url
stringlengths
61
61
repository_url
stringclasses
1 value
labels_url
stringlengths
75
75
comments_url
stringlengths
70
70
events_url
stringlengths
68
68
html_url
stringlengths
49
51
id
int64
1.49B
2.43B
node_id
stringlengths
18
19
number
int64
5.35k
7.07k
title
stringlengths
1
290
user
dict
labels
listlengths
0
3
state
stringclasses
2 values
locked
bool
1 class
assignee
dict
assignees
listlengths
0
2
milestone
dict
comments
sequencelengths
0
30
created_at
timestamp[s]
updated_at
timestamp[s]
closed_at
timestamp[s]
author_association
stringclasses
4 values
active_lock_reason
null
draft
bool
2 classes
pull_request
dict
body
stringlengths
1
19.9k
reactions
dict
timeline_url
stringlengths
70
70
performed_via_github_app
null
state_reason
stringclasses
3 values
is_pull_request
bool
2 classes
https://api.github.com/repos/huggingface/datasets/issues/7068
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7068/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7068/comments
https://api.github.com/repos/huggingface/datasets/issues/7068/events
https://github.com/huggingface/datasets/pull/7068
2,426,657,434
PR_kwDODunzps52SwXS
7,068
Fix prepare_single_hop_path_and_storage_options
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7068). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-07-24T05:52:34
2024-07-24T08:54:32
null
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7068", "html_url": "https://github.com/huggingface/datasets/pull/7068", "diff_url": "https://github.com/huggingface/datasets/pull/7068.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7068.patch", "merged_at": null }
Fix `_prepare_single_hop_path_and_storage_options`: - Do not pass HF authentication headers and HF user-agent to non-HF HTTP URLs - Do not overwrite passed `storage_options` nested values: - Before, when passed ```DownloadConfig(storage_options={"https": {"client_kwargs": {"raise_for_status": True}}})```, it was overwritten to ```{"https": {"client_kwargs": {"trust_env": True}}}``` - Now, the result combines both: ```{"https": {"client_kwargs": {"trust_env": True, "raise_for_status": True}}}```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7068/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7068/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7067
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7067/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7067/comments
https://api.github.com/repos/huggingface/datasets/issues/7067/events
https://github.com/huggingface/datasets/issues/7067
2,425,460,168
I_kwDODunzps6QkZXI
7,067
Convert_to_parquet fails for datasets with multiple configs
{ "login": "HuangZhen02", "id": 97585031, "node_id": "U_kgDOBdEHhw", "avatar_url": "https://avatars.githubusercontent.com/u/97585031?v=4", "gravatar_id": "", "url": "https://api.github.com/users/HuangZhen02", "html_url": "https://github.com/HuangZhen02", "followers_url": "https://api.github.com/users/HuangZhen02/followers", "following_url": "https://api.github.com/users/HuangZhen02/following{/other_user}", "gists_url": "https://api.github.com/users/HuangZhen02/gists{/gist_id}", "starred_url": "https://api.github.com/users/HuangZhen02/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/HuangZhen02/subscriptions", "organizations_url": "https://api.github.com/users/HuangZhen02/orgs", "repos_url": "https://api.github.com/users/HuangZhen02/repos", "events_url": "https://api.github.com/users/HuangZhen02/events{/privacy}", "received_events_url": "https://api.github.com/users/HuangZhen02/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Many users have encountered the same issue, which has caused inconvenience.\r\n\r\nhttps://discuss.huggingface.co/t/convert-to-parquet-fails-for-datasets-with-multiple-configs/86733\r\n" ]
2024-07-23T15:09:33
2024-07-23T15:10:44
null
NONE
null
null
null
If the dataset has multiple configs, when using the `datasets-cli convert_to_parquet` command to avoid issues with the data viewer caused by loading scripts, the conversion process only successfully converts the data corresponding to the first config. When it starts converting the second config, it throws an error: ``` Traceback (most recent call last): File "/opt/anaconda3/envs/dl/bin/datasets-cli", line 8, in <module> sys.exit(main()) File "/opt/anaconda3/envs/dl/lib/python3.10/site-packages/datasets/commands/datasets_cli.py", line 41, in main service.run() File "/opt/anaconda3/envs/dl/lib/python3.10/site-packages/datasets/commands/convert_to_parquet.py", line 83, in run dataset.push_to_hub( File "/opt/anaconda3/envs/dl/lib/python3.10/site-packages/datasets/dataset_dict.py", line 1713, in push_to_hub api.create_branch(repo_id, branch=revision, token=token, repo_type="dataset", exist_ok=True) File "/opt/anaconda3/envs/dl/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/opt/anaconda3/envs/dl/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 5503, in create_branch hf_raise_for_status(response) File "/opt/anaconda3/envs/dl/lib/python3.10/site-packages/huggingface_hub/utils/_errors.py", line 358, in hf_raise_for_status raise BadRequestError(message, response=response) from e huggingface_hub.utils._errors.BadRequestError: (Request ID: Root=1-669fc665-7c2e80d75f4337496ee95402;731fcdc7-0950-4eec-99cf-ce047b8d003f) Bad request: Invalid reference for a branch: refs/pr/1 ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7067/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7067/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7066
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7066/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7066/comments
https://api.github.com/repos/huggingface/datasets/issues/7066/events
https://github.com/huggingface/datasets/issues/7066
2,425,125,160
I_kwDODunzps6QjHko
7,066
One subset per file in repo ?
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-07-23T12:43:59
2024-07-23T12:43:59
null
MEMBER
null
null
null
Right now we consider all the files of a dataset to be the same data, e.g. ``` single_subset_dataset/ ├── train0.jsonl ├── train1.jsonl └── train2.jsonl ``` but in cases like this, each file is actually a different subset of the dataset and should be loaded separately ``` many_subsets_dataset/ ├── animals.jsonl ├── trees.jsonl └── metadata.jsonl ``` It would be nice to detect those subsets automatically using a simple heuristic. For example we can group files together if their paths names are the same except some digits ?
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7066/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7066/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7065
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7065/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7065/comments
https://api.github.com/repos/huggingface/datasets/issues/7065/events
https://github.com/huggingface/datasets/issues/7065
2,424,734,953
I_kwDODunzps6QhoTp
7,065
Cannot get item after loading from disk and then converting to iterable.
