File size: 18,494 Bytes
281aef9 9b3698d 281aef9 b501913 9b3698d 435bb2e 281aef9 be18565 281aef9 be18565 281aef9 be18565 281aef9 be18565 281aef9 be18565 281aef9 be18565 660845d 281aef9 be18565 281aef9 b501913 be18565 b501913 be18565 b501913 e07783f be18565 b501913 e07783f be18565 cc24a86 b501913 e07783f be18565 cc24a86 b501913 281aef9 be18565 281aef9 be18565 281aef9 b501913 281aef9 2351115 9b3698d 21f22ca 9b3698d 4372433 281aef9 b501913 281aef9 4372433 281aef9 507730a 281aef9 ab13310 b501913 ab13310 b501913 ab13310 b501913 ab13310 b501913 ab13310 2e38ec0 b23752f 2e38ec0 8bdcedc 2e38ec0 8414268 281aef9 57ca5fc 281aef9 31f8d7d 281aef9 9b3698d 820ca58 281aef9 b501913 281aef9 e07783f 9b3698d 281aef9 9151572 281aef9 31f8d7d 5b1a6d7 31f8d7d b501913 281aef9 b501913 281aef9 b501913 653c5ef 435bb2e 31f8d7d 7827b9e 435bb2e 281aef9 b501913 be18565 9151572 fe76bcc 281aef9 b501913 281aef9 b501913 281aef9 9151572 fe76bcc 281aef9 be18565 9151572 281aef9 be18565 281aef9 fe76bcc 5c8bf8c 653c5ef fe76bcc 281aef9 be18565 9151572 b501913 5b1a6d7 281aef9 507730a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
import os
import json
import datasets
import datasets.info
import pandas as pd
import numpy as np
import tempfile
import requests
import io
from pathlib import Path
from datasets import load_dataset
from typing import Iterable, Dict, Optional, Union, List
_CITATION = """\
@dataset{kota_dohi_2023_7882613,
author = {Kota Dohi and
Keisuke Imoto and
Noboru Harada and
Daisuke Niizumi and
Yuma Koizumi and
Tomoya Nishida and
Harsh Purohit and
Takashi Endo and
Yohei Kawaguchi},
title = {DCASE 2023 Challenge Task 2 Development Dataset},
month = mar,
year = 2023,
publisher = {Zenodo},
version = {3.0},
doi = {10.5281/zenodo.7882613},
url = {https://doi.org/10.5281/zenodo.7882613}
}
"""
_LICENSE = "Creative Commons Attribution 4.0 International Public License"
_METADATA_REG = r"attributes_\d+.csv"
_NUM_TARGETS = 2
_NUM_CLASSES = 14
_TARGET_NAMES = ["normal", "anomaly"]
_CLASS_NAMES = ["gearbox", "fan", "bearing", "slider", "ToyCar", "ToyTrain", "valve", "bandsaw", "grinder", "shaker", "ToyDrone", "ToyNscale", "ToyTank", "Vacuum"]
_HOMEPAGE = {
"dev": "https://zenodo.org/record/7690157",
"add": "",
"eval": "",
}
DATA_URLS = {
"dev": {
"train": "data/dev_train.tar.gz",
"test": "data/dev_test.tar.gz",
"metadata": "data/dev_metadata.csv",
},
"add": {
"train": "data/add_train.tar.gz",
"metadata": "data/add_metadata.csv",
},
"eval": {
"test": "data/eval_test.tar.gz",
"metadata": None,
},
}
EMBEDDING_URLS = {
"dev": {
"embeddings_ast-finetuned-audioset-10-10-0.4593": {
"train": "data/MIT_ast-finetuned-audioset-10-10-0.4593-embeddings_dev_train.npz",
"test": "data/MIT_ast-finetuned-audioset-10-10-0.4593-embeddings_dev_test.npz",
"size": (1, 768),
"dtype": "float32",
},
},
"add": {
"embeddings_ast-finetuned-audioset-10-10-0.4593": {
"train": "data/MIT_ast-finetuned-audioset-10-10-0.4593-embeddings_add_train.npz",
"size": (1, 768),
"dtype": "float32",
},
},
"eval": {
"embeddings_ast-finetuned-audioset-10-10-0.4593": {
"test": "data/MIT_ast-finetuned-audioset-10-10-0.4593-embeddings_eval_test.npz",
"size": (1, 768),
"dtype": "float32",
},
},
}
STATS = {
"name": "Enriched Dataset of 'DCASE 2023 Challenge Task 2'",
"configs": {
'dev': {
'date': "Mar 1, 2023",
'version': "3.0.0",
'homepage': "https://zenodo.org/record/7882613",
"splits": ["train", "test"],
},
