# coding=utf-8 # Copyright 2022 the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pandas as pd import datasets import json import ast from huggingface_hub import hf_hub_url _INPUT_CSV = "flickr_annotations_30k.csv" _INPUT_IMAGES = "flickr30k-images" _REPO_ID = "robinhad/flickr-test" _JSON_KEYS = ["raw", "sentids"] class Dataset(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.1.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="TEST", version=VERSION, description="test"), ] def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "image": datasets.Image(), "caption": [datasets.Value("string")], "sentids": [datasets.Value("string")], "split": datasets.Value("string"), "img_id": datasets.Value("string"), "filename": datasets.Value("string"), } ), # task_templates=[], ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" repo_id = _REPO_ID data_dir = dl_manager.download_and_extract( { "examples_csv": hf_hub_url( repo_id=repo_id, repo_type="dataset", filename=_INPUT_CSV ), "images_dir": hf_hub_url( repo_id=repo_id, repo_type="dataset", filename=f"{_INPUT_IMAGES}.zip", ), } ) return [datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=data_dir)] def _generate_examples(self, examples_csv, images_dir): """Yields examples.""" df = pd.read_csv(examples_csv) for c in _JSON_KEYS: df[c] = df[c].apply(ast.literal_eval) for r_idx, r in df.iterrows(): r_dict = r.to_dict() image_path = os.path.join(images_dir, _INPUT_IMAGES, r_dict["filename"]) r_dict["image"] = image_path r_dict["caption"] = r_dict.pop("raw") yield r_idx, r_dict