File size: 18,494 Bytes
281aef9
9b3698d
281aef9
 
 
b501913
9b3698d
435bb2e
 
281aef9
 
 
 
 
 
be18565
281aef9
be18565
 
 
 
 
 
 
 
281aef9
 
 
 
be18565
 
 
281aef9
 
 
 
 
 
 
be18565
281aef9
 
be18565
281aef9
 
be18565
660845d
 
281aef9
 
 
 
 
 
be18565
281aef9
b501913
 
be18565
b501913
 
 
be18565
b501913
 
 
 
 
e07783f
be18565
 
b501913
 
 
 
 
e07783f
be18565
 
 
cc24a86
b501913
 
e07783f
be18565
 
 
cc24a86
b501913
281aef9
 
 
 
 
 
 
be18565
 
281aef9
 
be18565
 
 
 
 
 
 
 
 
 
 
 
281aef9
 
 
 
 
b501913
 
281aef9
 
2351115
9b3698d
21f22ca
 
 
9b3698d
 
 
 
 
 
4372433
 
281aef9
 
 
 
 
 
 
b501913
281aef9
4372433
 
281aef9
 
 
 
507730a
281aef9
 
 
 
 
 
 
ab13310
b501913
 
 
 
 
 
 
 
 
 
ab13310
b501913
ab13310
b501913
ab13310
 
b501913
ab13310
 
 
 
 
 
 
 
 
 
 
 
2e38ec0
b23752f
2e38ec0
 
8bdcedc
2e38ec0
8414268
281aef9
 
 
 
 
57ca5fc
281aef9
 
 
 
 
 
 
 
 
 
31f8d7d
281aef9
 
9b3698d
820ca58
281aef9
 
 
 
 
b501913
281aef9
 
e07783f
9b3698d
 
 
281aef9
 
 
 
 
 
9151572
 
 
 
281aef9
31f8d7d
 
5b1a6d7
31f8d7d
b501913
281aef9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b501913
281aef9
 
b501913
 
 
653c5ef
435bb2e
31f8d7d
7827b9e
435bb2e
 
 
 
 
 
281aef9
 
 
 
 
 
 
 
b501913
be18565
9151572
fe76bcc
281aef9
b501913
281aef9
 
 
 
 
 
 
b501913
281aef9
9151572
fe76bcc
281aef9
 
be18565
 
9151572
 
281aef9
 
 
 
 
be18565
281aef9
fe76bcc
5c8bf8c
653c5ef
fe76bcc
281aef9
be18565
 
9151572
 
b501913
5b1a6d7
281aef9
 
 
507730a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import os
import json
import datasets
import datasets.info
import pandas as pd
import numpy as np
import tempfile
import requests
import io
from pathlib import Path
from datasets import load_dataset
from typing import Iterable, Dict, Optional, Union, List


_CITATION = """\
@dataset{kota_dohi_2023_7882613,
  author       = {Kota Dohi and
                  Keisuke Imoto and
                  Noboru Harada and
                  Daisuke Niizumi and
                  Yuma Koizumi and
                  Tomoya Nishida and
                  Harsh Purohit and
                  Takashi Endo and
                  Yohei Kawaguchi},
  title        = {DCASE 2023 Challenge Task 2 Development Dataset},
  month        = mar,
  year         = 2023,
  publisher    = {Zenodo},
  version      = {3.0},
  doi          = {10.5281/zenodo.7882613},
  url          = {https://doi.org/10.5281/zenodo.7882613}
}
"""
_LICENSE = "Creative Commons Attribution 4.0 International Public License"

_METADATA_REG = r"attributes_\d+.csv"

_NUM_TARGETS = 2
_NUM_CLASSES = 14

_TARGET_NAMES = ["normal", "anomaly"]
_CLASS_NAMES = ["gearbox", "fan", "bearing", "slider", "ToyCar", "ToyTrain", "valve", "bandsaw", "grinder", "shaker", "ToyDrone", "ToyNscale", "ToyTank", "Vacuum"]

_HOMEPAGE = {
    "dev": "https://zenodo.org/record/7690157",
    "add": "",
    "eval": "",
}

DATA_URLS = {
    "dev": {
        "train": "data/dev_train.tar.gz",
        "test": "data/dev_test.tar.gz",
        "metadata": "data/dev_metadata.csv",
    },
    "add":  {
        "train": "data/add_train.tar.gz",
        "metadata": "data/add_metadata.csv",
    },
    "eval": {
        "test": "data/eval_test.tar.gz",
        "metadata": None,
    },
}

