--- dataset_info: - config_name: data_mining features: - name: wikipedia_passage_concept_A dtype: string - name: concept_A dtype: string - name: wikipedia_passage_concept_B dtype: string - name: concept_B dtype: string - name: target dtype: int64 splits: - name: train num_bytes: 2356292 num_examples: 218 - name: test num_bytes: 906558 num_examples: 99 download_size: 564203 dataset_size: 3262850 - config_name: geometry features: - name: wikipedia_passage_concept_A dtype: string - name: concept_A dtype: string - name: wikipedia_passage_concept_B dtype: string - name: concept_B dtype: string - name: target dtype: int64 splits: - name: train num_bytes: 6705697 num_examples: 664 - name: test num_bytes: 2178281 num_examples: 200 download_size: 601925 dataset_size: 8883978 - config_name: physics features: - name: wikipedia_passage_concept_A dtype: string - name: concept_A dtype: string - name: wikipedia_passage_concept_B dtype: string - name: concept_B dtype: string - name: target dtype: int64 splits: - name: train num_bytes: 14566247 num_examples: 630 - name: test num_bytes: 4882943 num_examples: 200 download_size: 1965578 dataset_size: 19449190 - config_name: precalculus features: - name: wikipedia_passage_concept_A dtype: string - name: concept_A dtype: string - name: wikipedia_passage_concept_B dtype: string - name: concept_B dtype: string - name: target dtype: int64 splits: - name: train num_bytes: 12491149 num_examples: 816 - name: test num_bytes: 3261896 num_examples: 200 download_size: 1513563 dataset_size: 15753045 configs: - config_name: data_mining data_files: - split: train path: data_mining/train-* - split: test path: data_mining/test-* - config_name: geometry data_files: - split: train path: geometry/train-* - split: test path: geometry/test-* - config_name: physics data_files: - split: train path: physics/train-* - split: test path: physics/test-* - config_name: precalculus data_files: - split: train path: precalculus/train-* - split: test path: precalculus/test-* --- # Prerequisite RElation LEARNing (PRELEARN) Original Paper: https://ceur-ws.org/Vol-2765/paper164.pdf This dataset contains a collection of binary-labelled concept pairs (A,B) extracted from textbooks on four domains: **data mining**, **geometry**, **physics** and **precalculus**. Then, domain experts were asked to manually annotate if pairs of concepts showed a prerequisite relation or not, therefore the dataset consists of both positive and negative concept pairs. We obtained the data from the original repository, making only one modification: undersampling the training data, to have a balanced set. To evaluate generative models in in-context learning, it's essential to have a balanced distribution for sampling examples in a few-shot setting. The undersampling process was carried out randomly, and separately for each domain. ## Example Here you can see the structure of the single sample in the present dataset. ```json { "concept_A": string, # text of the concept A "wikipedia_passage_concept_A": string, # paragraph of wikipedia corresponding to concept A "concept_B": string, # text of the concept B "wikipedia_passage_concept_B": string, # paragraph of wikipedia corresponding to concept B "target": int, # 0: B non è preconcetto di A, 1: B è preconcetto di A } ``` ## Statitics | PRELEARN Data Mining | 0 | 1 | | :--------: | :----: | :----: | | Training | 109 | 109 | | Test | 50 | 49 | | PRELEARN Physics | 0 | 1 | | :--------: | :----: | :----: | | Training | 315 | 315 | | Test | 100 | 100 | | PRELEARN Geometry | 0 | 1 | | :--------: | :----: | :----: | | Training | 332 | 332 | | Test | 100 | 100 | | PRELEARN Precalculus | 0 | 1 | | :--------: | :----: | :----: | | Training | 408 | 408 | | Test | 100 | 100 | ## Proposed Prompts Here we will describe the prompt given to the model over which we will compute the perplexity score, as model's answer we will chose the prompt with lower perplexity. Moreover, for each subtask, we define a description that is prepended to the prompts, needed by the model to understand the task. Description of the task: "Dati due concetti A e B, indica se il primo concetto è un prerequisito per il secondo.\nIl concetto A è prerequisito per il concetto B, se per comprendere B devi prima aver compreso A.\nI seguenti concetti appartengono al dominio: {{domain}}.\n\n" ### Cloze Style: Label (**B non è prerequisito di A**): "{{concept_B}} non è un prerequisito per {{concept_A}}" Label (**B è prerequisito di A**): "{{concept_B}} è un prerequisito per {{concept_A}}" ### MCQA Style: ``` Domanda: il concetto \"{{concept_B}}\" è un prerequisito per la comprensione del concetto \"{{concept_A}}\"? Rispondi sì o no: ``` ## Results The following results are given by the Cloze-style prompting over some english and italian-adapted LLMs. | PRELEARN (AVG) | ACCURACY (15-shots) | | :-----: | :--: | | Gemma-2B | 60.12 | | QWEN2-1.5B | 57.00 | | Mistral-7B | 64.50 | | ZEFIRO | 64.76 | | Llama-3-8B | 60.63 | | Llama-3-8B-IT | 63.76 | | ANITA | 63.77 | ## Aknwoledge We would like to thank the authors of this resource for publicly releasing such an intriguing benchmark. Additionally, we extend our gratitude to the students of the [MNLP-2024 course](https://naviglinlp.blogspot.com/), whose first homework explored various interesting prompting strategies. The original dataset is freely available for download [link](https://live.european-language-grid.eu/catalogue/corpus/8084). ## License The data come under the license [Creative Commons Attribution Non Commercial Share Alike 4.0 International](https://creativecommons.org/licenses/by-nc-sa/4.0/)