|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
United States governmental agencies often make proposed regulations open to the public for comment. |
|
Proposed regulations are organized into "dockets". This project will use Regulation.gov public API |
|
to aggregate and clean public comments for dockets that mention opioid use. |
|
|
|
Each example will consist of one docket, and include metadata such as docket id, docket title, etc. |
|
Each docket entry will also include information about the top 10 comments, including comment metadata |
|
and comment text. |
|
""" |
|
|
|
|
|
_HOMEPAGE = "https://www.regulations.gov/" |
|
|
|
|
|
_URLS = {"url": "https://huggingface.co/datasets/ro-h/regulatory_comments/raw/main/docket_comments_v2.json"} |
|
|
|
|
|
class RegComments(datasets.GeneratorBasedBuilder): |
|
|
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
|
|
def _info(self): |
|
|
|
features = datasets.Features({ |
|
"id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"purpose": datasets.Value("string"), |
|
"keywords": datasets.Sequence(datasets.Value("string")), |
|
"comments": datasets.Sequence({ |
|
"text": datasets.Value("string"), |
|
"comment_id": datasets.Value("string"), |
|
"comment_url": datasets.Value("string"), |
|
"comment_date": datasets.Value("string"), |
|
"comment_title": datasets.Value("string"), |
|
"commenter_fname": datasets.Value("string"), |
|
"commenter_lname": datasets.Value("string"), |
|
"comment_length": datasets.Value("int32") |
|
}) |
|
}) |
|
|
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
print("split generators called") |
|
urls = _URLS["url"] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
print("urls accessed") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
print("enter generate") |
|
key = 0 |
|
with open(filepath, 'r', encoding='utf-8') as f: |
|
data = json.load(f) |
|
for docket in data: |
|
|
|
docket_id = docket["id"] |
|
docket_title = docket["title"] |
|
docket_context = docket["context"] |
|
docket_purpose = docket.get("purpose", "unspecified") |
|
docket_keywords = docket.get("keywords", []) |
|
comments = docket["comments"] |
|
|
|
|
|
yield key, { |
|
"id": docket_id, |
|
"title": docket_title, |
|
"context": docket_context, |
|
"purpose": docket_purpose, |
|
"keywords": docket_keywords, |
|
"comments": comments |
|
} |
|
key += 1 |