{ "login": "happyTonakai", "id": 21305646, "node_id": "MDQ6VXNlcjIxMzA1NjQ2", "avatar_url": "https://avatars.githubusercontent.com/u/21305646?v=4", "gravatar_id": "", "url": "https://api.github.com/users/happyTonakai", "html_url": "https://github.com/happyTonakai", "followers_url": "https://api.github.com/users/happyTonakai/followers", "following_url": "https://api.github.com/users/happyTonakai/following{/other_user}", "gists_url": "https://api.github.com/users/happyTonakai/gists{/gist_id}", "starred_url": "https://api.github.com/users/happyTonakai/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/happyTonakai/subscriptions", "organizations_url": "https://api.github.com/users/happyTonakai/orgs", "repos_url": "https://api.github.com/users/happyTonakai/repos", "events_url": "https://api.github.com/users/happyTonakai/events{/privacy}", "received_events_url": "https://api.github.com/users/happyTonakai/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-07-23T09:37:56
2024-07-23T09:37:56
null
NONE
null
null
null
### Describe the bug The dataset generated from local file works fine. ```py root = "/home/data/train" file_list1 = glob(os.path.join(root, "*part1.flac")) file_list2 = glob(os.path.join(root, "*part2.flac")) ds = ( Dataset.from_dict({"part1": file_list1, "part2": file_list2}) .cast_column("part1", Audio(sampling_rate=None, mono=False)) .cast_column("part2", Audio(sampling_rate=None, mono=False)) ) ids = ds.to_iterable_dataset(128) ids = ids.shuffle(buffer_size=10000, seed=42) dataloader = DataLoader(ids, num_workers=4, batch_size=8, persistent_workers=True) for batch in dataloader: break ``` But after saving it to disk and then loading it from disk, I cannot get data as expected. ```py root = "/home/data/train" file_list1 = glob(os.path.join(root, "*part1.flac")) file_list2 = glob(os.path.join(root, "*part2.flac")) ds = ( Dataset.from_dict({"part1": file_list1, "part2": file_list2}) .cast_column("part1", Audio(sampling_rate=None, mono=False)) .cast_column("part2", Audio(sampling_rate=None, mono=False)) ) ds.save_to_disk("./train") ds = datasets.load_from_disk("./train") ids = ds.to_iterable_dataset(128) ids = ids.shuffle(buffer_size=10000, seed=42) dataloader = DataLoader(ids, num_workers=4, batch_size=8, persistent_workers=True) for batch in dataloader: break ``` After a long time waiting, an error occurs: ``` Loading dataset from disk: 100%|█████████████████████████████████████████████████████████████████████████| 165/165 [00:00<00:00, 6422.18it/s] Traceback (most recent call last): File "/home/hanzerui/.conda/envs/mss/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1133, in _try_get_data data = self._data_queue.get(timeout=timeout) File "/home/hanzerui/.conda/envs/mss/lib/python3.10/multiprocessing/queues.py", line 113, in get if not self._poll(timeout): File "/home/hanzerui/.conda/envs/mss/lib/python3.10/multiprocessing/connection.py", line 257, in poll return self._poll(timeout) File "/home/hanzerui/.conda/envs/mss/lib/python3.10/multiprocessing/connection.py", line 424, in _poll r = wait([self], timeout) File "/home/hanzerui/.conda/envs/mss/lib/python3.10/multiprocessing/connection.py", line 931, in wait ready = selector.select(timeout) File "/home/hanzerui/.conda/envs/mss/lib/python3.10/selectors.py", line 416, in select fd_event_list = self._selector.poll(timeout) File "/home/hanzerui/.conda/envs/mss/lib/python3.10/site-packages/torch/utils/data/_utils/signal_handling.py", line 66, in handler _error_if_any_worker_fails() RuntimeError: DataLoader worker (pid 3490529) is killed by signal: Killed. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/hanzerui/.conda/envs/mss/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/home/hanzerui/.conda/envs/mss/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/home/hanzerui/.vscode-server/extensions/ms-python.debugpy-2024.9.12011011/bundled/libs/debugpy/adapter/../../debugpy/launcher/../../debugpy/__main__.py", line 39, in <module> cli.main() File "/home/hanzerui/.vscode-server/extensions/ms-python.debugpy-2024.9.12011011/bundled/libs/debugpy/adapter/../../debugpy/launcher/../../debugpy/../debugpy/server/cli.py", line 430, in main run() File "/home/hanzerui/.vscode-server/extensions/ms-python.debugpy-2024.9.12011011/bundled/libs/debugpy/adapter/../../debugpy/launcher/../../debugpy/../debugpy/server/cli.py", line 284, in run_file runpy.run_path(target, run_name="__main__") File "/home/hanzerui/.vscode-server/extensions/ms-python.debugpy-2024.9.12011011/bundled/libs/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py", line 321, in run_path return _run_module_code(code, init_globals, run_name, File "/home/hanzerui/.vscode-server/extensions/ms-python.debugpy-2024.9.12011011/bundled/libs/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py", line 135, in _run_module_code _run_code(code, mod_globals, init_globals, File "/home/hanzerui/.vscode-server/extensions/ms-python.debugpy-2024.9.12011011/bundled/libs/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py", line 124, in _run_code exec(code, run_globals) File "/home/hanzerui/workspace/NetEase/test/test_datasets.py", line 60, in <module> for batch in dataloader: File "/home/hanzerui/.conda/envs/mss/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 631, in __next__ data = self._next_data() File "/home/hanzerui/.conda/envs/mss/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1329, in _next_data idx, data = self._get_data() File "/home/hanzerui/.conda/envs/mss/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1295, in _get_data success, data = self._try_get_data() File "/home/hanzerui/.conda/envs/mss/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1146, in _try_get_data raise RuntimeError(f'DataLoader worker (pid(s) {pids_str}) exited unexpectedly') from e RuntimeError: DataLoader worker (pid(s) 3490529) exited unexpectedly ``` It seems that streaming is not supported by `laod_from_disk`, so does that mean I cannot convert it to iterable? ### Steps to reproduce the bug 1. Create a `Dataset` from local files with `from_dict` 2. Save it to disk with `save_to_disk` 3. Load it from disk with `load_from_disk` 4. Convert to iterable with `to_iterable_dataset` 5. Loop the dataset ### Expected behavior Get items faster than the original dataset generated from dict. ### Environment info - `datasets` version: 2.20.0 - Platform: Linux-6.5.0-41-generic-x86_64-with-glibc2.35 - Python version: 3.10.14 - `huggingface_hub` version: 0.23.2 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.5.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7065/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7065/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7064
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7064/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7064/comments
https://api.github.com/repos/huggingface/datasets/issues/7064/events
https://github.com/huggingface/datasets/pull/7064
2,424,613,104
PR_kwDODunzps52Lz2-
7,064
Add `batch` method to `Dataset` class
{ "login": "lappemic", "id": 61876623, "node_id": "MDQ6VXNlcjYxODc2NjIz", "avatar_url": "https://avatars.githubusercontent.com/u/61876623?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lappemic", "html_url": "https://github.com/lappemic", "followers_url": "https://api.github.com/users/lappemic/followers", "following_url": "https://api.github.com/users/lappemic/following{/other_user}", "gists_url": "https://api.github.com/users/lappemic/gists{/gist_id}", "starred_url": "https://api.github.com/users/lappemic/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lappemic/subscriptions", "organizations_url": "https://api.github.com/users/lappemic/orgs", "repos_url": "https://api.github.com/users/lappemic/repos", "events_url": "https://api.github.com/users/lappemic/events{/privacy}", "received_events_url": "https://api.github.com/users/lappemic/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Looks good to me ! :)\r\n\r\nyou might want to add the `map` num_proc argument as well, for people who want to make it run faster", "Thanks for the feedback @lhoestq! The last commits include:\r\n- Adding the `num_proc` parameter to `batch`\r\n- Adding tests similar to the one done for `IterableDataset.batch()`\r\n- Updated the documentation -> I think they are actually misplaced in the `Stream` page. But could not find a better place atm. Where would you put this documentation?\r\n\r\nWDYT?", "You can put the documentation in process.mdx :)", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7064). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-07-23T08:40:43
