Datasets:
File size: 5,412 Bytes
106d0ac f28fcba 106d0ac f28fcba 106d0ac 49e027a 106d0ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Japanese-English Business Scene Dialogue (BSD) dataset. """
import json
import datasets
_CITATION = """\
@inproceedings{rikters-etal-2019-designing,
title = "Designing the Business Conversation Corpus",
author = "Rikters, Matīss and
Ri, Ryokan and
Li, Tong and
Nakazawa, Toshiaki",
booktitle = "Proceedings of the 6th Workshop on Asian Translation",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/D19-5204",
doi = "10.18653/v1/D19-5204",
pages = "54--61"
}
"""
_DESCRIPTION = """\
This is the Business Scene Dialogue (BSD) dataset,
a Japanese-English parallel corpus containing written conversations
in various business scenarios.
The dataset was constructed in 3 steps:
1) selecting business scenes,
2) writing monolingual conversation scenarios according to the selected scenes, and
3) translating the scenarios into the other language.
Half of the monolingual scenarios were written in Japanese
and the other half were written in English.
Fields:
- id: dialogue identifier
- no: sentence pair number within a dialogue
- en_speaker: speaker name in English
- ja_speaker: speaker name in Japanese
- en_sentence: sentence in English
- ja_sentence: sentence in Japanese
- original_language: language in which monolingual scenario was written
- tag: scenario
- title: scenario title
"""
_HOMEPAGE = "https://github.com/tsuruoka-lab/BSD"
_LICENSE = "CC BY-NC-SA 4.0"
_REPO = "https://raw.githubusercontent.com/tsuruoka-lab/BSD/master/"
_URLs = {
"train": _REPO + "train.json",
"dev": _REPO + "dev.json",
"test": _REPO + "test.json",
}
class BsdJaEn(datasets.GeneratorBasedBuilder):
"""Japanese-English Business Scene Dialogue (BSD) dataset."""
VERSION = datasets.Version("1.0.0")
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"tag": datasets.Value("string"),
"title": datasets.Value("string"),
"original_language": datasets.Value("string"),
"no": datasets.Value("int32"),
"en_speaker": datasets.Value("string"),
"ja_speaker": datasets.Value("string"),
"en_sentence": datasets.Value("string"),
"ja_sentence": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
data_dir = dl_manager.download_and_extract(_URLs)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": data_dir["test"], "split": "test"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_dir["dev"],
"split": "dev",
},
),
]
def _generate_examples(self, filepath, split):
"""Yields examples."""
with open(filepath, encoding="utf-8") as f:
data = json.load(f)
for dialogue in data:
id_ = dialogue["id"]
tag = dialogue["tag"]
title = dialogue["title"]
original_language = dialogue["original_language"]
conversation = dialogue["conversation"]
for turn in conversation:
sent_no = int(turn["no"])
en_speaker = turn["en_speaker"]
ja_speaker = turn["ja_speaker"]
en_sentence = turn["en_sentence"]
ja_sentence = turn["ja_sentence"]
yield f"{id_}_{sent_no}", {
"id": id_,
"tag": tag,
"title": title,
"original_language": original_language,
"no": sent_no,
"en_speaker": en_speaker,
"ja_speaker": ja_speaker,
"en_sentence": en_sentence,
"ja_sentence": ja_sentence,
}
|