File size: 13,797 Bytes
281aef9 7efbe93 281aef9 7efbe93 281aef9 b501913 281aef9 b501913 281aef9 b501913 281aef9 7efbe93 281aef9 7efbe93 b501913 281aef9 b501913 281aef9 b501913 281aef9 b501913 281aef9 7efbe93 281aef9 b501913 281aef9 b501913 281aef9 7efbe93 281aef9 7efbe93 281aef9 7efbe93 281aef9 b501913 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
---
license: cc-by-4.0
task_categories:
- audio-classification
pretty_name: >-
Enriched DCASE 2023 Challenge Task 2 Dataset
size_categories:
- 1K<n<10K
tags:
- anomaly detection
- anomalous sound detection
- acoustic condition monitoring
- sound machine fault diagnosis
- machine learning
- unsupervised learning
- acoustic scene classification
- acoustic event detection
- acoustic signal processing
- audio domain shift
- domain generalization
---
# Dataset Card for the Enriched "DCASE 2023 Challenge Task 2 Dataset".
[//]: # (todo)
## Table of contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Explore the data with Spotlight](#explore-the-data-with-spotlight)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Supported Tasks and Leaderboards (original: Overview of the task)](#supported-tasks-and-leaderboards-original-overview-of-the-task)
- [Source Data](#source-data)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Baseline system](#baseline-system)
- [Dataset Curators](#dataset-curators)
- [Licensing Information - Condition of use](#licensing-information---condition-of-use)
- [Citation Information (original)](#citation-information-original)
## Dataset Description
- **Homepage:** [Renumics Homepage](https://renumics.com/)
- **Homepage** [DCASE23 Task 2 Challenge](https://dcase.community/challenge2023/task-first-shot-unsupervised-anomalous-sound-detection-for-machine-condition-monitoring#evaluation)
- **Original Dataset Upload (Dev)** [ZENODO: DCASE 2023 Challenge Task 2 Development Dataset](https://zenodo.org/record/7687464#.Y_9VtdLMLmE)
- **Paper** [MIMII DG](https://arxiv.org/abs/2205.13879)
- **Paper** [ToyADMOS2](https://arxiv.org/abs/2106.02369)
- **Paper** [First-shot anomaly detection for machine condition monitoring: A domain generalization baseline](https://arxiv.org/pdf/2303.00455.pdf)
### Dataset Summary
[//]: # (todo: verantwortlichkeit)
### Explore the data with Spotlight
Install Spotlight via [pip](https://packaging.python.org/en/latest/key_projects/#pip)
```bash
pip install renumics-spotlight
```
and simply run the following codeblock:
```jupyterpython
from datasets import load_dataset, load_dataset_builder
from renumics import spotlight
ds = load_dataset("dcase23-task2-enriched.py", "dev", split="all", streaming=False)
db = load_dataset_builder("dcase23-task2-enriched.py", "dev")
df = db.config.to_spotlight(ds)
spotlight.show(df, dtype={'audio': spotlight.Audio, "ast-finetuned-audioset-10-10-0.4593-embeddings": spotlight.Embedding}, layout=db.config.get_layout())
```
## Dataset Structure
### Data Instances
For each instance, there is a Audio for the audio, a string for the path, an integer for the section, a string for the d1p (parameter), a string for the d1v (value),
a ClassLabel for the label and a ClassLabel for the class.
```
{'audio': {'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414,
0. , 0. ], dtype=float32),
'path': 'train/fan_section_01_source_train_normal_0592_f-n_A.wav',
'sampling_rate': 16000
}
'path': 'train/fan_section_01_source_train_normal_0592_f-n_A.wav'
'section': 1
'd1p': 'f-n'
'd1v': 'A'
'd2p': 'nan'
'd2v': 'nan'
'd3p': 'nan'
'd3v': 'nan'
'domain': 0 (source)
'label': 0 (normal)
'class': 1 (fan)
'ast-finetuned-audioset-10-10-0.4593-embeddings': [[0.8152204155921936,
1.5862374305725098, ...,
1.7154160737991333]]
}
```
The length of each audio file is 10 seconds.