2024-07-24T13:24:53
null
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7064", "html_url": "https://github.com/huggingface/datasets/pull/7064", "diff_url": "https://github.com/huggingface/datasets/pull/7064.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7064.patch", "merged_at": null }
This PR introduces a new `batch` method to the `Dataset` class, aligning its functionality with the `IterableDataset.batch()` method (implemented in #7054). The implementation uses as well the existing `map` method for efficient batching of examples. Key changes: - Add `batch` method to `Dataset` class in `arrow_dataset.py` - Utilize `map` method for batching Closes #7063 Once the approach is approved, i will create the tests and update the documentation.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7064/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7064/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7063
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7063/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7063/comments
https://api.github.com/repos/huggingface/datasets/issues/7063/events
https://github.com/huggingface/datasets/issues/7063
2,424,488,648
I_kwDODunzps6QgsLI
7,063
Add `batch` method to `Dataset`
{ "login": "lappemic", "id": 61876623, "node_id": "MDQ6VXNlcjYxODc2NjIz", "avatar_url": "https://avatars.githubusercontent.com/u/61876623?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lappemic", "html_url": "https://github.com/lappemic", "followers_url": "https://api.github.com/users/lappemic/followers", "following_url": "https://api.github.com/users/lappemic/following{/other_user}", "gists_url": "https://api.github.com/users/lappemic/gists{/gist_id}", "starred_url": "https://api.github.com/users/lappemic/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lappemic/subscriptions", "organizations_url": "https://api.github.com/users/lappemic/orgs", "repos_url": "https://api.github.com/users/lappemic/repos", "events_url": "https://api.github.com/users/lappemic/events{/privacy}", "received_events_url": "https://api.github.com/users/lappemic/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
null
[]
2024-07-23T07:36:59
2024-07-23T07:36:59
null
CONTRIBUTOR
null
null
null
### Feature request Add a `batch` method to the Dataset class, similar to the one recently implemented for `IterableDataset` in PR #7054. ### Motivation A batched iteration speeds up data loading significantly (see e.g. #6279) ### Your contribution I plan to open a PR to implement this.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7063/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7063/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7062
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7062/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7062/comments
https://api.github.com/repos/huggingface/datasets/issues/7062/events
https://github.com/huggingface/datasets/pull/7062
2,424,467,484
PR_kwDODunzps52LUPR
7,062
Avoid calling http_head for non-HTTP URLs
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7062). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005591 / 0.011353 (-0.005761) | 0.003992 / 0.011008 (-0.007016) | 0.063932 / 0.038508 (0.025424) | 0.034572 / 0.023109 (0.011463) | 0.252532 / 0.275898 (-0.023366) | 0.271233 / 0.323480 (-0.052247) | 0.005146 / 0.007986 (-0.002840) | 0.002844 / 0.004328 (-0.001484) | 0.049555 / 0.004250 (0.045305) | 0.044111 / 0.037052 (0.007059) | 0.270131 / 0.258489 (0.011642) | 0.318109 / 0.293841 (0.024269) | 0.030247 / 0.128546 (-0.098300) | 0.012438 / 0.075646 (-0.063209) | 0.205160 / 0.419271 (-0.214112) | 0.036228 / 0.043533 (-0.007305) | 0.250664 / 0.255139 (-0.004475) | 0.263884 / 0.283200 (-0.019315) | 0.018141 / 0.141683 (-0.123541) | 1.128504 / 1.452155 (-0.323650) | 1.182543 / 1.492716 (-0.310173) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094576 / 0.018006 (0.076570) | 0.301153 / 0.000490 (0.300664) | 0.000246 / 0.000200 (0.000046) | 0.000065 / 0.000054 (0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019143 / 0.037411 (-0.018268) | 0.062788 / 0.014526 (0.048262) | 0.074688 / 0.176557 (-0.101869) | 0.121799 / 0.737135 (-0.615336) | 0.076200 / 0.296338 (-0.220138) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.277002 / 0.215209 (0.061793) | 2.735738 / 2.077655 (0.658083) | 1.430408 / 1.504120 (-0.073712) | 1.309795 / 1.541195 (-0.231400) | 1.339083 / 1.468490 (-0.129407) | 0.702540 / 4.584777 (-3.882237) | 2.352468 / 3.745712 (-1.393244) | 2.913698 / 5.269862 (-2.356164) | 1.871739 / 4.565676 (-2.693938) | 0.077054 / 0.424275 (-0.347221) | 0.005055 / 0.007607 (-0.002552) | 0.330550 / 0.226044 (0.104505) | 3.272556 / 2.268929 (1.003627) | 1.805268 / 55.444624 (-53.639356) | 1.504791 / 6.876477 (-5.371686) | 1.511361 / 2.142072 (-0.630712) | 0.784451 / 4.805227 (-4.020776) | 0.132182 / 6.500664 (-6.368482) | 0.042516 / 0.075469 (-0.032954) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.946939 / 1.841788 (-0.894849) | 11.369607 / 8.074308 (3.295299) | 9.667350 / 10.191392 (-0.524042) | 0.138689 / 0.680424 (-0.541735) | 0.014416 / 0.534201 (-0.519785) | 0.300685 / 0.579283 (-0.278598) | 0.259709 / 0.434364 (-0.174655) | 0.341271 / 0.540337 (-0.199066) | 0.435609 / 1.386936 (-0.951327) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005726 / 0.011353 (-0.005627) | 0.004071 / 0.011008 (-0.006937) | 0.050837 / 0.038508 (0.012329) | 0.047000 / 0.023109 (0.023890) | 0.278543 / 0.275898 (0.002645) | 0.300526 / 0.323480 (-0.022954) | 0.004483 / 0.007986 (-0.003503) | 0.002835 / 0.004328 (-0.001494) | 0.050925 / 0.004250 (0.046675) | 0.041834 / 0.037052 (0.004782) | 0.285059 / 0.258489 (0.026570) | 0.324557 / 0.293841 (0.030716) | 0.038949 / 0.128546 (-0.089597) | 0.012145 / 0.075646 (-0.063501) | 0.061791 / 0.419271 (-0.357481) | 0.034493 / 0.043533 (-0.009040) | 0.274034 / 0.255139 (0.018895) | 0.295886 / 0.283200 (0.012686) | 0.018524 / 0.141683 (-0.123159) | 1.148766 / 1.452155 (-0.303388) | 1.207966 / 1.492716 (-0.284750) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094078 / 0.018006 (0.076071) | 0.307850 / 0.000490 (0.307361) | 0.000224 / 0.000200 (0.000024) | 0.000079 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023502 / 0.037411 (-0.013910) | 0.077321 / 0.014526 (0.062795) | 0.091147 / 0.176557 (-0.085410) | 0.131111 / 0.737135 (-0.606025) | 0.090906 / 0.296338 (-0.205432) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.290700 / 0.215209 (0.075491) | 2.833655 / 2.077655 (0.756001) | 1.546371 / 1.504120 (0.042251) | 1.415337 / 1.541195 (-0.125858) | 1.445752 / 1.468490 (-0.022738) | 0.737880 / 4.584777 (-3.846897) | 0.961549 / 3.745712 (-2.784164) | 2.844021 / 5.269862 (-2.425841) | 2.023547 / 4.565676 (-2.542130) | 0.079791 / 0.424275 (-0.344484) | 0.005449 / 0.007607 (-0.002158) | 0.356381 / 0.226044 (0.130337) | 3.515555 / 2.268929 (1.246627) | 1.920407 / 55.444624 (-53.524217) | 1.628637 / 6.876477 (-5.247839) | 1.752995 / 2.142072 (-0.389077) | 0.807264 / 4.805227 (-3.997963) | 0.133627 / 6.500664 (-6.367037) | 0.041861 / 0.075469 (-0.033609) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.035643 / 1.841788 (-0.806144) | 12.114792 / 8.074308 (4.040484) | 10.185844 / 10.191392 (-0.005548) | 0.142354 / 0.680424 (-0.538070) | 0.015466 / 0.534201 (-0.518734) | 0.304681 / 0.579283 (-0.274603) | 0.124297 / 0.434364 (-0.310067) | 0.339907 / 0.540337 (-0.200430) | 0.436266 / 1.386936 (-0.950670) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#856eb84569006ab9389ddbcce8b7141befeab9cc \"CML watermark\")\n" ]
2024-07-23T07:25:09
2024-07-23T14:28:27
2024-07-23T14:21:08
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7062", "html_url": "https://github.com/huggingface/datasets/pull/7062", "diff_url": "https://github.com/huggingface/datasets/pull/7062.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7062.patch", "merged_at": "2024-07-23T14:21:08" }
Avoid calling `http_head` for non-HTTP URLs, by adding and `else` statement. Currently, it makes an unnecessary HTTP call (which adds latency) for non-HTTP protocols, like FTP, S3,... I discovered this while working in an unrelated issue.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7062/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7062/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7061
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7061/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7061/comments
https://api.github.com/repos/huggingface/datasets/issues/7061/events
https://github.com/huggingface/datasets/issues/7061
2,423,786,881
I_kwDODunzps6QeA2B
7,061
