updated readme
Browse files
README.md
CHANGED
@@ -154,6 +154,10 @@ a ClassLabel for the label and a ClassLabel for the class.
|
|
154 |
'domain': 0 (source)
|
155 |
'label': 0 (normal)
|
156 |
'class': 1 (fan)
|
|
|
|
|
|
|
|
|
157 |
'ast-finetuned-audioset-10-10-0.4593-embeddings': [0.8152204155921936,
|
158 |
1.5862374305725098, ...,
|
159 |
1.7154160737991333]
|
@@ -174,8 +178,9 @@ The length of each audio file is 10 seconds.
|
|
174 |
- `domain`: an integer whose value may be either _0_, indicating that the audio sample is from the _source_ domain, _1_, indicating that the audio sample is from the _target_.
|
175 |
- `class`: an integer as class label.
|
176 |
- `label`: an integer whose value may be either _0_, indicating that the audio sample is _normal_, _1_, indicating that the audio sample contains an _anomaly_.
|
|
|
|
|
177 |
- `embeddings_ast-finetuned-audioset-10-10-0.4593`: an `datasets.Sequence(Value("float32"), shape=(1, 768))` representing audio embeddings that are generated with an [Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer#transformers.ASTFeatureExtractor).
|
178 |
-
- `embeddings_dcase2023_task2_baseline_ae`: an `datasets.Sequence(Value("float32"), shape=(1, 512))` representing audio embeddings that are generated with the [**DCASE 2023 Challenge Task 2 Baseline Auto Encoder**](https://github.com/nttcslab/dcase2023_task2_baseline_ae). **Seven individual class-specific AEs** are trained. Dimensionality Reduction is applied with **PCA** separately for each class with a fit on the respecting training set of samples.
|
179 |
|
180 |
### Data Splits
|
181 |
|
@@ -217,6 +222,16 @@ The data consists of the normal/anomalous operating sounds of seven types of rea
|
|
217 |
- Slide rail
|
218 |
- Valve
|
219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
### Source Data
|
221 |
|
222 |
#### Definition
|
|
|
154 |
'domain': 0 (source)
|
155 |
'label': 0 (normal)
|
156 |
'class': 1 (fan)
|
157 |
+
'dev_train_lof_anomaly': 0
|
158 |
+
'dev_train_lof_anomaly_score': 1.241023
|
159 |
+
'add_train_lof_anomaly': 1
|
160 |
+
'add_train_lof_anomaly_score': 1.806289
|
161 |
'ast-finetuned-audioset-10-10-0.4593-embeddings': [0.8152204155921936,
|
162 |
1.5862374305725098, ...,
|
163 |
1.7154160737991333]
|
|
|
178 |
- `domain`: an integer whose value may be either _0_, indicating that the audio sample is from the _source_ domain, _1_, indicating that the audio sample is from the _target_.
|
179 |
- `class`: an integer as class label.
|
180 |
- `label`: an integer whose value may be either _0_, indicating that the audio sample is _normal_, _1_, indicating that the audio sample contains an _anomaly_.
|
181 |
+
- '*_lof_anomaly': an integer as anomaly indicator. The anomaly prediction is computed with the [Local Outlier Factor](https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html) algorithm based on the "*"-dataset.
|
182 |
+
- '*_lof_anomaly_score': a float as anomaly score. The anomaly score is computed with the [Local Outlier Factor](https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html) algorithm based on the "*"-dataset.
|
183 |
- `embeddings_ast-finetuned-audioset-10-10-0.4593`: an `datasets.Sequence(Value("float32"), shape=(1, 768))` representing audio embeddings that are generated with an [Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer#transformers.ASTFeatureExtractor).
|
|
|
184 |
|
185 |
### Data Splits
|
186 |
|
|
|
222 |
- Slide rail
|
223 |
- Valve
|
224 |
|
225 |
+
The "additional training data" and "evaluation data" datasets contain the following classes:
|
226 |
+
|
227 |
+
- bandsaw
|
228 |
+
- grinder
|
229 |
+
- shaker
|
230 |
+
- ToyDrone
|
231 |
+
- ToyNscale
|
232 |
+
- ToyTank
|
233 |
+
- Vacuum
|
234 |
+
|
235 |
### Source Data
|
236 |
|
237 |
#### Definition
|