### Data Fields
- `audio`: an `datasets.Audio`
- `path`: a string representing the path of the audio file inside the _tar.gz._-archive.
- `section`: an integer representing the section, see [Definition](#Description)
- `d*p`: a string representing the name of the d*-parameter
- `d*v`: a string representing the value of the corresponding d*-parameter
- `domain`: an integer whose value may be either _0_, indicating that the audio sample is from the _source_ domain, _1_, indicating that the audio sample is from the _target_.
- `class`: an integer as class label.
- `label`: an integer whose value may be either _0_, indicating that the audio sample is _normal_, _1_, indicating that the audio sample contains an _anomaly_.
- `ast-finetuned-audioset-10-10-0.4593-embeddings`: an `datasets.Array2D` representing audio embeddings that are generated with the [Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer#transformers.ASTFeatureExtractor).
### Data Splits
The development dataset has 2 splits: _train_ and _test_.
| Dataset Split | Number of Instances in Split | Source Domain / Target Domain Samples |
| ------------- |------------------------------|---------------------------------------|
| Train | 7000 | 6930 / 70 |
| Test | 1400 | 700 / 700 |
The information for the evaluation dataset will follow after release.
## Dataset Creation
The following information is copied from the original [dataset upload on zenodo.org](https://zenodo.org/record/7690148#.ZAXsSdLMLmE)
### Curation Rationale
This dataset is the "development dataset" for the [DCASE 2023 Challenge Task 2 "First-Shot Unsupervised Anomalous Sound Detection for Machine Condition Monitoring"](https://dcase.community/challenge2023/task-unsupervised-anomalous-sound-detection-for-machine-condition-monitoring).
The data consists of the normal/anomalous operating sounds of seven types of real/toy machines. Each recording is a single-channel 10-second audio that includes both a machine's operating sound and environmental noise. The following seven types of real/toy machines are used in this task:
- ToyCar
- ToyTrain
- Fan
- Gearbox
- Bearing
- Slide rail
- Valve
### Source Data
#### Definition
We first define key terms in this task: "machine type," "section," "source domain," "target domain," and "attributes.".
- "Machine type" indicates the type of machine, which in the development dataset is one of seven: fan, gearbox, bearing, slide rail, valve, ToyCar, and ToyTrain.
- A section is defined as a subset of the dataset for calculating performance metrics.
- The source domain is the domain under which most of the training data and some of the test data were recorded, and the target domain is a different set of domains under which some of the training data and some of the test data were recorded. There are differences between the source and target domains in terms of operating speed, machine load, viscosity, heating temperature, type of environmental noise, signal-to-noise ratio, etc.
- Attributes are parameters that define states of machines or types of noise.
#### Description
This dataset consists of seven machine types. For each machine type, one section is provided, and the section is a complete set of training and test data. For each section, this dataset provides (i) 990 clips of normal sounds in the source domain for training, (ii) ten clips of normal sounds in the target domain for training, and (iii) 100 clips each of normal and anomalous sounds for the test. The source/target domain of each sample is provided. Additionally, the attributes of each sample in the training and test data are provided in the file names and attribute csv files.
#### Recording procedure
Normal/anomalous operating sounds of machines and its related equipment are recorded. Anomalous sounds were collected by deliberately damaging target machines. For simplifying the task, we use only the first channel of multi-channel recordings; all recordings are regarded as single-channel recordings of a fixed microphone. We mixed a target machine sound with environmental noise, and only noisy recordings are provided as training/test data. The environmental noise samples were recorded in several real factory environments. We will publish papers on the dataset to explain the details of the recording procedure by the submission deadline.
### Supported Tasks and Leaderboards
Anomalous sound detection (ASD) is the task of identifying whether the sound emitted from a target machine is normal or anomalous. Automatic detection of mechanical failure is an essential technology in the fourth industrial revolution, which involves artificial-intelligence-based factory automation. Prompt detection of machine anomalies by observing sounds is useful for monitoring the condition of machines.
This task is the follow-up from DCASE 2020 Task 2 to DCASE 2022 Task 2. The task this year is to develop an ASD system that meets the following four requirements.