Custom Dataset | Still Raise Error while handling errors in _generate_examples
{ "login": "hahmad2008", "id": 68266028, "node_id": "MDQ6VXNlcjY4MjY2MDI4", "avatar_url": "https://avatars.githubusercontent.com/u/68266028?v=4", "gravatar_id": "", "url": "https://api.github.com/users/hahmad2008", "html_url": "https://github.com/hahmad2008", "followers_url": "https://api.github.com/users/hahmad2008/followers", "following_url": "https://api.github.com/users/hahmad2008/following{/other_user}", "gists_url": "https://api.github.com/users/hahmad2008/gists{/gist_id}", "starred_url": "https://api.github.com/users/hahmad2008/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hahmad2008/subscriptions", "organizations_url": "https://api.github.com/users/hahmad2008/orgs", "repos_url": "https://api.github.com/users/hahmad2008/repos", "events_url": "https://api.github.com/users/hahmad2008/events{/privacy}", "received_events_url": "https://api.github.com/users/hahmad2008/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-07-22T21:18:12
2024-07-22T21:18:12
null
NONE
null
null
null
### Describe the bug I follow this [example](https://discuss.huggingface.co/t/error-handling-in-iterabledataset/72827/3) to handle errors in custom dataset. I am writing a dataset script which read jsonl files and i need to handle errors and continue reading files without raising exception and exit the execution. ``` def _generate_examples(self, filepaths): errors=[] id_ = 0 for filepath in filepaths: try: with open(filepath, 'r') as f: for line in f: json_obj = json.loads(line) yield id_, json_obj id_ += 1 except Exception as exc: logger.error(f"error occur at filepath: {filepath}") errors.append(error) ``` seems the logger.error is printed but still exception is raised the the run is exit. ``` Downloading and preparing dataset custom_dataset/default to /home/myuser/.cache/huggingface/datasets/custom_dataset/default-a14cdd566afee0a6/1.0.0/acfcc9fb9c57034b580c4252841 ERROR: datasets_modules.datasets.custom_dataset.acfcc9fb9c57034b580c4252841bb890a5617cbd28678dd4be5e52b81188ad02.custom_dataset: 2024-07-22 10:47:42,167: error occur at filepath: '/home/myuser/ds/corrupted-file.jsonl Traceback (most recent call last): File "/home/myuser/.cache/huggingface/modules/datasets_modules/datasets/custom_dataset/ac..2/custom_dataset.py", line 48, in _generate_examples json_obj = json.loads(line) File "myenv/lib/python3.8/json/__init__.py", line 357, in loads return _default_decoder.decode(s) File "myenv/lib/python3.8/json/decoder.py", line 337, in decode obj, end = self.raw_decode(s, idx=_w(s, 0).end()) File "myenv/lib/python3.8/json/decoder.py", line 353, in raw_decode obj, end = self.scan_once(s, idx) json.decoder.JSONDecodeError: Invalid control character at: line 1 column 4 (char 3) Generating train split: 0 examples [00:06, ? examples/s]> RemoteTraceback: """ Traceback (most recent call last): File "myenv/lib/python3.8/site-packages/datasets/builder.py", line 1637, in _prepare_split_single num_examples, num_bytes = writer.finalize() File "myenv/lib/python3.8/site-packages/datasets/arrow_writer.py", line 594, in finalize raise SchemaInferenceError("Please pass `features` or at least one example when writing data") datasets.arrow_writer.SchemaInferenceError: Please pass `features` or at least one example when writing data The above exception was the direct cause of the following exception: Traceback (most recent call last): File "myenv/lib/python3.8/site-packages/multiprocess/pool.py", line 125, in worker result = (True, func(*args, **kwds)) File "myenv/lib/python3.8/site-packages/datasets/utils/py_utils.py", line 1353, in _write_generator_to_queue for i, result in enumerate(func(**kwargs)): File "myenv/lib/python3.8/site-packages/datasets/builder.py", line 1646, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.builder.DatasetGenerationError: An error occurred while generating the dataset """ The above exception was the direct cause of the following exception: │ │ │ myenv/lib/python3.8/site-packages/datasets/utils/py_utils. │ │ py:1377 in <listcomp> │ │ │ │ 1374 │ │ │ │ if all(async_result.ready() for async_result in async_results) and queue │ │ 1375 │ │ │ │ │ break │ │ 1376 │ │ # we get the result in case there's an error to raise │ │ ❱ 1377 │ │ [async_result.get() for async_result in async_results] │ │ 1378 │ │ │ │ ╭──────────────────────────────── locals ─────────────────────────────────╮ │ │ │ .0 = <list_iterator object at 0x7f2cc1f0ce20> │ │ │ │ async_result = <multiprocess.pool.ApplyResult object at 0x7f2cc1f79c10> │ │ │ ╰─────────────────────────────────────────────────────────────────────────╯ │ │ │ │ myenv/lib/python3.8/site-packages/multiprocess/pool.py:771 │ │ in get │ │ │ │ 768 │ │ if self._success: │ │ 769 │ │ │ return self._value │ │ 770 │ │ else: │ │ ❱ 771 │ │ │ raise self._value │ │ 772 │ │ │ 773 │ def _set(self, i, obj): │ │ 774 │ │ self._success, self._value = obj │ │ │ │ ╭────────────────────────────── locals ──────────────────────────────╮ │ │ │ self = <multiprocess.pool.ApplyResult object at 0x7f2cc1f79c10> │ │ │ │ timeout = None │ │ │ ╰────────────────────────────────────────────────────────────────────╯ │ DatasetGenerationError: An error occurred while generating the dataset ``` ### Steps to reproduce the bug same as above ### Expected behavior should handle error and continue reading remaining files ### Environment info python 3.9
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7061/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7061/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7060
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7060/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7060/comments
https://api.github.com/repos/huggingface/datasets/issues/7060/events
https://github.com/huggingface/datasets/pull/7060
2,423,188,419
PR_kwDODunzps52G71g
7,060
WebDataset BuilderConfig
{ "login": "hlky", "id": 106811348, "node_id": "U_kgDOBl3P1A", "avatar_url": "https://avatars.githubusercontent.com/u/106811348?v=4", "gravatar_id": "", "url": "https://api.github.com/users/hlky", "html_url": "https://github.com/hlky", "followers_url": "https://api.github.com/users/hlky/followers", "following_url": "https://api.github.com/users/hlky/following{/other_user}", "gists_url": "https://api.github.com/users/hlky/gists{/gist_id}", "starred_url": "https://api.github.com/users/hlky/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hlky/subscriptions", "organizations_url": "https://api.github.com/users/hlky/orgs", "repos_url": "https://api.github.com/users/hlky/repos", "events_url": "https://api.github.com/users/hlky/events{/privacy}", "received_events_url": "https://api.github.com/users/hlky/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7060). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-07-22T15:41:07
2024-07-23T13:28:44
2024-07-23T13:28:44
NONE
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7060", "html_url": "https://github.com/huggingface/datasets/pull/7060", "diff_url": "https://github.com/huggingface/datasets/pull/7060.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7060.patch", "merged_at": null }
This PR adds `WebDatasetConfig`. Closes #7055
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7060/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7060/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7059
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7059/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7059/comments
https://api.github.com/repos/huggingface/datasets/issues/7059/events
https://github.com/huggingface/datasets/issues/7059
2,422,827,892
I_kwDODunzps6QaWt0
7,059
None values are skipped when reading jsonl in subobjects
{ "login": "PonteIneptique", "id": 1929830, "node_id": "MDQ6VXNlcjE5Mjk4MzA=", "avatar_url": "https://avatars.githubusercontent.com/u/1929830?v=4", "gravatar_id": "", "url": "https://api.github.com/users/PonteIneptique", "html_url": "https://github.com/PonteIneptique", "followers_url": "https://api.github.com/users/PonteIneptique/followers", "following_url": "https://api.github.com/users/PonteIneptique/following{/other_user}", "gists_url": "https://api.github.com/users/PonteIneptique/gists{/gist_id}", "starred_url": "https://api.github.com/users/PonteIneptique/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/PonteIneptique/subscriptions", "organizations_url": "https://api.github.com/users/PonteIneptique/orgs", "repos_url": "https://api.github.com/users/PonteIneptique/repos", "events_url": "https://api.github.com/users/PonteIneptique/events{/privacy}", "received_events_url": "https://api.github.com/users/PonteIneptique/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-07-22T13:02:42