EMBEDDING_URLS = {
    "dev": {
        "embeddings_ast-finetuned-audioset-10-10-0.4593": {
            "train": "data/MIT_ast-finetuned-audioset-10-10-0.4593-embeddings_dev_train.npz",
            "test": "data/MIT_ast-finetuned-audioset-10-10-0.4593-embeddings_dev_test.npz",
            "size": (1, 768),
            "dtype": "float32",
        },
    },
    "add":  {
        "embeddings_ast-finetuned-audioset-10-10-0.4593": {
            "train": "data/MIT_ast-finetuned-audioset-10-10-0.4593-embeddings_add_train.npz",
            "size": (1, 768),
            "dtype": "float32",
        },
    },
    "eval": {
        "embeddings_ast-finetuned-audioset-10-10-0.4593": {
            "test": "data/MIT_ast-finetuned-audioset-10-10-0.4593-embeddings_eval_test.npz",
            "size": (1, 768),
            "dtype": "float32",
        },
    },
}

STATS = {
    "name": "Enriched Dataset of 'DCASE 2023 Challenge Task 2'",
    "configs": {
        'dev': {
            'date': "Mar 1, 2023",
            'version': "3.0.0",
            'homepage': "https://zenodo.org/record/7882613",
            "splits": ["train", "test"],
        },
        'add': {
            'date': "Apr 15, 2023",
            'version': "1.0.0",
            'homepage': "https://zenodo.org/record/7830345",
            "splits": ["train"],
        },
        'eval': {
            'date': "May 1, 2023",
            'version': "1.0.0",
            'homepage': "https://zenodo.org/record/7860847",
            "splits": ["test"],
        },
    }
}

DATASET = {
    'dev': 'DCASE 2023 Challenge Task 2 Development Dataset',
    'add': 'DCASE 2023 Challenge Task 2 Additional Train Dataset',
    'eval': 'DCASE 2023 Challenge Task 2 Evaluation Dataset',
}