'add': {
'date': "Apr 15, 2023",
'version': "1.0.0",
'homepage': "https://zenodo.org/record/7830345",
"splits": ["train"],
},
'eval': {
'date': "May 1, 2023",
'version': "1.0.0",
'homepage': "https://zenodo.org/record/7860847",
"splits": ["test"],
},
}
}
DATASET = {
'dev': 'DCASE 2023 Challenge Task 2 Development Dataset',
'add': 'DCASE 2023 Challenge Task 2 Additional Train Dataset',
'eval': 'DCASE 2023 Challenge Task 2 Evaluation Dataset',
}
SPOTLIGHT_LAYOUTS = {
"standard": {"orientation":"vertical","children":[{"kind":"split","weight":51.96463654223969,"orientation":"horizontal","children":[{"kind":"tab","weight":30,"children":[{"kind":"widget","name":"Table","type":"table","config":{"tableView":"full","visibleColumns":["class","class_name","config","d1p","d1v","d2p","d2v","d3p","d3v","file_path","label","section","split"],"sorting":None,"orderByRelevance":False}}]},{"kind":"tab","weight":33.970588235294116,"children":[{"kind":"widget","name":"Similarity Map (2)","type":"similaritymap","config":{"placeBy":None,"reductionMethod":None,"colorBy":"label","sizeBy":None,"filter":False,"umapNNeighbors":20,"umapMetric":None,"umapMinDist":0.15,"pcaNormalization":None,"umapMenuLocalGlobalBalance":None,"umapMenuIsAdvanced":False}}]},{"kind":"tab","weight":36.029411764705884,"children":[{"kind":"widget","name":"Similarity Map","type":"similaritymap","config":{"placeBy":None,"reductionMethod":None,"colorBy":"class","sizeBy":None,"filter":False,"umapNNeighbors":20,"umapMetric":None,"umapMinDist":0.15,"pcaNormalization":None,"umapMenuLocalGlobalBalance":None,"umapMenuIsAdvanced":False}},{"kind":"widget","name":"Scatter Plot","type":"scatterplot","config":{"xAxisColumn":None,"yAxisColumn":None,"colorBy":None,"sizeBy":None,"filter":False}},{"kind":"widget","name":"Histogram","type":"histogram","config":{"columnKey":None,"stackByColumnKey":None,"filter":False}}]}]},{"kind":"tab","weight":48.03536345776031,"children":[{"kind":"widget","name":"Inspector","type":"inspector","config":{"views":[{"view":"AudioView","columns":["path"],"name":"view","key":"43a5beff-9423-41c9-a5ba-285a7ece7a02"},{"view":"SpectrogramView","columns":["path"],"name":"view","key":"5f035027-dd02-4587-ba77-defdf823c124"}],"visibleColumns":4}}]}]},
"simple": {"orientation":"vertical","children":[{"kind":"split","weight":60.575296108291035,"orientation":"horizontal","children":[{"kind":"tab","weight":31.52260461369049,"children":[{"kind":"widget","name":"Table","type":"table","config":{"tableView":"filtered","visibleColumns":["class","d1p","d1v","d2p","d2v","d3p","d3v","dev_train_lof_anomaly","dev_train_lof_anomaly_score","domain","label","section"],"sorting":None,"orderByRelevance":False}}]},{"kind":"tab","weight":33.869200490640154,"children":[{"kind":"widget","name":"Similarity map with AST-lof anomaly score","type":"similaritymap","config":{"placeBy":None,"reductionMethod":None,"colorBy":"dev_train_lof_anomaly_score","sizeBy":"label","filter":False,"umapNNeighbors":20,"umapMetric":None,"umapMinDist":0.15,"pcaNormalization":None,"umapMenuLocalGlobalBalance":None,"umapMenuIsAdvanced":False}}]},{"kind":"tab","weight":34.60819489566936,"children":[{"kind":"widget","name":"Similarity map with classes","type":"similaritymap","config":{"placeBy":None,"reductionMethod":None,"colorBy":"class","sizeBy":None,"filter":False,"umapNNeighbors":20,"umapMetric":None,"umapMinDist":0.15,"pcaNormalization":None,"umapMenuLocalGlobalBalance":None,"umapMenuIsAdvanced":False}},{"kind":"widget","name":"Scatter