import numpy as np import datasets class BreastMNIST(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( features=datasets.Features({ "image": datasets.Array3D(shape=(28, 28, 1), dtype="uint8"), # Adjust shape if necessary "label": datasets.ClassLabel(names=["benign", "malignant"]) # Adjust based on your labels }), description="BreastMNIST dataset containing medical imaging data", supervised_keys=("image", "label"), ) def _split_generators(self, dl_manager): # Provide the URL for downloading your dataset downloaded_file = dl_manager.download_and_extract({ "dataset": "https://huggingface.co/datasets/sanaa13/breastmnist1/raw/main/breastmnist.npz" }) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_file["dataset"], "split": "train"}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_file["dataset"], "split": "val"}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_file["dataset"], "split": "test"}), ] def _generate_examples(self, filepath, split): # Load the .npz file data = np.load(filepath) if split == "train": images = data['train_images'] labels = data['train_labels'] elif split == "val": images = data['val_images'] labels = data['val_labels'] elif split == "test": images = data['test_images'] labels = data['test_labels'] # Yield examples in index: {image, label} format for idx, (image, label) in enumerate(zip(images, labels)): yield idx, { "image": image, "label": int(label), }