rvashurin commited on
Commit
f9d3e02
1 Parent(s): fc94460

Add dataset files

Browse files
README.md ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # wikidata-rubq-hf
2
+
3
+ Huggingface Dataset wrapper for Wikidata-RuBQ 2.0 dataset
4
+
5
+ ### Usage
6
+
7
+ ```bash
8
+ git clone [email protected]:s-nlp/wikidata-rubq-hf.git wikidata_rubq
9
+ ```
10
+
11
+ ```python3
12
+ from datasets import load_dataset;
13
+ load_dataset('wikidata_rubq.py', 'multiple_en', cache_dir='.', ignore_verifications=True)
14
+ ```
example.ipynb ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 61,
6
+ "id": "f3362bd9",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "from transformers import PreTrainedTokenizer\n",
11
+ "from typing import Dict\n",
12
+ "import datasets"
13
+ ]
14
+ },
15
+ {
16
+ "cell_type": "code",
17
+ "execution_count": 62,
18
+ "id": "8f447e4f",
19
+ "metadata": {},
20
+ "outputs": [
21
+ {
22
+ "name": "stdout",
23
+ "output_type": "stream",
24
+ "text": [
25
+ "Downloading and preparing dataset wikidata_rubq/multiple_en to /Users/m.shark/Documents/kq/cache/wikidata_rubq/multiple_en/0.0.1/876b4a13a1f967200cf24bbd09889db3ec1eaff98704d1f0cc7e278c5c1eac85...\n"
26
+ ]
27
+ },
28
+ {
29
+ "data": {
30
+ "application/vnd.jupyter.widget-view+json": {
31
+ "model_id": "c4460055d51c4041ac93247920423c49",
32
+ "version_major": 2,
33
+ "version_minor": 0
34
+ },
35
+ "text/plain": [
36
+ "Downloading data files: 0%| | 0/2 [00:00<?, ?it/s]"
37
+ ]
38
+ },
39
+ "metadata": {},
40
+ "output_type": "display_data"
41
+ },
42
+ {
43
+ "data": {
44
+ "application/vnd.jupyter.widget-view+json": {
45
+ "model_id": "f2c8e5a312434deeaed87df460b3ef69",
46
+ "version_major": 2,
47
+ "version_minor": 0
48
+ },
49
+ "text/plain": [
50
+ "Downloading data: 0%| | 0.00/619k [00:00<?, ?B/s]"
51
+ ]
52
+ },
53
+ "metadata": {},
54
+ "output_type": "display_data"
55
+ },
56
+ {
57
+ "data": {
58
+ "application/vnd.jupyter.widget-view+json": {
59
+ "model_id": "6c30eb720a544bd6ad3606ef0a1b0ae9",
60
+ "version_major": 2,
61
+ "version_minor": 0
62
+ },
63
+ "text/plain": [
64
+ "Downloading data: 0%| | 0.00/158k [00:00<?, ?B/s]"
65
+ ]
66
+ },
67
+ "metadata": {},
68
+ "output_type": "display_data"
69
+ },
70
+ {
71
+ "data": {
72
+ "application/vnd.jupyter.widget-view+json": {
73
+ "model_id": "64d46fddb2194c90b2474d791ffcd11a",
74
+ "version_major": 2,
75
+ "version_minor": 0
76
+ },
77
+ "text/plain": [
78
+ "Extracting data files: 0%| | 0/2 [00:00<?, ?it/s]"
79
+ ]
80
+ },