2024-07-22T13:02:53
null
NONE
null
null
null
### Describe the bug I have been fighting against my machine since this morning only to find out this is some kind of a bug. When loading a dataset composed of `metadata.jsonl`, if you have nullable values (Optional[str]), they can be ignored by the parser, shifting things around. E.g., let's take this example Here are two version of a same dataset: [not-buggy.tar.gz](https://github.com/user-attachments/files/16333532/not-buggy.tar.gz) [buggy.tar.gz](https://github.com/user-attachments/files/16333553/buggy.tar.gz) ### Steps to reproduce the bug 1. Load the `buggy.tar.gz` dataset 2. Print baseline of `dts = load_dataset("./data")["train"][0]["baselines]` 3. Load the `not-buggy.tar.gz` dataset 4. Print baseline of `dts = load_dataset("./data")["train"][0]["baselines]` ### Expected behavior Both should have 4 baseline entries: 1. Buggy should have None followed by three lists 2. Non-Buggy should have four lists, and the first one should be an empty list. One does not work, 2 works. Despite accepting None in another position than the first one. ### Environment info - `datasets` version: 2.19.1 - Platform: Linux-6.5.0-44-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.23.0 - PyArrow version: 16.1.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.3.1
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7059/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7059/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7058
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7058/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7058/comments
https://api.github.com/repos/huggingface/datasets/issues/7058/events
https://github.com/huggingface/datasets/issues/7058
2,422,560,355
I_kwDODunzps6QZVZj
7,058
New feature type: Document
{ "login": "severo", "id": 1676121, "node_id": "MDQ6VXNlcjE2NzYxMjE=", "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "gravatar_id": "", "url": "https://api.github.com/users/severo", "html_url": "https://github.com/severo", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "organizations_url": "https://api.github.com/users/severo/orgs", "repos_url": "https://api.github.com/users/severo/repos", "events_url": "https://api.github.com/users/severo/events{/privacy}", "received_events_url": "https://api.github.com/users/severo/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-07-22T10:49:20
2024-07-22T10:49:20
null
CONTRIBUTOR
null
null
null
It would be useful for PDF. https://github.com/huggingface/dataset-viewer/issues/2991#issuecomment-2242656069
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7058/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7058/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7057
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7057/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7057/comments
https://api.github.com/repos/huggingface/datasets/issues/7057/events
https://github.com/huggingface/datasets/pull/7057
2,422,498,520
PR_kwDODunzps52EjGC
7,057
Update load_hub.mdx
{ "login": "severo", "id": 1676121, "node_id": "MDQ6VXNlcjE2NzYxMjE=", "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "gravatar_id": "", "url": "https://api.github.com/users/severo", "html_url": "https://github.com/severo", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "organizations_url": "https://api.github.com/users/severo/orgs", "repos_url": "https://api.github.com/users/severo/repos", "events_url": "https://api.github.com/users/severo/events{/privacy}", "received_events_url": "https://api.github.com/users/severo/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7057). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005617 / 0.011353 (-0.005736) | 0.003994 / 0.011008 (-0.007014) | 0.064188 / 0.038508 (0.025680) | 0.030939 / 0.023109 (0.007829) | 0.248712 / 0.275898 (-0.027186) | 0.273417 / 0.323480 (-0.050063) | 0.003340 / 0.007986 (-0.004646) | 0.002823 / 0.004328 (-0.001506) | 0.049985 / 0.004250 (0.045734) | 0.046872 / 0.037052 (0.009820) | 0.254554 / 0.258489 (-0.003935) | 0.288142 / 0.293841 (-0.005699) | 0.030540 / 0.128546 (-0.098006) | 0.012295 / 0.075646 (-0.063352) | 0.204589 / 0.419271 (-0.214683) | 0.036383 / 0.043533 (-0.007150) | 0.254277 / 0.255139 (-0.000862) | 0.267962 / 0.283200 (-0.015237) | 0.021173 / 0.141683 (-0.120510) | 1.126933 / 1.452155 (-0.325221) | 1.190841 / 1.492716 (-0.301875) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093622 / 0.018006 (0.075616) | 0.297967 / 0.000490 (0.297477) | 0.000241 / 0.000200 (0.000041) | 0.000057 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018623 / 0.037411 (-0.018789) | 0.062210 / 0.014526 (0.047684) | 0.074369 / 0.176557 (-0.102187) | 0.120585 / 0.737135 (-0.616550) | 0.075966 / 0.296338 (-0.220372) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285440 / 0.215209 (0.070231) | 2.804275 / 2.077655 (0.726620) | 1.484539 / 1.504120 (-0.019580) | 1.366587 / 1.541195 (-0.174607) | 1.355269 / 1.468490 (-0.113221) | 0.722289 / 4.584777 (-3.862488) | 2.344567 / 3.745712 (-1.401145) | 2.831779 / 5.269862 (-2.438083) | 1.899800 / 4.565676 (-2.665876) | 0.078657 / 0.424275 (-0.345619) | 0.005188 / 0.007607 (-0.002420) | 0.340150 / 0.226044 (0.114106) | 3.390915 / 2.268929 (1.121986) | 1.836473 / 55.444624 (-53.608152) | 1.520718 / 6.876477 (-5.355759) | 1.723448 / 2.142072 (-0.418624) | 0.810281 / 4.805227 (-3.994946) | 0.136008 / 6.500664 (-6.364657) | 0.044005 / 0.075469 (-0.031465) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.989982 / 1.841788 (-0.851806) | 11.671075 / 8.074308 (3.596767) | 9.805471 / 10.191392 (-0.385921) | 0.141637 / 0.680424 (-0.538787) | 0.014551 / 0.534201 (-0.519650) | 0.310077 / 0.579283 (-0.269206) | 0.266838 / 0.434364 (-0.167526) | 0.348894 / 0.540337 (-0.191444) | 0.451530 / 1.386936 (-0.935406) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005639 / 0.011353 (-0.005713) | 0.003935 / 0.011008 (-0.007074) | 0.050147 / 0.038508 (0.011639) | 0.031023 / 0.023109 (0.007914) | 0.268361 / 0.275898 (-0.007537) | 0.295774 / 0.323480 (-0.027706) | 0.005029 / 0.007986 (-0.002956) | 0.002832 / 0.004328 (-0.001496) | 0.049806 / 0.004250 (0.045556) | 0.040515 / 0.037052 (0.003463) | 0.283298 / 0.258489 (0.024809) | 0.321946 / 0.293841 (0.028105) | 0.031833 / 0.128546 (-0.096714) | 0.012137 / 0.075646 (-0.063510) | 0.060510 / 0.419271 (-0.358761) | 0.033754 / 0.043533 (-0.009779) | 0.268079 / 0.255139 (0.012940) | 0.292468 / 0.283200 (0.009268) | 0.017268 / 0.141683 (-0.124414) | 1.159922 / 1.452155 (-0.292233) | 1.188961 / 1.492716 (-0.303755) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096930 / 0.018006 (0.078923) | 0.306921 / 0.000490 (0.306431) | 0.000226 / 0.000200 (0.000026) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022811 / 0.037411 (-0.014600) | 0.077298 / 0.014526 (0.062772) | 0.088949 / 0.176557 (-0.087608) | 0.130763 / 0.737135 (-0.606372) | 0.090429 / 0.296338 (-0.205909) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.300866 / 0.215209 (0.085657) | 2.963375 / 2.077655 (0.885720) | 1.595753 / 1.504120 (0.091633) | 1.463091 / 1.541195 (-0.078104) | 1.481182 / 1.468490 (0.012692) | 0.712939 / 4.584777 (-3.871838) | 0.956694 / 3.745712 (-2.789018) | 2.802890 / 5.269862 (-2.466971) | 1.891092 / 4.565676 (-2.674585) | 0.077570 / 0.424275 (-0.346706) | 0.005536 / 0.007607 (-0.002072) | 0.351958 / 0.226044 (0.125914) | 3.459114 / 2.268929 (1.190185) | 1.989488 / 55.444624 (-53.455137) | 1.676271 / 6.876477 (-5.200205) | 1.808073 / 2.142072 (-0.334000) | 0.786920 / 4.805227 (-4.018307) | 0.132220 / 6.500664 (-6.368444) | 0.041602 / 0.075469 (-0.033867) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.031759 / 1.841788 (-0.810029) | 12.007776 / 8.074308 (3.933467) | 10.568254 / 10.191392 (0.376862) | 0.143176 / 0.680424 (-0.537248) | 0.015556 / 0.534201 (-0.518645) | 0.304484 / 0.579283 (-0.274799) | 0.125508 / 0.434364 (-0.308855) | 0.340017 / 0.540337 (-0.200320) | 0.434285 / 1.386936 (-0.952651) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#16fa4421f44b22bbbc607f379a93f45af468d1fc \"CML watermark\")\n" ]
2024-07-22T10:17:46
2024-07-22T10:34:14
2024-07-22T10:28:10
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7057", "html_url": "https://github.com/huggingface/datasets/pull/7057", "diff_url": "https://github.com/huggingface/datasets/pull/7057.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7057.patch", "merged_at": "2024-07-22T10:28:10" }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7057/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7057/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7056