Plot","type":"scatterplot","config":{"xAxisColumn":None,"yAxisColumn":None,"colorBy":None,"sizeBy":None,"filter":False}},{"kind":"widget","name":"Histogram","type":"histogram","config":{"columnKey":"domain","stackByColumnKey":"prediction_correct_dcase2023_task2_baseline_ae","filter":False}}]}]},{"kind":"tab","weight":39.424703891708965,"children":[{"kind":"widget","name":"Inspector","type":"inspector","config":{"views":[{"view":"AudioView","columns":["path"],"name":"view","key":"dea9a175-9582-412e-9f49-be729e8838fb"},{"view":"SpectrogramView","columns":["path"],"name":"view","key":"676bd937-226b-4632-ae2d-ec8bc37bcc5d"},{"view":"ScalarView","columns":["label"],"name":"view","key":"dbfcc0b1-9e96-4d31-8856-f0bd7f0b8144"},{"view":"ScalarView","columns":["domain"],"name":"view","key":"3e79654f-e017-402c-b136-6a13c4409ae4"}],"visibleColumns":4}}]}]},
"extended": {"orientation":"vertical","children":[{"kind":"split","weight":54.145516074450086,"orientation":"horizontal","children":[{"kind":"tab","weight":31.52260461369049,"children":[{"kind":"widget","name":"Table","type":"table","config":{"tableView":"filtered","visibleColumns":["class","d1p","d1v","d2p","d2v","d3p","d3v","dev_train_lof_anomaly","dev_train_lof_anomaly_score","domain","label","section"],"sorting":None,"orderByRelevance":False}}]},{"kind":"tab","weight":33.869200490640154,"children":[{"kind":"widget","name":"Similarity map with AST-lof anomaly score","type":"similaritymap","config":{"placeBy":None,"reductionMethod":None,"colorBy":"dev_train_lof_anomaly_score","sizeBy":"label","filter":False,"umapNNeighbors":20,"umapMetric":None,"umapMinDist":0.15,"pcaNormalization":None,"umapMenuLocalGlobalBalance":None,"umapMenuIsAdvanced":False}}]},{"kind":"tab","weight":34.60819489566936,"children":[{"kind":"widget","name":"Similarity map with classes","type":"similaritymap","config":{"placeBy":None,"reductionMethod":None,"colorBy":"class","sizeBy":None,"filter":False,"umapNNeighbors":20,"umapMetric":None,"umapMinDist":0.15,"pcaNormalization":None,"umapMenuLocalGlobalBalance":None,"umapMenuIsAdvanced":False}},{"kind":"widget","name":"Scatter Plot","type":"scatterplot","config":{"xAxisColumn":None,"yAxisColumn":None,"colorBy":None,"sizeBy":None,"filter":False}}]}]},{"kind":"split","weight":45.854483925549914,"orientation":"horizontal","children":[{"kind":"tab","weight":58.581483486735245,"children":[{"kind":"widget","name":"Inspector","type":"inspector","config":{"views":[{"view":"AudioView","columns":["path"],"name":"view","key":"dea9a175-9582-412e-9f49-be729e8838fb"},{"view":"SpectrogramView","columns":["path"],"name":"view","key":"676bd937-226b-4632-ae2d-ec8bc37bcc5d"},{"view":"ScalarView","columns":["label"],"name":"view","key":"dbfcc0b1-9e96-4d31-8856-f0bd7f0b8144"},{"view":"ScalarView","columns":["domain"],"name":"view","key":"3e79654f-e017-402c-b136-6a13c4409ae4"}],"visibleColumns":4}}]},{"kind":"tab","weight":41.418516513264755,"children":[{"kind":"widget","name":"Histogram","type":"histogram","config":{"columnKey":"class","stackByColumnKey":"dev_train_lof_anomaly"}}]}]}]},
}
SPOTLIGHT_RENAME = {
"audio": "original_audio",
"path": "audio",
}
class DCASE2023Task2DatasetConfig(datasets.BuilderConfig):
"""BuilderConfig for DCASE2023Task2Dataset."""
