File size: 2,635 Bytes
5da2357 371fe3e 5da2357 371fe3e 5da2357 371fe3e 5da2357 103a531 8970ed4 5228825 c1f7443 5228825 c1f7443 7e86c1a f241098 c1f7443 04a5979 c1f7443 04a5979 c1f7443 d0df8da f241098 c1f7443 712c5bb d0df8da 8bb7721 d0df8da c1f7443 cfd5fcd 8962edc 712c5bb 5919ad6 712c5bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype: int64
splits:
- name: train
num_bytes: 314451
num_examples: 5837
- name: test
num_bytes: 839852
num_examples: 14560
download_size: 345578
dataset_size: 1154303
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
# Presupposed Taxonomies: Evaluating Neural Network Semantics (PreTENS)
Original Paper: https://aclanthology.org/2022.semeval-1.29.pdf
This dataset comes from SemEVAL-2022 shared tasks.
The PreTENS task aims at focusing on semantic competence with specific attention on the evaluation of language models with respect to the recognition of appropriate taxonomic relations between two nominal arguments.
We collected the Italian part of the original dataset, and more specifically only the first sub-task: **acceptability sentence classification**.
## Example
Here you can see the structure of the single sample in the present dataset.
```json
{
"text": string, # sample's text
"label": int, # 0: non ha senso, 1: ha senso
}
```
## Statitics
| PRETENS | 0 | 1 |
| :--------: | :----: | :----: |
| Training | 3029 | 2808 |
| Test | 7707 | 6853 |
## Proposed Prompts
Here we will describe the prompt given to the model over which we will compute the perplexity score, as model's answer we will chose the prompt with lower perplexity.
Moreover, for each subtask, we define a description that is prepended to the prompts, needed by the model to understand the task.
Description of the task: "Indica se le seguenti frasi hanno senso a livello semantico.\n\n"
### Cloze Style:
Label (**non ha senso**): "{{text}}\nLa frase precedente non ha senso"
Label (**ha senso**): "{{text}}\nLa frase precedente ha senso"
### Cloze Style:
```txt
{{text}}\nDomanda: La frase precedente ha semanticamente senso? (Rispondi sì o no)
```
## Some Results
| PRETENS | ACCURACY (15-shots) |
| :-----: | :--: |
| Gemma-2B | 53.5 |
| QWEN2-1.5B | 56.47 |
| Mistral-7B | 66.5 |
| ZEFIRO | 62 |
| Llama-3-8B | 72.34 |
| Llama-3-8B-IT | 65.58 |
| ANITA | 66.1 |
## Aknowledgement
We want to thanks the authors of this resource to publicly release such interesting benchmark.
Further, We want to thanks the student of [MNLP-2024 course](https://naviglinlp.blogspot.com/), where with their first homework tried different interesting prompting strategies.
The data can be freely downloaded form this [link](https://github.com/shammur/SemEval2022Task3)
## License
The data come under [MIT](https://opensource.org/license/mit) license. |