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7056/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7056/comments
https://api.github.com/repos/huggingface/datasets/issues/7056/events
https://github.com/huggingface/datasets/pull/7056
2,422,192,257
PR_kwDODunzps52DgOu
7,056
Make `BufferShuffledExamplesIterable` resumable
{ "login": "yzhangcs", "id": 18402347, "node_id": "MDQ6VXNlcjE4NDAyMzQ3", "avatar_url": "https://avatars.githubusercontent.com/u/18402347?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yzhangcs", "html_url": "https://github.com/yzhangcs", "followers_url": "https://api.github.com/users/yzhangcs/followers", "following_url": "https://api.github.com/users/yzhangcs/following{/other_user}", "gists_url": "https://api.github.com/users/yzhangcs/gists{/gist_id}", "starred_url": "https://api.github.com/users/yzhangcs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yzhangcs/subscriptions", "organizations_url": "https://api.github.com/users/yzhangcs/orgs", "repos_url": "https://api.github.com/users/yzhangcs/repos", "events_url": "https://api.github.com/users/yzhangcs/events{/privacy}", "received_events_url": "https://api.github.com/users/yzhangcs/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Oh cool !\r\n\r\nThe time it takes to resume depends on the expected maximum distance in this case right ? Do you know its relationship with $B$ ?\r\n\r\nIn your test it already as high as 15k for $B=1024$, which is ok for text datasets but is maybe not ideal for datasets with heavy samples like audio/image/video ? Though for heavy samples datasets the buffer size is generally much smaller to avoid memory issues.\r\n\r\nMaybe we could just add a warning message on resuming to tell the user that it might take some time to recover the shuffle buffer (with a progress bar maybe ?), and have the option to stop + re-run with an env variable to disable shuffle buffer recovering ? WDYT ?", "> The time it takes to resume depends on the expected maximum distance in this case right ? Do you know its relationship with $B$\r\n\r\nHi, I created a histogram to visualize the distances in the simulation exp.\r\n![](https://github.com/user-attachments/assets/464f7a86-051c-412f-b48a-461f7e7c9f20)\r\nI think there is no guarantee as to when the oldest example will be yielded. It could stay in the buffer until the entire shard is consumed. However, this can be rare, and in most cases, the pushed examples will be yielded very quickly. In the figure above, most examples are yielded within $2B$ steps. Things will improve if the dataset is split into enough shards and each shard is not too large.\r\n\r\nI agree that we may need to add some warnings or provide some options to allow users to make their own choices.", "Maybe there's a middle ground between rebuilding the buffer from scratch and storing the entire buffer, but the logic is a bit complicated and takes time to implement. At least for now, we have a way to make shuffled `IterableDataset` resumable :)", "@lhoestq I'm not sure if it's ok to use progress bar when having multiple workers. \r\nHow about passing an arg `resumable=True` to `IterableDataset.shuffle` to allow for controling of the behaviors?", "I feel like the default behavior should ideally be fast and perfect resuming.\r\n\r\nLoading from disk is a good option for this (although it's not always possible to serialize the content of the buffer, in that case the buffer would restart empty and we can show a warning). \r\n\r\nThe state_dict() would be part of the training state_dict that is saved to disk along with the model and optimizer anyway. Cc @muellerzr from that worked on storing training state_dicts for the `accelerate` lib, in case you have an opinion.\r\n\r\nI also feel like it is simpler and more intuitive to users. It doesn't require to explain why we need to stream a lot of data just to recover a buffer.\r\n\r\n> Maybe there's a middle ground between rebuilding the buffer from scratch and storing the entire buffer, but the logic is a bit complicated and takes time to implement.\r\n\r\ndefinitely, and it would also make things even harder to understand to users", "@lhoestq \r\n> Loading from disk is a good option for this (although it's not always possible to serialize the content of the buffer, in that case the buffer would restart empty and we can show a warning).\r\nThe state_dict() would be part of the training state_dict that is saved to disk along with the model and optimizer anyway. Cc @muellerzr from that worked on storing training state_dicts for the accelerate lib, in case you have an opinion.\r\nI also feel like it is simpler and more intuitive to users. It doesn't require to explain why we need to stream a lot of data just to recover a buffer.\r\n\r\nYea, agree with you. But here's the thing: saving buffers as state dict can get pretty tricky. When it comes to tokenized text data, working with multi-worker shuffle can take around x hundreds GB of memories in my case. That's just not feasible for most machine envs out there, and can be more severe for audio/video data.\r\n\r\nAlso, serializing the buffer does take a major toll on performance, and in my experience, I've had to lean heavily on numpy/torch tensor operations to manage those tokenized text data efficiently, which isn't easily transferable to other scenarios—it's kind of a custom fix that works for now, but it's not a one-size-fits-all solution. So, for me it's not that ideal to directly serialize the buffer content with those limitations.\r\n\r\n", "> When it comes to tokenized text data, working with multi-worker shuffle can taken around x hundreds GB memories in my case.\r\n\r\nit's kinda close to the size of a model + optimizer no ?\r\n\r\nAnyway that makes sense and adding the feature to recover a buffer shuffle (at least as an opt-in for now, we can decide on the default later based on users feedback and experience).\r\n\r\nAre you ok with adding `buffer_resuming_mode=` to `.shuffle()` to enable buffer recovering using your method with `buffer_resuming_mode=\"recover_from_source\"` ? (feel free to suggest other names for the parameter and value)", "@lhoestq \r\n> Are you ok with adding buffer_resuming_mode= to .shuffle() to enable buffer recovering using your method with buffer_resuming_mode=\"recover_from_source\" ? (feel free to suggest other names for the parameter and value)\r\n\r\nOf course, appreciate your feedbacks." ]
2024-07-22T07:50:02
2024-07-22T15:37:01
null
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7056", "html_url": "https://github.com/huggingface/datasets/pull/7056", "diff_url": "https://github.com/huggingface/datasets/pull/7056.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7056.patch", "merged_at": null }
This PR aims to implement a resumable `BufferShuffledExamplesIterable`. Instead of saving the entire buffer content, which is very memory-intensive, the newly implemented `BufferShuffledExamplesIterable` saves only the minimal state necessary for recovery, e.g., the random generator states and the state of the first example in the buffer dict. The idea is that since the buffer size is limited, even if the entire buffer is discarded, we can rebuild it as long as the state of the oldest example is recorded. For buffer size $B$, the expected distance between when an example is pushed and when it is yielded is $d = \sum_{k=1}^{\infty} k\frac{1}{B} (1 - \frac{1}{B} )^{k-1} =B$. Simulation experiments support these claims: ```py from random import randint BUFFER_SIZE = 1024 dists = [] buffer = [] for i in range(10000000): if i < BUFFER_SIZE: buffer.append(i) else: index = randint(0, BUFFER_SIZE - 1) dists.append(i - buffer[index]) buffer[index] = i print(f"MIN DIST: {min(dists)}\nMAX DIST: {max(dists)}\nAVG DIST: {sum(dists) / len(dists):.2f}\n") ``` which produces the following output: ```py MIN DIST: 1 MAX DIST: 15136 AVG DIST: 1023.95 ``` The overall time for reconstructing the buffer and recovery should not be too long. The following code mimics the cases of resuming online tokenization by `datasets` and `StatefulDataLoader` under distributed scenarios, ```py import pickle import time from itertools import chain from typing import Any, Dict, List import torch from datasets import load_dataset from torchdata.stateful_dataloader import StatefulDataLoader from tqdm import tqdm from transformers import AutoTokenizer, DataCollatorForLanguageModeling tokenizer = AutoTokenizer.from_pretrained('fla-hub/gla-1.3B-100B') tokenizer.pad_token = tokenizer.eos_token