**1. Train a model using only normal sound (unsupervised learning scenario)**
Because anomalies rarely occur and are highly diverse in real-world factories, it can be difficult to collect exhaustive patterns of anomalous sounds. Therefore, the system must detect unknown types of anomalous sounds that are not provided in the training data. This is the same requirement as in the previous tasks.
**2. Detect anomalies regardless of domain shifts (domain generalization task)**
In real-world cases, the operational states of a machine or the environmental noise can change to cause domain shifts. Domain-generalization techniques can be useful for handling domain shifts that occur frequently or are hard-to-notice. In this task, the system is required to use domain-generalization techniques for handling these domain shifts. This requirement is the same as in DCASE 2022 Task 2.
**3. Train a model for a completely new machine type**
For a completely new machine type, hyperparameters of the trained model cannot be tuned. Therefore, the system should have the ability to train models without additional hyperparameter tuning.
**4. Train a model using only one machine from its machine type**
While sounds from multiple machines of the same machine type can be used to enhance detection performance, it is often the case that sound data from only one machine are available for a machine type. In such a case, the system should be able to train models using only one machine from a machine type.
## Considerations for Using the Data
### Social Impact of Dataset
Not applicable.
### Discussion of Biases
Not applicable.
### Other Known Limitations
Not applicable.
## Additional Information
### Baseline system
The baseline system is available on the Github repository [dcase2023_task2_baseline_ae](https://github.com/nttcslab/dase2023_task2_baseline_ae).The baseline systems provide a simple entry-level approach that gives a reasonable performance in the dataset of Task 2. They are good starting points, especially for entry-level researchers who want to get familiar with the anomalous-sound-detection task.
### Dataset Curators
[//]: # (todo)
Example: The SNLI corpus was developed by Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning as part of the [Stanford NLP group](https://nlp.stanford.edu/).
### Licensing Information - Condition of use
This is a feature/embeddings-enriched version of the "DCASE 2023 Challenge Task 2 Development Dataset".
The [original dataset](https://dcase.community/challenge2023/task-first-shot-unsupervised-anomalous-sound-detection-for-machine-condition-monitoring#audio-datasets) was created jointly by **Hitachi, Ltd.** and **NTT Corporation** and is available under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license.
### Citation Information (original)
If you use this dataset, please cite all the following papers. We will publish a paper on DCASE 2023 Task 2, so pleasure make sure to cite the paper, too.
- Kota Dohi, Tomoya Nishida, Harsh Purohit, Ryo Tanabe, Takashi Endo, Masaaki Yamamoto, Yuki Nikaido, and Yohei Kawaguchi. MIMII DG: sound dataset for malfunctioning industrial machine investigation and inspection for domain generalization task. In arXiv e-prints: 2205.13879, 2022. [[URL](https://arxiv.org/abs/2205.13879)]
- Noboru Harada, Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Masahiro Yasuda, and Shoichiro Saito. ToyADMOS2: another dataset of miniature-machine operating sounds for anomalous sound detection under domain shift conditions. In Proceedings of the 6th Detection and Classification of Acoustic Scenes and Events 2021 Workshop (DCASE2021), 1–5. Barcelona, Spain, November 2021. [[URL](https://dcase.community/documents/workshop2021/proceedings/DCASE2021Workshop_Harada_6.pdf)]
- Noboru Harada, Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, and Masahiro Yasuda. First-shot anomaly detection for machine condition monitoring: a domain generalization baseline. In arXiv e-prints: 2303.00455, 2023. [[URL](https://arxiv.org/abs/2303.00455.pdf)]
```
@dataset{kota_dohi_2023_7687464,
author = {Kota Dohi and
Keisuke and
Noboru and
Daisuke and
Yuma and
Tomoya and
Harsh and
Takashi and
Yohei},
title = {DCASE 2023 Challenge Task 2 Development Dataset},
month = mar,
year = 2023,
publisher = {Zenodo},
version = {1.0},
doi = {10.5281/zenodo.7687464},
url = {https://doi.org/10.5281/zenodo.7687464}
}
``` |