|
import datasets |
|
import pandas as pd |
|
from datasets import DownloadManager |
|
|
|
class SetClassification(datasets.GeneratorBasedBuilder): |
|
"""Set-Classification Images dataset""" |
|
|
|
def __init__(self, data_path='data', *args, **kwargs): |
|
super(SetClassification, self).__init__(*args, **kwargs) |
|
self.data_path = data_path |
|
self.labels = pd.read_csv(f'{self.data_path}/labels.csv') |
|
self.train = self.labels[self.labels['split'] == 'train'] |
|
self.test = self.labels[self.labels['split'] == 'test'] |
|
self.dl_manager = DownloadManager() |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description='Set Classification Images dataset', |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
'images': [f"{self.data_path}/images/{image.filename}" for image in self.train.itertuples()], |
|
'labels': { |
|
'no': [image.no for image in self.train.itertuples()], |
|
'shape': [image.shape for image in self.train.itertuples()], |
|
'color': [image.color for image in self.train.itertuples()], |
|
'shading': [image.shading for image in self.train.itertuples()] |
|
} |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
'images': [f"{self.data_path}/images/{image.filename}" for image in self.test.itertuples()], |
|
'labels': { |
|
'no': [image.no for image in self.test.itertuples()], |
|
'shape': [image.shape for image in self.test.itertuples()], |
|
'color': [image.color for image in self.test.itertuples()], |
|
'shading': [image.shading for image in self.test.itertuples()] |
|
} |
|
} |
|
) |
|
] |
|
|
|
def _generate_examples(self, images, labels): |
|
for img, label in zip(images, zip(*labels.values())): |
|
try: |
|
with open(img, 'rb') as img_obj: |
|
no, shape, color, shading = label |
|
yield img, { |
|
'image': {"path": img, "bytes": img_obj.read()}, |
|
'no': no, |
|
'shape': shape, |
|
'color': color, |
|
'shading': shading |
|
} |
|
except Exception as e: |
|
print(f"Error processing image {img}: {e}") |