Datasets:
Tasks:
Image Classification
Languages:
English
Create dataset.py
Browse files- dataset.py +47 -0
dataset.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import datasets
|
3 |
+
|
4 |
+
class BreastMNIST(datasets.GeneratorBasedBuilder):
|
5 |
+
VERSION = datasets.Version("1.0.0")
|
6 |
+
|
7 |
+
def _info(self):
|
8 |
+
return datasets.DatasetInfo(
|
9 |
+
features=datasets.Features({
|
10 |
+
"image": datasets.Array3D(shape=(28, 28, 1), dtype="uint8"), # Adjust shape if necessary
|
11 |
+
"label": datasets.ClassLabel(names=["benign", "malignant"]) # Adjust based on your labels
|
12 |
+
}),
|
13 |
+
description="BreastMNIST dataset containing medical imaging data",
|
14 |
+
supervised_keys=("image", "label"),
|
15 |
+
)
|
16 |
+
|
17 |
+
def _split_generators(self, dl_manager):
|
18 |
+
# Provide the URL for downloading your dataset
|
19 |
+
downloaded_file = dl_manager.download_and_extract({
|
20 |
+
"dataset": "https://huggingface.co/datasets/sanaa13/breastmnist1/raw/main/breastmnist.npz"
|
21 |
+
})
|
22 |
+
return [
|
23 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_file["dataset"], "split": "train"}),
|
24 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_file["dataset"], "split": "val"}),
|
25 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_file["dataset"], "split": "test"}),
|
26 |
+
]
|
27 |
+
|
28 |
+
def _generate_examples(self, filepath, split):
|
29 |
+
# Load the .npz file
|
30 |
+
data = np.load(filepath)
|
31 |
+
|
32 |
+
if split == "train":
|
33 |
+
images = data['train_images']
|
34 |
+
labels = data['train_labels']
|
35 |
+
elif split == "val":
|
36 |
+
images = data['val_images']
|
37 |
+
labels = data['val_labels']
|
38 |
+
elif split == "test":
|
39 |
+
images = data['test_images']
|
40 |
+
labels = data['test_labels']
|
41 |
+
|
42 |
+
# Yield examples in index: {image, label} format
|
43 |
+
for idx, (image, label) in enumerate(zip(images, labels)):
|
44 |
+
yield idx, {
|
45 |
+
"image": image,
|
46 |
+
"label": int(label),
|
47 |
+
}
|