81
+ "metadata": {},
82
+ "output_type": "display_data"
83
+ },
84
+ {
85
+ "data": {
86
+ "application/vnd.jupyter.widget-view+json": {
87
+ "model_id": "",
88
+ "version_major": 2,
89
+ "version_minor": 0
90
+ },
91
+ "text/plain": [
92
+ "Generating validation split: 0 examples [00:00, ? examples/s]"
93
+ ]
94
+ },
95
+ "metadata": {},
96
+ "output_type": "display_data"
97
+ },
98
+ {
99
+ "data": {
100
+ "application/vnd.jupyter.widget-view+json": {
101
+ "model_id": "",
102
+ "version_major": 2,
103
+ "version_minor": 0
104
+ },
105
+ "text/plain": [
106
+ "Generating test split: 0 examples [00:00, ? examples/s]"
107
+ ]
108
+ },
109
+ "metadata": {},
110
+ "output_type": "display_data"
111
+ },
112
+ {
113
+ "name": "stdout",
114
+ "output_type": "stream",
115
+ "text": [
116
+ "Dataset wikidata_rubq downloaded and prepared to /Users/m.shark/Documents/kq/cache/wikidata_rubq/multiple_en/0.0.1/876b4a13a1f967200cf24bbd09889db3ec1eaff98704d1f0cc7e278c5c1eac85. Subsequent calls will reuse this data.\n"
117
+ ]
118
+ }
119
+ ],
120
+ "source": [
121
+ "from datasets import load_dataset\n",
122
+ "dataset = load_dataset(\n",
123
+ " 'wikidata_rubq.py', 'multiple_en', \n",
124
+ " cache_dir='cache', \n",
125
+ " ignore_verifications=True, split = 'test')"
126
+ ]
127
+ },
128
+ {
129
+ "cell_type": "code",
130
+ "execution_count": 63,
131
+ "id": "849bd722",
132
+ "metadata": {},
133
+ "outputs": [
134
+ {
135
+ "data": {
136
+ "application/vnd.jupyter.widget-view+json": {
137
+ "model_id": "6b30ff22b4794a4da4ae8e3f4949a3a5",
138
+ "version_major": 2,
139
+ "version_minor": 0
140
+ },
141
+ "text/plain": [
142
+ " 0%| | 0/2 [00:00<?, ?ba/s]"
143
+ ]
144
+ },
145
+ "metadata": {},
146
+ "output_type": "display_data"
147
+ }
148
+ ],
149
+ "source": [
150
+ "dataset = dataset.filter(lambda example: isinstance(example[\"object\"], str))"
151
+ ]
152
+ }
153
+ ],
154
+ "metadata": {
155
+ "kernelspec": {
156
+ "display_name": "Python 3 (ipykernel)",
157
+ "language": "python",
158
+ "name": "python3"
159
+ },
160
+ "language_info": {
161
+ "codemirror_mode": {
162
+ "name": "ipython",
163
+ "version": 3
164
+ },
165
+ "file_extension": ".py",
166
+ "mimetype": "text/x-python",
167
+ "name": "python",
168
+ "nbconvert_exporter": "python",
169
+ "pygments_lexer": "ipython3",
170
+ "version": "3.10.4"
171
+ }
172
+ },
173
+ "nbformat": 4,
174
+ "nbformat_minor": 5
175
+ }
reverse_vocab_wikidata_en.json ADDED
The diff for this file is too large to render. See raw diff
 
