Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
File size: 5,954 Bytes
2d1f177
 
4789781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d1f177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fb367f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
973a3e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d1f177
4789781
 
 
 
 
 
2d1f177
 
 
 
 
 
2fb367f
 
 
 
 
 
973a3e5
 
 
 
 
 
2d1f177
754b4db
 
 
 
 
 
 
 
0c84b99
754b4db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ee0604
754b4db
 
 
 
 
 
 
 
 
 
7ee0604
754b4db
 
81950e6
754b4db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81950e6
754b4db
81950e6
754b4db
81950e6
754b4db
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
---
dataset_info:
- config_name: data_mining
  features:
  - name: wikipedia_passage_concept_A
    dtype: string
  - name: concept_A
    dtype: string
  - name: wikipedia_passage_concept_B
    dtype: string
  - name: concept_B
    dtype: string
  - name: target
    dtype: int64
  splits:
  - name: train
    num_bytes: 2356292
    num_examples: 218
  - name: test
    num_bytes: 906558
    num_examples: 99
  download_size: 564203
  dataset_size: 3262850
- config_name: geometry
  features:
  - name: wikipedia_passage_concept_A
    dtype: string
  - name: concept_A
    dtype: string
  - name: wikipedia_passage_concept_B
    dtype: string
  - name: concept_B
    dtype: string
  - name: target
    dtype: int64
  splits:
  - name: train
    num_bytes: 6705697
    num_examples: 664
  - name: test
    num_bytes: 2178281
    num_examples: 200
  download_size: 601925
  dataset_size: 8883978
- config_name: physics
  features:
  - name: wikipedia_passage_concept_A
    dtype: string
  - name: concept_A
    dtype: string
  - name: wikipedia_passage_concept_B
    dtype: string
  - name: concept_B
    dtype: string
  - name: target
    dtype: int64
  splits:
  - name: train
    num_bytes: 14566247
    num_examples: 630
  - name: test
    num_bytes: 4882943
    num_examples: 200
  download_size: 1965578
  dataset_size: 19449190
- config_name: precalculus
  features:
  - name: wikipedia_passage_concept_A
    dtype: string
  - name: concept_A
    dtype: string
  - name: wikipedia_passage_concept_B
    dtype: string
  - name: concept_B
    dtype: string
  - name: target
    dtype: int64
  splits:
  - name: train
    num_bytes: 12491149
    num_examples: 816
  - name: test
    num_bytes: 3261896
    num_examples: 200
  download_size: 1513563
  dataset_size: 15753045
configs:
- config_name: data_mining
  data_files:
  - split: train
    path: data_mining/train-*
  - split: test
    path: data_mining/test-*
- config_name: geometry
  data_files:
  - split: train
    path: geometry/train-*
  - split: test
    path: geometry/test-*
- config_name: physics
  data_files:
  - split: train
    path: physics/train-*
  - split: test
    path: physics/test-*
- config_name: precalculus
  data_files:
  - split: train
    path: precalculus/train-*
  - split: test
    path: precalculus/test-*
---

# Prerequisite RElation LEARNing (PRELEARN)

Original Paper: https://ceur-ws.org/Vol-2765/paper164.pdf

This dataset contains a collection of binary-labelled concept pairs (A,B) extracted from textbooks on four domains: **data mining**, **geometry**, **physics** and **precalculus**.
Then, domain experts were asked to manually annotate if pairs of concepts showed a prerequisite relation or not, therefore the dataset consists of both positive and negative concept pairs.

We obtained the data from the original repository, making only one modification: undersampling the training data, to have a balanced set. To evaluate generative models in in-context learning, it's essential to have a balanced distribution for sampling examples in a few-shot setting. The undersampling process was carried out randomly, and separately for each domain.

## Example

Here you can see the structure of the single sample in the present dataset.

```json
{
  "concept_A": string, # text of the concept A
  "wikipedia_passage_concept_A": string, # paragraph of wikipedia corresponding to concept A
  "concept_B": string, # text of the concept B
  "wikipedia_passage_concept_B": string, # paragraph of wikipedia corresponding to concept B
  "target": int, # 0: B non è preconcetto di A, 1: B è preconcetto di A
}
```

## Statitics

| PRELEARN Data Mining | 0 | 1 |
| :--------: | :----: | :----: |
| Training | 109 | 109 |
| Test | 50 | 49 |

| PRELEARN Physics | 0 | 1 |
| :--------: | :----: | :----: |
| Training | 315 | 315 |
| Test | 100 | 100 |

| PRELEARN Geometry | 0 | 1 |
| :--------: | :----: | :----: |
| Training | 332 | 332 |
| Test | 100 | 100 |

| PRELEARN Precalculus | 0 | 1 |
| :--------: | :----: | :----: |
| Training | 408 | 408 |
| Test | 100 | 100 |

## Proposed Prompts

Here we will describe the prompt given to the model over which we will compute the perplexity score, as model's answer we will chose the prompt with lower perplexity.
Moreover, for each subtask, we define a description that is prepended to the prompts, needed by the model to understand the task.

Description of the task: "Dati due concetti A e B, indica se il primo concetto è un prerequisito per il secondo.\nIl concetto A è prerequisito per il concetto B, se per comprendere B devi prima aver compreso A.\nI seguenti concetti appartengono al dominio: {{domain}}.\n\n"

### Cloze Style:

Label (**B non è prerequisito di A**): "{{concept_B}} non è un prerequisito per {{concept_A}}"

Label (**B è prerequisito di A**): "{{concept_B}} è un prerequisito per {{concept_A}}"

### MCQA Style:

```
Domanda: il concetto \"{{concept_B}}\" è un prerequisito per la comprensione del concetto \"{{concept_A}}\"? Rispondi sì o no:
```

## Results

The following results are given by the Cloze-style prompting over some english and italian-adapted LLMs.

| PRELEARN (AVG) | ACCURACY (15-shots) |
| :-----: | :--: |
| Gemma-2B | 60.12 |
| QWEN2-1.5B | 57.00 |
| Mistral-7B | 64.50 |
| ZEFIRO | 64.76 |
| Llama-3-8B | 60.63 |
| Llama-3-8B-IT | 63.76 |
| ANITA | 63.77 |

## Aknwoledge

We would like to thank the authors of this resource for publicly releasing such an intriguing benchmark.

Additionally, we extend our gratitude to the students of the [MNLP-2024 course](https://naviglinlp.blogspot.com/), whose first homework explored various interesting prompting strategies.

The original dataset is freely available for download [link](https://live.european-language-grid.eu/catalogue/corpus/8084).

## License

The data come under the license [Creative Commons Attribution Non Commercial Share Alike 4.0 International](https://creativecommons.org/licenses/by-nc-sa/4.0/)