SPOTLIGHT_LAYOUTS = {
    "standard": {"orientation":"vertical","children":[{"kind":"split","weight":51.96463654223969,"orientation":"horizontal","children":[{"kind":"tab","weight":30,"children":[{"kind":"widget","name":"Table","type":"table","config":{"tableView":"full","visibleColumns":["class","class_name","config","d1p","d1v","d2p","d2v","d3p","d3v","file_path","label","section","split"],"sorting":None,"orderByRelevance":False}}]},{"kind":"tab","weight":33.970588235294116,"children":[{"kind":"widget","name":"Similarity Map (2)","type":"similaritymap","config":{"placeBy":None,"reductionMethod":None,"colorBy":"label","sizeBy":None,"filter":False,"umapNNeighbors":20,"umapMetric":None,"umapMinDist":0.15,"pcaNormalization":None,"umapMenuLocalGlobalBalance":None,"umapMenuIsAdvanced":False}}]},{"kind":"tab","weight":36.029411764705884,"children":[{"kind":"widget","name":"Similarity Map","type":"similaritymap","config":{"placeBy":None,"reductionMethod":None,"colorBy":"class","sizeBy":None,"filter":False,"umapNNeighbors":20,"umapMetric":None,"umapMinDist":0.15,"pcaNormalization":None,"umapMenuLocalGlobalBalance":None,"umapMenuIsAdvanced":False}},{"kind":"widget","name":"Scatter Plot","type":"scatterplot","config":{"xAxisColumn":None,"yAxisColumn":None,"colorBy":None,"sizeBy":None,"filter":False}},{"kind":"widget","name":"Histogram","type":"histogram","config":{"columnKey":None,"stackByColumnKey":None,"filter":False}}]}]},{"kind":"tab","weight":48.03536345776031,"children":[{"kind":"widget","name":"Inspector","type":"inspector","config":{"views":[{"view":"AudioView","columns":["path"],"name":"view","key":"43a5beff-9423-41c9-a5ba-285a7ece7a02"},{"view":"SpectrogramView","columns":["path"],"name":"view","key":"5f035027-dd02-4587-ba77-defdf823c124"}],"visibleColumns":4}}]}]},
    "simple": {"orientation":"vertical","children":[{"kind":"split","weight":60.575296108291035,"orientation":"horizontal","children":[{"kind":"tab","weight":31.52260461369049,"children":[{"kind":"widget","name":"Table","type":"table","config":{"tableView":"filtered","visibleColumns":["class","d1p","d1v","d2p","d2v","d3p","d3v","dev_train_lof_anomaly","dev_train_lof_anomaly_score","domain","label","section"],"sorting":None,"orderByRelevance":False}}]},{"kind":"tab","weight":33.869200490640154,"children":[{"kind":"widget","name":"Similarity map with AST-lof anomaly score","type":"similaritymap","config":{"placeBy":None,"reductionMethod":None,"colorBy":"dev_train_lof_anomaly_score","sizeBy":"label","filter":False,"umapNNeighbors":20,"umapMetric":None,"umapMinDist":0.15,"pcaNormalization":None,"umapMenuLocalGlobalBalance":None,"umapMenuIsAdvanced":False}}]},{"kind":"tab","weight":34.60819489566936,"children":[{"kind":"widget","name":"Similarity map with classes","type":"similaritymap","config":{"placeBy":None,"reductionMethod":None,"colorBy":"class","sizeBy":None,"filter":False,"umapNNeighbors":20,"umapMetric":None,"umapMinDist":0.15,"pcaNormalization":None,"umapMenuLocalGlobalBalance":None,"umapMenuIsAdvanced":False}},{"kind":"widget","name":"Scatter Plot","type":"scatterplot","config":{"xAxisColumn":None,"yAxisColumn":None,"colorBy":None,"sizeBy":None,"filter":False}},{"kind":"widget","name":"Histogram","type":"histogram","config":{"columnKey":"domain","stackByColumnKey":"prediction_correct_dcase2023_task2_baseline_ae","filter":False}}]}]},{"kind":"tab","weight":39.424703891708965,"children":[{"kind":"widget","name":"Inspector","type":"inspector","config":{"views":[{"view":"AudioView","columns":["path"],"name":"view","key":"dea9a175-9582-412e-9f49-be729e8838fb"},{"view":"SpectrogramView","columns":["path"],"name":"view","key":"676bd937-226b-4632-ae2d-ec8bc37bcc5d"},{"view":"ScalarView","columns":["label"],"name":"view","key":"dbfcc0b1-9e96-4d31-8856-f0bd7f0b8144"},{"view":"ScalarView","columns":["domain"],"name":"view","key":"3e79654f-e017-402c-b136-6a13c4409ae4"}],"visibleColumns":4}}]}]},
    "extended": {"orientation":"vertical","children":[{"kind":"split","weight":54.145516074450086,"orientation":"horizontal","children":[{"kind":"tab","weight":31.52260461369049,"children":[{"kind":"widget","name":"Table","type":"table","config":{"tableView":"filtered","visibleColumns":["class","d1p","d1v","d2p","d2v","d3p","d3v","dev_train_lof_anomaly","dev_train_lof_anomaly_score","domain","label","section"],"sorting":None,"orderByRelevance":False}}]},{"kind":"tab","weight":33.869200490640154,"children":[{"kind":"widget","name":"Similarity map with AST-lof anomaly score","type":"similaritymap","config":{"placeBy":None,"reductionMethod":None,"colorBy":"dev_train_lof_anomaly_score","sizeBy":"label","filter":False,"umapNNeighbors":20,"umapMetric":None,"umapMinDist":0.15,"pcaNormalization":None,"umapMenuLocalGlobalBalance":None,"umapMenuIsAdvanced":False}}]},{"kind":"tab","weight":34.60819489566936,"children":[{"kind":"widget","name":"Similarity map with classes","type":"similaritymap","config":{"placeBy":None,"reductionMethod":None,"colorBy":"class","sizeBy":None,"filter":False,"umapNNeighbors":20,"umapMetric":None,"umapMinDist":0.15,"pcaNormalization":None,"umapMenuLocalGlobalBalance":None,"umapMenuIsAdvanced":False}},{"kind":"widget","name":"Scatter Plot","type":"scatterplot","config":{"xAxisColumn":None,"yAxisColumn":None,"colorBy":None,"sizeBy":None,"filter":False}}]}]},{"kind":"split","weight":45.854483925549914,"orientation":"horizontal","children":[{"kind":"tab","weight":58.581483486735245,"children":[{"kind":"widget","name":"Inspector","type":"inspector","config":{"views":[{"view":"AudioView","columns":["path"],"name":"view","key":"dea9a175-9582-412e-9f49-be729e8838fb"},{"view":"SpectrogramView","columns":["path"],"name":"view","key":"676bd937-226b-4632-ae2d-ec8bc37bcc5d"},{"view":"ScalarView","columns":["label"],"name":"view","key":"dbfcc0b1-9e96-4d31-8856-f0bd7f0b8144"},{"view":"ScalarView","columns":["domain"],"name":"view","key":"3e79654f-e017-402c-b136-6a13c4409ae4"}],"visibleColumns":4}}]},{"kind":"tab","weight":41.418516513264755,"children":[{"kind":"widget","name":"Histogram","type":"histogram","config":{"columnKey":"class","stackByColumnKey":"dev_train_lof_anomaly"}}]}]}]},
}