data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) torch.manual_seed(42) def tokenize(examples: Dict[str, List[Any]]) -> Dict[str, List[List[int]]]: input_ids = tokenizer(examples['text'])['input_ids'] input_ids = list(chain(*input_ids)) total_length = len(input_ids) chunk_size = 2048 total_length = (total_length // chunk_size) * chunk_size # the last chunk smaller than chunk_size will be discarded return {'input_ids': [input_ids[i: i+chunk_size] for i in range(0, total_length, chunk_size)]} batch_size = 16 num_workers = 5 context_length = 2048 rank = 1 world_size = 32 prefetch_factor = 2 steps = 2048 path = 'fla-hub/slimpajama-test' dataset = load_dataset( path=path, split='train', streaming=True, trust_remote_code=True ) dataset = dataset.map(tokenize, batched=True, remove_columns=next(iter(dataset)).keys()) dataset = dataset.shuffle(seed=42) loader = StatefulDataLoader(dataset=dataset, batch_size=batch_size, collate_fn=data_collator, num_workers=num_workers, persistent_workers=False, prefetch_factor=prefetch_factor) start = time.time() for i, batch in tqdm(enumerate(loader)): if i == 0: print(f'{i}\n{batch["input_ids"]}') if i == steps - 1: print(f'{i}\n{batch["input_ids"]}') state_dict = loader.state_dict() if i == steps: print(f'{i}\n{batch["input_ids"]}') break print(f"{time.time() - start:.2f}s elapsed") print(f"{len(pickle.dumps(state_dict)) / 1024**2:.2f}MB states in total") for worker in state_dict['_snapshot']['_worker_snapshots'].keys(): print(f"{worker} {len(pickle.dumps(state_dict['_snapshot']['_worker_snapshots'][worker])) / 1024**2:.2f}MB") print(state_dict['_snapshot']['_worker_snapshots']['worker_0']['dataset_state']) loader = StatefulDataLoader(dataset=dataset, batch_size=batch_size, collate_fn=data_collator, num_workers=num_workers, persistent_workers=False, prefetch_factor=prefetch_factor) print("Loading state dict") loader.load_state_dict(state_dict) start = time.time() for batch in loader: print(batch['input_ids']) break print(f"{time.time() - start:.2f}s elapsed") ``` and the outputs are ```py 0 tensor([[ 909, 395, 19082, ..., 13088, 16232, 395], [ 601, 28705, 28770, ..., 28733, 923, 288], [21753, 15071, 13977, ..., 9369, 28723, 415], ..., [21763, 28751, 20300, ..., 28781, 28734, 4775], [ 354, 396, 10214, ..., 298, 429, 28770], [ 333, 6149, 28768, ..., 2773, 340, 351]]) 2047 tensor([[28723, 415, 3889, ..., 272, 3065, 2609], [ 403, 3214, 3629, ..., 403, 21163, 16434], [28723, 13, 28749, ..., 28705, 28750, 28734], ..., [ 2778, 2251, 28723, ..., 354, 684, 429], [ 5659, 298, 1038, ..., 5290, 297, 22153], [ 938, 28723, 1537, ..., 9123, 28733, 12154]]) 2048 tensor([[ 769, 278, 12531, ..., 28721, 19309, 28739], [ 415, 23347, 622, ..., 3937, 2426, 28725], [28745, 4345, 28723, ..., 338, 28725, 583], ..., [ 1670, 28709, 5809, ..., 28734, 28760, 393], [ 340, 1277, 624, ..., 325, 28790, 1329], [ 523, 1144, 3409, ..., 359, 359, 17422]]) 65.97s elapsed 0.00MB states in total worker_0 0.00MB worker_1 0.00MB worker_2 0.00MB worker_3 0.00MB worker_4 0.00MB {'ex_iterable': {'ex_iterable': {'shard_idx': 0, 'shard_example_idx': 14000}, 'num_examples_since_previous_state': 166, 'previous_state_example_idx': 7394, 'previous_state': {'shard_idx': 0, 'shard_example_idx': 13000}}, 'num_taken': 6560, 'global_example_idx': 7560, 'buffer_state_dict': {'num_taken': 6560, 'global_example_idx': 356, 'index_offset': 0, 'first_state': {'ex_iterable': {'shard_idx': 0, 'shard_example_idx': 1000}, 'num_examples_since_previous_state': 356, 'previous_state_example_idx': 0, 'previous_state': {'shard_idx': 0, 'shard_example_idx': 0}}, 'bit_generator_state': {'state': {'state': 274674114334540486603088602300644985544, 'inc': 332724090758049132448979897138935081983}, 'bit_generator': 'PCG64', 'has_uint32': 0, 'uinteger': 0}}} Loading state dict tensor([[ 769, 278, 12531, ..., 28721, 19309, 28739], [ 415, 23347, 622, ..., 3937, 2426, 28725], [28745, 4345, 28723, ..., 338, 28725, 583], ..., [ 1670, 28709, 5809, ..., 28734, 28760, 393], [ 340, 1277, 624, ..., 325, 28790, 1329], [ 523, 1144, 3409, ..., 359, 359, 17422]]) 24.60s elapsed ``` Not sure if this PR complies with the `datasets` code style. Looking for your help @lhoestq, also very willing to further improve the code if any suggestions are given.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7056/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7056/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7055
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7055/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7055/comments
https://api.github.com/repos/huggingface/datasets/issues/7055/events
https://github.com/huggingface/datasets/issues/7055
2,421,708,891
I_kwDODunzps6QWFhb
7,055
WebDataset with different prefixes are unsupported
{ "login": "hlky", "id": 106811348, "node_id": "U_kgDOBl3P1A", "avatar_url": "https://avatars.githubusercontent.com/u/106811348?v=4", "gravatar_id": "", "url": "https://api.github.com/users/hlky", "html_url": "https://github.com/hlky", "followers_url": "https://api.github.com/users/hlky/followers", "following_url": "https://api.github.com/users/hlky/following{/other_user}", "gists_url": "https://api.github.com/users/hlky/gists{/gist_id}", "starred_url": "https://api.github.com/users/hlky/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hlky/subscriptions", "organizations_url": "https://api.github.com/users/hlky/orgs", "repos_url": "https://api.github.com/users/hlky/repos", "events_url": "https://api.github.com/users/hlky/events{/privacy}", "received_events_url": "https://api.github.com/users/hlky/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Since `datasets` uses is built on Arrow to store the data, it requires each sample to have the same columns.\r\n\r\nThis can be fixed by specifyign in advance the name of all the possible columns in the `dataset_info` in YAML, and missing values will be `None`", "Thanks. This currently doesn't work for WebDataset because there's no `BuilderConfig` with `features` and in turn `_info` is missing `features=self.config.features`. I'll prepare a PR to fix this.\r\n\r\nNote it may be useful to add the [expected format of `features`](https://github.com/huggingface/datasets/blob/16fa4421f44b22bbbc607f379a93f45af468d1fc/src/datasets/features/features.py#L1757) to the documentation for [`Builder Parameters`](https://huggingface.co/docs/datasets/repository_structure#builder-parameters).\r\n", "Oh good catch ! thanks\r\n\r\n> Note it may be useful to add the [expected format of features](https://github.com/huggingface/datasets/blob/16fa4421f44b22bbbc607f379a93f45af468d1fc/src/datasets/features/features.py#L1757) to the documentation for [Buil](https://huggingface.co/docs/datasets/repository_structure#builder-parameters)\r\n\r\nGood idea, let me open a PR", "#7060 ", "Actually I just tried with `datasets` on the `main` branch and having `features` defined in `dataset_info` worked for me\r\n\r\n```python\r\n>>> list(load_dataset(\"/Users/quentinlhoest/tmp\", streaming=True, split=\"train\"))\r\n[{'txt': 'hello there\\n', 'other': None}]\r\n```\r\nwhere `tmp` contains data.tar with \"hello there\\n\" in a text file and the README.md:\r\n```\r\n---\r\ndataset_info:\r\n features:\r\n - name: txt\r\n dtype: string\r\n - name: other\r\n dtype: string\r\n---\r\n\r\nThis is a dataset card\r\n```\r\n\r\nWhat error did you get when you tried to specify the columns in `dataset_info` ?", "If you review the changes in #7060 you'll note that `features` are not passed to `DatasetInfo`.\r\n\r\nIn your case the features are being extracted by [this code](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/webdataset/webdataset.py#L72-L98).\r\n\r\nTry with the `Steps to reproduce the bug`. It's the same error mentioned in `Describe the bug` because `features` are not passed to `DatasetInfo`.\r\n\r\n`features` are [not used](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/builder.py#L365-L366) when the `BuilderConfig` has no `features` attribute. `WebDataset` uses the default [`BuilderConfig`](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/builder.py#L101-L124).\r\n\r\nThere is a [warning](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/load.py#L640-L648) that `features` are ignored.\r\n\r\nNote that as mentioned in `Describe the bug` this could also be resolved by removing the check [here](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/webdataset/webdataset.py#L76-L80) because Arrow actually handles this itself, Arrow sets any missing fields to `None`, at least in my case.", "Note for anyone else who encounters this issue, every dataset type except folder-based types supported features in the [documented](https://huggingface.co/docs/datasets/repository_structure#builder-parameters) manner; [Arrow](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/arrow/arrow.py#L15-L21), [csv](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/csv/csv.py#L25-L68), [generator](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/generator/generator.py#L8-L19), [json](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/json/json.py#L42-L52), [pandas](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/pandas/pandas.py#L14-L20), [parquet](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/parquet/parquet.py#L16-L24), [spark](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/spark/spark.py#L31-L37), [sql](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/sql/sql.py#L24-L35) and [text](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/text/text.py#L18-L27). `WebDataset` is different and requires [`dataset_info` which is vaguely documented](https://huggingface.co/docs/datasets/dataset_script#optional-generate-dataset-metadata) under dataset loading scripts.", "Thanks for explaining. I see the Dataset Viewer is still failing - I'll update `datasets` in the Viewer to fix this" ]
