolist() + df_test['subject'].unique().tolist()))
|
60 |
)
|
61 |
}])
|
62 |
+
|
63 |
for c in df_test.columns:
|
64 |
df_test.loc[:, c] = df_test[c].map('{:,d}'.format)
|
65 |
print(df_test.to_markdown(index=False))
|
|
|
71 |
df.pop("number of unique entities (all)")
|
72 |
df = df[sorted(df.columns)]
|
73 |
df.to_csv("data/stats.csv")
|
74 |
+
|
75 |
+
# predicates in training vs test
|
76 |
+
with open("data/predicates.json", "w") as f:
|
77 |
+
json.dump(predicate, f)
|
data/predicates.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|