SPOTLIGHT_RENAME = {
    "audio": "original_audio",
    "path": "audio",
}


class DCASE2023Task2DatasetConfig(datasets.BuilderConfig):
    """BuilderConfig for DCASE2023Task2Dataset."""

    def __init__(self, name, version, **kwargs):
        self.release_date = kwargs.pop("release_date", None)
        self.homepage = kwargs.pop("homepage", None)
        self.data_urls = kwargs.pop("data_urls", None)
        self.embeddings_urls = kwargs.pop("embeddings_urls", None)
        self.splits = kwargs.pop("splits", None)
        self.rename = kwargs.pop("rename", None)
        self.layout = kwargs.pop("layout", None)
        description = (
            f"Dataset for the DCASE 2023 Challenge Task 2 'First-Shot Unsupervised Anomalous Sound Detection "
            f"for Machine Condition Monitoring'. released on {self.release_date}. Original data available under"
            f"{self.homepage}. "
            f"CONFIG: {name}."
        )
        super(DCASE2023Task2DatasetConfig, self).__init__(
            name=name,
            version=datasets.Version(version),
            description=description,
        )

    def to_spotlight(self, data: Union[pd.DataFrame, datasets.Dataset]) -> pd.DataFrame:

        def get_split(path: str) -> str:
            fn = os.path.basename(path)
            if "train" in fn:
                return "train"
            elif "test" in fn:
                return "test"
            else:
                raise NotImplementedError

        if type(data) == datasets.Dataset:
            # retrieve split
            df = data.to_pandas()
            df["split"] = data.split._name if "+" not in data.split._name else df["path"].map(get_split)
            df["config"] = data.config_name

            # get clearnames for classes
            class_names = data.features["class"].names
            df["class_name"] = df["class"].apply(lambda x: class_names[x])
        elif type(data) == pd.DataFrame:
            df = data
        else:
            raise TypeError("type(data) not in Union[pd.DataFrame, datasets.Dataset]")

        df["file_path"] = df["path"]
        df.rename(columns=self.rename, inplace=True)

        return df.copy()

    def get_layout(self, config: str = "standard") -> str:
        layout_json = tempfile.mktemp(".json")
        with open(layout_json, "w") as outfile:
            json.dump(self.layout[config], outfile)

        return layout_json


class DCASE2023Task2Dataset(datasets.GeneratorBasedBuilder):
    """Dataset for the DCASE 2023 Challenge Task 2 "First-Shot Unsupervised Anomalous Sound Detection
    for Machine Condition Monitoring"."""

    VERSION = datasets.Version("0.1.0")

    DEFAULT_CONFIG_NAME = "dev"

    BUILDER_CONFIGS = [
        DCASE2023Task2DatasetConfig(
            name=key,
            version=stats["version"],
            dataset=DATASET[key],
            homepage=_HOMEPAGE[key],
            data_urls=DATA_URLS[key],
            embeddings_urls=EMBEDDING_URLS[key],
            release_date=stats["date"],
            splits=stats["splits"],
            layout=SPOTLIGHT_LAYOUTS,
            rename=SPOTLIGHT_RENAME,
        )
        for key, stats in STATS["configs"].items()
    ]