test_direct_vocab_wikidata_en.pkl ADDED
Binary file (59.4 kB). View file
 
train_direct_vocab_wikidata_en.pkl ADDED
Binary file (14.5 kB). View file
 
wikidata_rubq.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datasets
2
+ import os
3
+ import json
4
+ import wikidata
5
+ import pickle
6
+ from wikidata.client import Client
7
+
8
+ client = Client()
9
+
10
+ _DESCRIPTION = """\
11
+ HuggingFace wrapper for https://github.com/vladislavneon/RuBQ dataset
12
+ """
13
+
14
+ _HOMEPAGE = "https://zenodo.org/record/4345697#.Y01k81JBy3I"
15
+
16
+
17
+ _LICENSE = "Attribution-ShareAlike 4.0 International"
18
+
19
+ _LANGS = ["ru","en"]
20
+
21
+
22
+ _URLS = {
23
+ "test": "https://raw.githubusercontent.com/vladislavneon/RuBQ/master/RuBQ_2.0/RuBQ_2.0_test.json",
24
+ "dev": "https://raw.githubusercontent.com/vladislavneon/RuBQ/master/RuBQ_2.0/RuBQ_2.0_dev.json",
25
+ }
26
+
27
+
28
+ _DATA_DIRECTORY = "."
29
+ VERSION = datasets.Version("0.0.1")
30
+
31
+
32
+ class WikidataRuBQConfig(datasets.BuilderConfig):
33
+ """BuilderConfig for WikidataRuBQ."""
34
+
35
+ def __init__(self, **kwargs):
36
+ """BuilderConfig for WikidataRuBQ.
37
+ Args:
38
+ **kwargs: keyword arguments forwarded to super.
39
+ """
40
+ super(WikidataRuBQConfig, self).__init__(**kwargs)
41
+
42
+
43
+ class WikidataRuBQ(datasets.GeneratorBasedBuilder):
44
+ """HuggingFace wrapper https://github.com/vladislavneon/RuBQ/tree/master/RuBQ_2.0 dataset"""
45
+
46
+ BUILDER_CONFIG_CLASS = WikidataRuBQConfig
47
+ BUILDER_CONFIGS = []
48
+ BUILDER_CONFIGS += [
49
+ WikidataRuBQConfig(
50
+ name=f"multiple_{ln}",
51
+ version=VERSION,
52
+ description="questions with russian multiple labels as answers",
53
+ )
54
+ for ln in _LANGS
55
+ ]
56
+
57
+ DEFAULT_CONFIG_NAME = "multiple_en"
58
+
59
+ def _info(self):
60
+ features = datasets.Features(
61
+ {
62
+ "object": datasets.Sequence(datasets.Value("string")),
63
+ "question": datasets.Value("string")
64
+ }
65
+ )
66
+
67
+ return datasets.DatasetInfo(
68
+ description=_DESCRIPTION,
69
+ features=features,
70
+ homepage=_HOMEPAGE,
71
+ license=_LICENSE,
72
+ )
73
+
74
+ def _split_generators(self, dl_manager):
75
+ if self.config.name == "default":
76
+ version, lang = "multiple", "en"
77
+ else:
78
+ version, lang = self.config.name.split("_")
79
+
80
+ if lang not in _LANGS:
81
+ raise ValueError(f"Language {lang} not supported")
82
+
83
+ downloaded_files = dl_manager.download_and_extract(_URLS)
84
+
85
+ data_dir = os.path.join(self.base_path, '')
86
+ vocab_path = os.path.join(data_dir, "reverse_vocab_wikidata_en.json")
87
+
88
+ return [
89
+ datasets.SplitGenerator(
90
+ name=datasets.Split.TRAIN,
91
+ gen_kwargs={
92
+ "filepath": downloaded_files["dev"],
93
+ "lang": lang,
94
+ "vocab_path": vocab_path,
95
+ "split": 'train',
96
+ "data_dir": data_dir
97
+ }),
98
+ datasets.SplitGenerator(
99
+ name=datasets.Split.VALIDATION,
100
+ gen_kwargs={
101
+ "filepath": downloaded_files["dev"],
102
+ "lang": lang,
103
+ "vocab_path": vocab_path,
104
+ "split": 'validation',
105
+ "data_dir": data_dir
106
+ }),
107
+ datasets.SplitGenerator(
108
+ name=datasets.Split.TEST,
109
+ gen_kwargs={
110
+ "filepath": downloaded_files["test"],
111
+ "lang": lang,
112
+ "vocab_path": vocab_path,
113
+ "split": 'test',
114
+ "data_dir": data_dir
115
+ })
116
+ ]
117
+
118
+ def get_name(self, idd):
119
+ '''
120
+ This function returns a name of an entity and its description given WikiData id
121
+ input: (str) wikidata id, e.x. 'Q2'
122
+ output: (str) concatenated 'name, description' of a given entity
123
+ '''
124
+ entity = client.get(idd, load=True)
125
+ name = None
126
+ try:
127
+ name = entity.data["labels"]["en"]["value"]
128
+ except:
129
+ pass
130
+ return name
131
+
132
+ def _generate_examples(self, filepath, lang, vocab_path, split, data_dir):
133
+ direct_path = os.path.join(data_dir, f"{split}_direct_vocab_wikidata_en.pkl")
134
+
135
+ with open(direct_path, 'rb') as handle:
136
+ direct_vocab = pickle.load(handle)
137
+
138
+ with open(filepath, encoding="utf-8") as f:
139
+ item = json.load(f)
140
+ uid_slide = 0
141
+ for i in item:
142
+ question = i['question_text'] if lang == 'ru' else i['question_eng']
143
+
144
+ objects = list(set(
145
+ [answer['value'].split('entity/')[1] for answer in i['answers'] if '/Q' in answer['value']]
146
+ ))
147
+
148
+ if len(set(objects)) >= 1:
149
+ if split == 'train':
150
+ for obj in set(objects):
151
+ key = i['uid'] + uid_slide
152
+ resolved_obj = direct_vocab.get(obj, None)
153
+ if resolved_obj is not None:
154
+ resolved_obj = resolved_obj[0].upper() + resolved_obj[1:]
155
+
156
+ uid_slide += 1
157
+
158
+ yield (
159
+ key,
160
+ {
161
+ "object": [resolved_obj],
162
+ "question": question,
163
+ }
164
+ )
165
+ else:
166
+ key = i['uid'] + uid_slide
167
+ yield (
168
+ key,
169
+ {
170
+ "object": objects,
171
+ "question": question,
172
+ }
173
+ )