Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
File size: 2,635 Bytes
5da2357
 
 
 
 
 
 
 
 
371fe3e
5da2357
 
371fe3e
5da2357
371fe3e
 
5da2357
 
 
 
 
 
 
 
103a531
 
 
 
 
 
 
8970ed4
 
5228825
 
c1f7443
5228825
c1f7443
 
 
 
7e86c1a
f241098
c1f7443
 
 
 
 
04a5979
 
 
 
c1f7443
 
 
 
 
 
04a5979
c1f7443
d0df8da
 
f241098
c1f7443
712c5bb
d0df8da
 
 
 
8bb7721
d0df8da
c1f7443
 
 
cfd5fcd
 
 
 
 
 
8962edc
 
712c5bb
 
 
 
 
 
5919ad6
 
712c5bb
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
dataset_info:
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int64
  splits:
  - name: train
    num_bytes: 314451
    num_examples: 5837
  - name: test
    num_bytes: 839852
    num_examples: 14560
  download_size: 345578
  dataset_size: 1154303
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
---

# Presupposed Taxonomies: Evaluating Neural Network Semantics (PreTENS) 

Original Paper: https://aclanthology.org/2022.semeval-1.29.pdf

This dataset comes from SemEVAL-2022 shared tasks.

The PreTENS task aims at focusing on semantic competence with specific attention on the evaluation of language models with respect to the  recognition of appropriate taxonomic relations between two nominal arguments.

We collected the Italian part of the original dataset, and more specifically only the first sub-task: **acceptability sentence classification**.

## Example

Here you can see the structure of the single sample in the present dataset.

```json
{
  "text": string, # sample's text
  "label": int, # 0: non ha senso, 1: ha senso
}
```

## Statitics

| PRETENS | 0 | 1 |
| :--------: | :----: | :----: |
| Training | 3029 | 2808 |
| Test | 7707 | 6853 |

## Proposed Prompts

Here we will describe the prompt given to the model over which we will compute the perplexity score, as model's answer we will chose the prompt with lower perplexity.
Moreover, for each subtask, we define a description that is prepended to the prompts, needed by the model to understand the task.

Description of the task: "Indica se le seguenti frasi hanno senso a livello semantico.\n\n"

### Cloze Style:

Label (**non ha senso**): "{{text}}\nLa frase precedente non ha senso"

Label (**ha senso**): "{{text}}\nLa frase precedente ha senso"

### Cloze Style:

```txt
{{text}}\nDomanda: La frase precedente ha semanticamente senso? (Rispondi sì o no)
```

## Some Results

| PRETENS | ACCURACY (15-shots) |
| :-----: | :--: |
| Gemma-2B | 53.5 |
| QWEN2-1.5B | 56.47 |
| Mistral-7B | 66.5 |
| ZEFIRO | 62 |
| Llama-3-8B | 72.34 |
| Llama-3-8B-IT | 65.58 |
| ANITA | 66.1 |

## Aknowledgement

We want to thanks the authors of this resource to publicly release such interesting benchmark.

Further, We want to thanks the student of [MNLP-2024 course](https://naviglinlp.blogspot.com/), where with their first homework tried different interesting prompting strategies.

The data can be freely downloaded form this [link](https://github.com/shammur/SemEval2022Task3)

## License

The data come under [MIT](https://opensource.org/license/mit) license.