    def _info(self):
        features = {
                    "audio": datasets.Audio(sampling_rate=16_000),
                    "path": datasets.Value("string"),
                    "section": datasets.Value("int64"),
                    "domain": datasets.ClassLabel(num_classes=2, names=["source", "target"]),
                    "label": datasets.ClassLabel(num_classes=_NUM_TARGETS, names=_TARGET_NAMES),
                    "class": datasets.ClassLabel(num_classes=_NUM_CLASSES, names=_CLASS_NAMES),
                    "d1p": datasets.Value("string"),
                    "d1v": datasets.Value("string"),
                    "d2p": datasets.Value("string"),
                    "d2v": datasets.Value("string"),
                    "d3p": datasets.Value("string"),
                    "d3v": datasets.Value("string"),
                    "dev_train_lof_anomaly": datasets.Value("int64"),
                    "dev_train_lof_anomaly_score": datasets.Value("float32"),
                    "add_train_lof_anomaly": datasets.Value("int64"),
                    "add_train_lof_anomaly_score": datasets.Value("float32"),
                }
        if self.config.embeddings_urls is not None:
            features.update({
                emb_name: [datasets.Value(emb["dtype"])] for emb_name, emb in self.config.embeddings_urls.items()
            })
        features = datasets.Features(features)

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=self.config.description,
            features=features,
            supervised_keys=datasets.info.SupervisedKeysData("label"),
            homepage=self.config.homepage,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(
            self,
            dl_manager: datasets.DownloadManager
    ):
        """Returns SplitGenerators."""
        dl_manager.download_config.ignore_url_params = True
        audio_path = {}
        local_extracted_archive = {}
        split_type = {"train": datasets.Split.TRAIN, "test": datasets.Split.TEST}
        embeddings = {split: dict() for split in split_type}

        for split in split_type:
            if split in self.config.splits:
                audio_path[split] = dl_manager.download(self.config.data_urls[split])
                local_extracted_archive[split] = dl_manager.extract(
                    audio_path[split]) if not dl_manager.is_streaming else None
                if self.config.embeddings_urls is not None:
                    for emb_name, emb_data in self.config.embeddings_urls.items():
                        downloaded_embeddings = dl_manager.download(emb_data[split])
                        if dl_manager.is_streaming:
                            response = requests.get(downloaded_embeddings)
                            response.raise_for_status()
                            downloaded_embeddings = io.BytesIO(response.content)
                        npz_file = np.load(downloaded_embeddings, allow_pickle=True)
                        embeddings[split][emb_name] = npz_file["arr_0"].item()

        return [
            datasets.SplitGenerator(
                name=split_type[split],
                gen_kwargs={
                    "split": split,
                    "local_extracted_archive": local_extracted_archive[split],
                    "audio_files": dl_manager.iter_archive(audio_path[split]),
                    "embeddings": embeddings[split],
                    "metadata_file": dl_manager.download_and_extract(self.config.data_urls["metadata"]) if self.config.data_urls["metadata"] is not None else None,
                    "scores_file": dl_manager.download_and_extract("data/scores.csv"),
                    "is_streaming": dl_manager.is_streaming,
                },
            ) for split in split_type if split in self.config.splits
        ]

    def _generate_examples(
        self,
        split: str,
        local_extracted_archive: Union[Dict, List],
        audio_files: Optional[Iterable],
        embeddings: Optional[Dict],
        metadata_file: Optional[str],
        scores_file: Optional[str],
        is_streaming: Optional[bool],
    ):
        """Yields examples."""
        if metadata_file is not None:
            metadata = pd.read_csv(metadata_file)
        if scores_file is not None:
            scores = pd.read_csv(scores_file)
        data_fields = list(self._info().features.keys())

        id_ = 0
        for path, f in audio_files:
            lookup = Path(path).parent.name + "/" + Path(path).name
            if metadata_file is None or lookup in metadata["path"].values:
                path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path
                if is_streaming:
                    audio = {"path": path, "bytes": f.read()}
                else:
                    audio = {"path": path, "bytes": None}
                result = {field: None for field in data_fields}
                if metadata_file is not None:
                    result.update(metadata[metadata["path"] == lookup].T.squeeze().to_dict())
                if scores is not None:
                    result.update(scores[scores["path"] == lookup].T.squeeze().to_dict())
                for emb_key in embeddings.keys():
                    result[emb_key] = np.asarray(embeddings[emb_key][lookup]).squeeze().tolist()
                result["path"] = path
                yield id_, {**result, "audio": audio}
                id_ += 1


if __name__ == "__main__":
    ds = load_dataset("dcase23-task2-enriched.py", "dev", split="train", streaming=True)