rojagtap's picture
Rename filternq.py to subsets.py
1646806
"""
long:
{
"document": "",
"question": "",
"long_answer_candidates": ["", "", ""],
"long_answer_candidate_index": 0
}
short:
{
"document": "",
"question": "",
"short_answer": ""
}
either:
{
"document": "",
"question": "",
"answer": ""
}
"""
import sys
import jsonlines
from datasets import load_dataset
from huggingface_hub import HfApi
def filter(raw, short_path, long_path, either_path):
fps = open(short_path, "a")
writers = jsonlines.Writer(fps)
fpl = open(long_path, "a")
writerl = jsonlines.Writer(fpl)
fpe = open(either_path, "a")
writere = jsonlines.Writer(fpe)
count = 0
long = []
short = []
either = []
for sample in raw:
try:
answer = ""
if sample["short_answers"][0]:
answer = sample["short_answers"][0]
short.append({
"document": sample["document"],
"question": sample["question"],
"short_answer": answer
})
if sample["long_answer_candidate_index"] != -1:
answer = sample["long_answer_candidates"][sample["long_answer_candidate_index"]] # long answer will have precedence over short answer
long.append({
"document": sample["document"],
"question": sample["question"],
"long_answer_candidates": sample["long_answer_candidates"],
"long_answer_candidate_index": sample["long_answer_candidate_index"]
})
if answer:
count += 1 # count only if there is an answer
either.append({
"document": sample["document"],
"question": sample["question"],
"answer": answer
})
except Exception as ex:
# raise ex
print("Exception: " + str(ex))
if (count + 1) % 1000 == 0:
writere.write_all(either)
either = []
if short:
writers.write_all(short)
short = []
if long:
writerl.write_all(long)
long = []
print("Done: " + str(count), end="\r")
if either:
writere.write_all(either)
either = []
if short:
writers.write_all(short)
short = []
if long:
writerl.write_all(long)
long = []
writere.close()
fpe.close()
writers.close()
fps.close()
writerl.close()
fpl.close()
if __name__ == "__main__":
if len(sys.argv) < 1:
raise AttributeError("Missing required argument: repository id")
repo = sys.argv[1]
api = HfApi()
train_data = load_dataset(repo, split="train", streaming=True)
filter(raw=train_data, short_path="data/short/train.jsonl", long_path="data/long/train.jsonl", either_path="data/either/train.jsonl")
val_data = load_dataset(repo, split="validation", streaming=True)
filter(raw=val_data, short_path="data/short/validation.jsonl", long_path="data/long/validation.jsonl", either_path="data/either/validation.jsonl")
api.upload_folder(
folder_path="data/",
repo_id=repo,
repo_type="dataset",
multi_commits=True,
multi_commits_verbose=True
)