def __init__(self, name, version, **kwargs):
self.release_date = kwargs.pop("release_date", None)
self.homepage = kwargs.pop("homepage", None)
self.data_urls = kwargs.pop("data_urls", None)
self.embeddings_urls = kwargs.pop("embeddings_urls", None)
self.splits = kwargs.pop("splits", None)
self.rename = kwargs.pop("rename", None)
self.layout = kwargs.pop("layout", None)
description = (
f"Dataset for the DCASE 2023 Challenge Task 2 'First-Shot Unsupervised Anomalous Sound Detection "
f"for Machine Condition Monitoring'. released on {self.release_date}. Original data available under"
f"{self.homepage}. "
f"CONFIG: {name}."
)
super(DCASE2023Task2DatasetConfig, self).__init__(
name=name,
version=datasets.Version(version),
description=description,
)
def to_spotlight(self, data: Union[pd.DataFrame, datasets.Dataset]) -> pd.DataFrame:
def get_split(path: str) -> str:
fn = os.path.basename(path)
if "train" in fn:
return "train"
elif "test" in fn:
return "test"
else:
raise NotImplementedError
if type(data) == datasets.Dataset:
# retrieve split
df = data.to_pandas()
df["split"] = data.split._name if "+" not in data.split._name else df["path"].map(get_split)
df["config"] = data.config_name
# get clearnames for classes
class_names = data.features["class"].names
df["class_name"] = df["class"].apply(lambda x: class_names[x])
elif type(data) == pd.DataFrame:
df = data
else:
raise TypeError("type(data) not in Union[pd.DataFrame, datasets.Dataset]")
df["file_path"] = df["path"]
df.rename(columns=self.rename, inplace=True)
return df.copy()
def get_layout(self, config: str = "standard") -> str:
layout_json = tempfile.mktemp(".json")
with open(layout_json, "w") as outfile:
json.dump(self.layout[config], outfile)
return layout_json
class DCASE2023Task2Dataset(datasets.GeneratorBasedBuilder):
"""Dataset for the DCASE 2023 Challenge Task 2 "First-Shot Unsupervised Anomalous Sound Detection
for Machine Condition Monitoring"."""
