text
stringlengths 0
207
|
---|
words = remove_punctuation(words) |
#print(words) |
def replace_numbers(words): |
#'''Replace all integer occurrences in the list of tokenized words''' |
p = inflect.engine() |
new_words = [] |
for word in words: |
if word.isdigit(): |
new_word = p.number_to_words(word) |
new_words.append(new_word) |
else: |
new_words.append(word) |
return(new_words) |
words = replace_numbers(words) |
#print(words) |
def remove_stopwords(words): |
#'''Remove stop words from the list of tokenized words''' |
new_words = [] |
for word in words: |
if word not in stopwords.words('english'): |
new_words.append(word) |
return new_words |
words = remove_stopwords(words) |
#print(words) |
def stem_words(words): |
#'''Finding stem words in the list of tokenized words''' |
stemmer = LancasterStemmer() |
stems = [] |
for word in words: |
stem = stemmer.stem(word) |
stems.append(stem) |
return stems |
words = stem_words(words) |
#print(words) |
def lemmatize_words(words): |
#'''Lemmatize verbs in the list of tokenized words''' |
lemmatizer = WordNetLemmatizer() |
lemmas = [] |
for word in words: |
lemma = lemmatizer.lemmatize(word, pos = 'v') |
lemmas.append(lemma) |
return lemmas |
words = lemmatize_words(words) |
#print(words) |
print(words) |
Text preprocessing(non user defined) |
import nltk |
import re |
import string |
import inflect |
from nltk.corpus import stopwords |
from nltk import word_tokenize |
series = open("dataset path.txt".txt").read() |
series |
series_lower = series.lower() |
# Removal of numbers |
result1 = re.sub(r'\d+', '', series_lower) |
#result1 |
# Removal of punctuations |
result2 = result1.translate(str.maketrans('','',string.punctuation)) |
#result2 |
# Removing white spaces |
result3 = result2.strip() |
#result3 |
# Removal of stopwords |
# Tokenize the text |
result3_tokens = word_tokenize(result3) |
#result3_tokens |
# Removing stopwords |
sw = set(stopwords.words('english')) |
result4 = [] |
for w in result3_tokens: |
if w not in sw: |
result4.append(w) |
#result4 |
text_tokenize = result4 |
#text_tokenize |
output = nltk.pos_tag(text_tokenize) |
#output |
Sentiment Analysis |
import pandas as pd |
import re |
import string |
from nltk.tokenize import word_tokenize |
from nltk.corpus import stopwords |
from nltk.stem import PorterStemmer |
from nltk.stem import WordNetLemmatizer |
import nltk |
from wordcloud import WordCloud |
import matplotlib.pyplot as plt |
file = open("dataset path.txt".txt", encoding = 'utf-8').read() |
# These are not required. DO Only if asked. |
# this code, clean data 2 and clean data 3 |