import xml.etree.ElementTree as ET import csv import pandas as pd from pydub import AudioSegment import re import sys from typing import List, Tuple, Dict # Global dictionary to store custom character choices for each pinyin custom_choices: Dict[str, str] = {} def parse_xml(xml_content: str) -> List[Tuple[int, int, str]]: root = ET.fromstring(xml_content) time_order = {ts.get('TIME_SLOT_ID'): int(ts.get('TIME_VALUE')) for ts in root.iter('TIME_SLOT')} tier_data = [] for tier in root.iter('TIER'): tier_id = tier.get('TIER_ID') if not ('-' in tier_id) and (tier_id == 'G' or tier_id == 'E'): for annotation in tier.iter('ALIGNABLE_ANNOTATION'): start_time = time_order[annotation.get('TIME_SLOT_REF1')] end_time = time_order[annotation.get('TIME_SLOT_REF2')] text = annotation.find('./ANNOTATION_VALUE').text tier_data.append((start_time, end_time, text)) return tier_data def transform_latin_to_chinese(text: str, dict_df: pd.DataFrame, output_wav: str) -> Tuple[str, pd.DataFrame]: global custom_choices transformed_text = "" i = 0 while i < len(text): char = text[i] if char == "&": j = i + 1 while j < i + 7 and j < len(text) and text[j].isalpha(): j += 1 if j < len(text) and text[j].isdigit(): term = text[(i+1):j + 1].lower() pinyin_entries = dict_df[dict_df['拼音'] == term]['繁體'] if not pinyin_entries.empty: if len(pinyin_entries) > 1: full_sentence = f"Full Sentence: {text}" print(full_sentence) print(f"Path: {output_wav}") print(f"Multiple entries found for { term}. Choose one (or enter a custom character):") for idx, entry in enumerate(pinyin_entries): print(f"{idx + 1}. {entry}") print(f"{len(pinyin_entries) + 1}. Enter a custom character") choice = input("Enter the number of your choice: ") if choice.isdigit() and int(choice) <= len(pinyin_entries): choice = int(choice) - 1 transformed_text += pinyin_entries.values[choice] custom_choices[term] = pinyin_entries.values[choice] elif choice == str(len(pinyin_entries) + 1): custom_choice = input( f"Enter a custom character for {term}: ") transformed_text += custom_choice custom_choices[term] = custom_choice # Update DataFrame with the custom character dict_df = pd.concat([dict_df, pd.DataFrame( [{'拼音': term, '繁體': custom_choice}])], ignore_index=True) else: print("Invalid choice. Using the default character.") transformed_text += pinyin_entries.values[0] else: try: transformed_text += pinyin_entries.values[0] or "" except: pass else: print(f"Full Sentence: {text}") print(f"Path: {output_wav}") custom_choice = input(f"No corresponding character found for { term}. Enter a custom character: ") transformed_text += custom_choice custom_choices[term] = custom_choice # Update DataFrame with the custom character dict_df = pd.concat([dict_df, pd.DataFrame( [{'拼音': term, '繁體': custom_choice}])], ignore_index=True) i = j + 1 else: transformed_text += char i += 1 else: transformed_text += char i += 1 return transformed_text, dict_df def clean_transformed_text(text: str) -> str: # Replace "#" with a blank space text = text.replace("#", " ") # Remove special characters and symbols text = re.sub(r"[^a-zA-Z0-9\u4e00-\u9fff ]", "", text) # Remove HTML entities (e.g., &) text = re.sub(r"&[a-zA-Z]+;", "", text) return text def extract_audio_segments(input_wav: str, output_wav: str, start_time: int, end_time: int) -> None: audio = AudioSegment.from_wav(input_wav) segment = audio[start_time:end_time] segment.export(output_wav, format="wav") def main() -> None: with open(sys.argv[1], "r", encoding="utf-8") as file: xml_content = file.read() tier_data = parse_xml(xml_content) with open("./粵語字典_(耶魯_數字).csv", "r", encoding="utf-8") as dict_file: dict_csv = dict_file.name dict_df = pd.read_csv(dict_csv) # Replace with your actual audio file audio_file = sys.argv[1].replace("eaf", "wav") transformed_tier_data = [] for i, (start_time, end_time, text) in enumerate(tier_data): output_wav = f"audio/{sys.argv[1].split('/') [-1].replace('.eaf', '')}_ts{i+1}.wav" extract_audio_segments(audio_file, output_wav, start_time, end_time) transformed_text, dict_df = transform_latin_to_chinese(text, dict_df, output_wav) transformed_text = clean_transformed_text(transformed_text) transformed_tier_data.append( (start_time, end_time, transformed_text, output_wav.split("/")[-1])) # Save the updated DataFrame to the CSV file dict_df.to_csv(dict_csv, index=False, encoding='utf-8') tsv_filename = "transcript/" + \ sys.argv[1].split("/")[-1].replace("eaf", "tsv") with open(tsv_filename, "w", newline="", encoding="utf-8") as tsvfile: tsv_writer = csv.writer(tsvfile, delimiter='\t') tsv_writer.writerow( ["timestamp_start", "timestamp_end", "text", "path"]) tsv_writer.writerows(transformed_tier_data) if __name__ == "__main__": main()