VERSION = datasets.Version("0.1.0")
DEFAULT_CONFIG_NAME = "dev"
BUILDER_CONFIGS = [
DCASE2023Task2DatasetConfig(
name=key,
version=stats["version"],
dataset=DATASET[key],
homepage=_HOMEPAGE[key],
data_urls=DATA_URLS[key],
embeddings_urls=EMBEDDING_URLS[key],
release_date=stats["date"],
splits=stats["splits"],
layout=SPOTLIGHT_LAYOUTS,
rename=SPOTLIGHT_RENAME,
)
for key, stats in STATS["configs"].items()
]
def _info(self):
features = {
"audio": datasets.Audio(sampling_rate=16_000),
"path": datasets.Value("string"),
"section": datasets.Value("int64"),
"domain": datasets.ClassLabel(num_classes=2, names=["source", "target"]),
"label": datasets.ClassLabel(num_classes=_NUM_TARGETS, names=_TARGET_NAMES),
"class": datasets.ClassLabel(num_classes=_NUM_CLASSES, names=_CLASS_NAMES),
"d1p": datasets.Value("string"),
"d1v": datasets.Value("string"),
"d2p": datasets.Value("string"),
"d2v": datasets.Value("string"),
"d3p": datasets.Value("string"),
"d3v": datasets.Value("string"),
"dev_train_lof_anomaly": datasets.Value("int64"),
"dev_train_lof_anomaly_score": datasets.Value("float32"),
"add_train_lof_anomaly": datasets.Value("int64"),
"add_train_lof_anomaly_score": datasets.Value("float32"),
}
if self.config.embeddings_urls is not None:
features.update({
emb_name: [datasets.Value(emb["dtype"])] for emb_name, emb in self.config.embeddings_urls.items()
})
features = datasets.Features(features)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=self.config.description,
features=features,
supervised_keys=datasets.info.SupervisedKeysData("label"),
homepage=self.config.homepage,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(
self,
dl_manager: datasets.DownloadManager
):
"""Returns SplitGenerators."""
dl_manager.download_config.ignore_url_params = True
audio_path = {}
local_extracted_archive = {}
split_type = {"train": datasets.Split.TRAIN, "test": datasets.Split.TEST}
embeddings = {split: dict() for split in split_type}
for split in split_type:
if split in self.config.splits:
audio_path[split] = dl_manager.download(self.config.data_urls[split])
local_extracted_archive[split] = dl_manager.extract(
audio_path[split]) if not dl_manager.is_streaming else None
if self.config.embeddings_urls is not None:
for emb_name, emb_data in self.config.embeddings_urls.items():
downloaded_embeddings = dl_manager.download(emb_data[split])
if dl_manager.is_streaming:
response = requests.get(downloaded_embeddings)
response.raise_for_status()
downloaded_embeddings = io.BytesIO(response.content)
npz_file = np.load(downloaded_embeddings, allow_pickle=True)
embeddings[split][emb_name] = npz_file["arr_0"].item()
return [
datasets.SplitGenerator(
name=split_type[split],
gen_kwargs={
"split": split,
"local_extracted_archive": local_extracted_archive[split],
"audio_files": dl_manager.iter_archive(audio_path[split]),
"embeddings": embeddings[split],
"metadata_file": dl_manager.download_and_extract(self.config.data_urls["metadata"]) if self.config.data_urls["metadata"] is not None else None,
"scores_file": dl_manager.download_and_extract("data/scores.csv"),
"is_streaming": dl_manager.is_streaming,
},
) for split in split_type if split in self.config.splits
]
def _generate_examples(
self,
split: str,
local_extracted_archive: Union[Dict, List],
audio_files: Optional[Iterable],
embeddings: Optional[Dict],
metadata_file: Optional[str],
scores_file: Optional[str],
is_streaming: Optional[bool],
):
"""Yields examples."""
if metadata_file is not None:
metadata = pd.read_csv(metadata_file)
if scores_file is not None:
scores = pd.read_csv(scores_file)
data_fields = list(self._info().features.keys())
id_ = 0
for path, f in audio_files:
lookup = Path(path).parent.name + "/" + Path(path).name
if metadata_file is None or lookup in metadata["path"].values:
path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path
if is_streaming:
audio = {"path": path, "bytes": f.read()}
else:
audio = {"path": path, "bytes": None}
result = {field: None for field in data_fields}
if metadata_file is not None:
result.update(metadata[metadata["path"] == lookup].T.squeeze().to_dict())
if scores is not None:
result.update(scores[scores["path"] == lookup].T.squeeze().to_dict())
for emb_key in embeddings.keys():
result[emb_key] = np.asarray(embeddings[emb_key][lookup]).squeeze().tolist()
result["path"] = path
yield id_, {**result, "audio": audio}
id_ += 1
if __name__ == "__main__":
ds = load_dataset("dcase23-task2-enriched.py", "dev", split="train", streaming=True)
|