import datasets import os import json import wikidata import pickle from wikidata.client import Client client = Client() _DESCRIPTION = """\ HuggingFace wrapper for https://github.com/vladislavneon/RuBQ dataset """ _HOMEPAGE = "https://zenodo.org/record/4345697#.Y01k81JBy3I" _LICENSE = "Attribution-ShareAlike 4.0 International" _LANGS = ["ru","en"] _URLS = { "test": "https://raw.githubusercontent.com/vladislavneon/RuBQ/master/RuBQ_2.0/RuBQ_2.0_test.json", "dev": "https://raw.githubusercontent.com/vladislavneon/RuBQ/master/RuBQ_2.0/RuBQ_2.0_dev.json", } _DATA_DIRECTORY = "." VERSION = datasets.Version("0.0.1") class WikidataRuBQConfig(datasets.BuilderConfig): """BuilderConfig for WikidataRuBQ.""" def __init__(self, **kwargs): """BuilderConfig for WikidataRuBQ. Args: **kwargs: keyword arguments forwarded to super. """ super(WikidataRuBQConfig, self).__init__(**kwargs) class WikidataRuBQ(datasets.GeneratorBasedBuilder): """HuggingFace wrapper https://github.com/vladislavneon/RuBQ/tree/master/RuBQ_2.0 dataset""" BUILDER_CONFIG_CLASS = WikidataRuBQConfig BUILDER_CONFIGS = [] BUILDER_CONFIGS += [ WikidataRuBQConfig( name=f"multiple_{ln}", version=VERSION, description="questions with russian multiple labels as answers", ) for ln in _LANGS ] DEFAULT_CONFIG_NAME = "multiple_en" def _info(self): features = datasets.Features( { "object": datasets.Sequence(datasets.Value("string")), "question": datasets.Value("string") } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, ) def _split_generators(self, dl_manager): if self.config.name == "default": version, lang = "multiple", "en" else: version, lang = self.config.name.split("_") if lang not in _LANGS: raise ValueError(f"Language {lang} not supported") downloaded_files = dl_manager.download_and_extract(_URLS) data_dir = os.path.join(self.base_path, '') vocab_path = os.path.join(data_dir, "reverse_vocab_wikidata_en.json") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": downloaded_files["dev"], "lang": lang, "vocab_path": vocab_path, "split": 'train', "data_dir": data_dir }), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": downloaded_files["dev"], "lang": lang, "vocab_path": vocab_path, "split": 'validation', "data_dir": data_dir }), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": downloaded_files["test"], "lang": lang, "vocab_path": vocab_path, "split": 'test', "data_dir": data_dir }) ] def get_name(self, idd): ''' This function returns a name of an entity and its description given WikiData id input: (str) wikidata id, e.x. 'Q2' output: (str) concatenated 'name, description' of a given entity ''' entity = client.get(idd, load=True) name = None try: name = entity.data["labels"]["en"]["value"] except: pass return name def _generate_examples(self, filepath, lang, vocab_path, split, data_dir): if split == 'test': direct_path = os.path.join(data_dir, f"test_direct_vocab_wikidata_en.pkl") else: direct_path = os.path.join(data_dir, f"train_direct_vocab_wikidata_en.pkl") with open(direct_path, 'rb') as handle: direct_vocab = pickle.load(handle) with open(filepath, encoding="utf-8") as f: item = json.load(f) uid_slide = 0 for i in item: question = i['question_text'] if lang == 'ru' else i['question_eng'] objects = list(set( [answer['value'].split('entity/')[1] for answer in i['answers'] if '/Q' in answer['value']] )) if len(set(objects)) >= 1: if split == 'train': for obj in set(objects): key = i['uid'] + uid_slide resolved_obj = direct_vocab.get(obj, None) if resolved_obj is not None: resolved_obj = resolved_obj[0].upper() + resolved_obj[1:] uid_slide += 1 yield ( key, { "object": [resolved_obj], "question": question, } ) else: key = i['uid'] + uid_slide yield ( key, { "object": objects, "question": question, } )