|
|
|
|
|
"""ELI5-Category: A categorized open-domain QA dataset.""" |
|
|
|
|
|
import json |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_CITATION = """\ |
|
@inproceedings{eli5-category, |
|
author = {Jingsong Gao and |
|
Qingren Zhou and |
|
Rui Qiu}, |
|
title = {{ELI5-Category:} A categorized open-domain QA dataset}, |
|
year = {2021} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The ELI5-Category dataset is a smaller but newer and categorized version of the original ELI5 dataset. \ |
|
After 2017, a tagging system was introduced to this subreddit so that the questions can be categorized \ |
|
into different topics according to their tags. Since the training and validation set is built by questions \ |
|
in different topics, the dataset is expected to alleviate the train/validation overlapping issue \ |
|
in the original ELI5 dataset. |
|
""" |
|
|
|
|
|
class ELI5CategoryConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for ELI5Category.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for ELI5Category. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(ELI5CategoryConfig, self).__init__(**kwargs) |
|
|
|
|
|
class ELI5Category(datasets.GeneratorBasedBuilder): |
|
"""ELI5-Category: A categorized open-domain QA dataset.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
ELI5CategoryConfig( |
|
name="default", |
|
version=datasets.Version("1.0.0"), |
|
description="Default config", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "default" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"q_id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"selftext": datasets.Value("string"), |
|
"category": datasets.Value("string"), |
|
"subreddit": datasets.Value("string"), |
|
"answers": { |
|
"a_id": datasets.features.Sequence(datasets.Value("string")), |
|
"text": datasets.features.Sequence(datasets.Value("string")), |
|
"score": datasets.features.Sequence(datasets.Value("int32")), |
|
"text_urls": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))), |
|
}, |
|
"title_urls": datasets.features.Sequence(datasets.Value("string")), |
|
"selftext_urls": datasets.features.Sequence(datasets.Value("string")), |
|
} |
|
), |
|
supervised_keys=None, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
_URL = "https://jingshensn2.github.io/eli5c/datasets/" |
|
downloaded_files = dl_manager.download_and_extract( |
|
{ |
|
"train": _URL + "eli5-category-train.json.gz", |
|
"val1": _URL + "eli5-category-validation-1.json.gz", |
|
"val2": _URL + "eli5-category-validation-2.json.gz", |
|
"test": _URL + "eli5-category-test.json.gz", |
|
} |
|
) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": downloaded_files["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split("validation1"), |
|
gen_kwargs={"filepath": downloaded_files["val1"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split("validation2"), |
|
gen_kwargs={"filepath": downloaded_files["val2"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": downloaded_files["test"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
example = json.load(f) |
|
for id_, row in enumerate(example): |
|
yield id_, row |
|
|