2024-07-22T01:14:19
2024-07-24T13:26:30
2024-07-23T13:28:46
NONE
null
null
null
### Describe the bug Consider a WebDataset with multiple images for each item where the number of images may vary: [example](https://huggingface.co/datasets/bigdata-pw/fashion-150k) Due to this [code](https://github.com/huggingface/datasets/blob/87f4c2088854ff33e817e724e75179e9975c1b02/src/datasets/packaged_modules/webdataset/webdataset.py#L76-L80) an error is given. ``` The TAR archives of the dataset should be in WebDataset format, but the files in the archive don't share the same prefix or the same types. ``` The purpose of this check is unclear because PyArrow supports different keys. Removing the check allows the dataset to be loaded and there's no issue when iterating through the dataset. ``` >>> from datasets import load_dataset >>> path = "shards/*.tar" >>> dataset = load_dataset("webdataset", data_files={"train": path}, split="train", streaming=True) Resolving data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 152/152 [00:00<00:00, 56458.93it/s] >>> dataset IterableDataset({ features: ['__key__', '__url__', '1.jpg', '2.jpg', '3.jpg', '4.jpg', 'json'], n_shards: 152 }) ``` ### Steps to reproduce the bug ```python from datasets import load_dataset load_dataset("bigdata-pw/fashion-150k") ``` ### Expected behavior Dataset loads without error ### Environment info - `datasets` version: 2.20.0 - Platform: Linux-5.14.0-467.el9.x86_64-x86_64-with-glibc2.34 - Python version: 3.9.19 - `huggingface_hub` version: 0.23.4 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.5.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7055/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7055/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7054
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7054/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7054/comments
https://api.github.com/repos/huggingface/datasets/issues/7054/events
https://github.com/huggingface/datasets/pull/7054
2,418,548,995
PR_kwDODunzps514T1f
7,054
Add batching to `IterableDataset`
{ "login": "lappemic", "id": 61876623, "node_id": "MDQ6VXNlcjYxODc2NjIz", "avatar_url": "https://avatars.githubusercontent.com/u/61876623?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lappemic", "html_url": "https://github.com/lappemic", "followers_url": "https://api.github.com/users/lappemic/followers", "following_url": "https://api.github.com/users/lappemic/following{/other_user}", "gists_url": "https://api.github.com/users/lappemic/gists{/gist_id}", "starred_url": "https://api.github.com/users/lappemic/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lappemic/subscriptions", "organizations_url": "https://api.github.com/users/lappemic/orgs", "repos_url": "https://api.github.com/users/lappemic/repos", "events_url": "https://api.github.com/users/lappemic/events{/privacy}", "received_events_url": "https://api.github.com/users/lappemic/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Cool ! Thanks for diving into it :)\r\n\r\nYour implementation is great and indeed supports shuffling and batching, you just need to additionally account for state_dict (for dataset [checkpointing+resuming](https://huggingface.co/docs/datasets/main/en/use_with_pytorch#checkpoint-and-resume))\r\n\r\nThat being said, I believe the implementation can be made simpler by relying on `IterableDataset.map()` which already implements all this. Maybe something like\r\n\r\n```python\r\n\r\ndef batch(self, batch_size: int, drop_last_batch: bool = False) -> \"IterableDataset\":\r\n def batch(unbatched: dict[str, list]) -> dict[str, list]:\r\n return {k: [v] for k, v in unbatched}\r\n\r\n return self.map(batch, batched=True, batch_size=batch_size, drop_last_batch=drop_last_batch)\r\n```\r\n\r\nAnd this way no need to reimplement everything !\r\n\r\n(my only small concern is that it's not an Arrow-optimized function so it requires the examples to be manipulated as python objects even if the original data is in Arrow format (e.g. when streaming Parquet files) but it's not a big deal and we can see later if we need to optimize this)", "Thanks a lot for the feedback @lhoestq! I definitely could have saved some time looking into it properly first. 😅 \r\n\r\nImplemented the `.batch()` method, added a proper docsrtring for documentation, and added tests.\r\n\r\nLet me know what you think and if this needs some update.", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7054). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Thanks for the feedbak @lhoestq!\r\n\r\nApplied it and referenced the `batched=True` option in the `map` function and highlighted the difference. Hope i got this right.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005181 / 0.011353 (-0.006172) | 0.003714 / 0.011008 (-0.007294) | 0.063060 / 0.038508 (0.024552) | 0.030885 / 0.023109 (0.007776) | 0.239060 / 0.275898 (-0.036838) | 0.262480 / 0.323480 (-0.061000) | 0.004103 / 0.007986 (-0.003883) | 0.002696 / 0.004328 (-0.001632) | 0.048706 / 0.004250 (0.044456) | 0.042577 / 0.037052 (0.005525) | 0.249928 / 0.258489 (-0.008561) | 0.283252 / 0.293841 (-0.010589) | 0.029304 / 0.128546 (-0.099242) | 0.012001 / 0.075646 (-0.063646) | 0.204467 / 0.419271 (-0.214804) | 0.035639 / 0.043533 (-0.007894) | 0.243850 / 0.255139 (-0.011289) | 0.261609 / 0.283200 (-0.021590) | 0.018302 / 0.141683 (-0.123381) | 1.096040 / 1.452155 (-0.356115) | 1.135917 / 1.492716 (-0.356800) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091976 / 0.018006 (0.073970) | 0.296396 / 0.000490 (0.295906) | 0.000203 / 0.000200 (0.000003) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018405 / 0.037411 (-0.019007) | 0.062470 / 0.014526 (0.047944) | 0.073340 / 0.176557 (-0.103216) | 0.119474 / 0.737135 (-0.617661) | 0.075750 / 0.296338 (-0.220588) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.279586 / 0.215209 (0.064377) | 2.768542 / 2.077655 (0.690887) | 1.449158 / 1.504120 (-0.054962) | 1.328760 / 1.541195 (-0.212435) | 1.336338 / 1.468490 (-0.132152) | 0.732582 / 4.584777 (-3.852195) | 2.325558 / 3.745712 (-1.420154) | 2.898077 / 5.269862 (-2.371784) | 1.893107 / 4.565676 (-2.672569) | 0.078788 / 0.424275 (-0.345487) | 0.005273 / 0.007607 (-0.002335) | 0.334887 / 0.226044 (0.108842) | 3.304173 / 2.268929 (1.035244) | 1.834743 / 55.444624 (-53.609882) | 1.527463 / 6.876477 (-5.349014) | 1.538824 / 2.142072 (-0.603249) | 0.785646 / 4.805227 (-4.019581) | 0.134876 / 6.500664 (-6.365788) | 0.042894 / 0.075469 (-0.032575) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.976635 / 1.841788 (-0.865152) | 11.217156 / 8.074308 (3.142848) | 9.616971 / 10.191392 (-0.574421) | 0.127276 / 0.680424 (-0.553148) | 0.014344 / 0.534201 (-0.519857) | 0.301896 / 0.579283 (-0.277387) | 0.259615 / 0.434364 (-0.174749) | 0.340693 / 0.540337 (-0.199645) | 0.429145 / 1.386936 (-0.957791) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005534 / 0.011353 (-0.005819) | 0.003795 / 0.011008 (-0.007213) | 0.049761 / 0.038508 (0.011253) | 0.031311 / 0.023109 (0.008202) | 0.276032 / 0.275898 (0.000134) | 0.297316 / 0.323480 (-0.026164) | 0.004396 / 0.007986 (-0.003590) | 0.002693 / 0.004328 (-0.001635) | 0.049025 / 0.004250 (0.044775) | 0.039707 / 0.037052 (0.002654) | 0.284264 / 0.258489 (0.025775) | 0.319962 / 0.293841 (0.026121) | 0.031842 / 0.128546 (-0.096705) | 0.012192 / 0.075646 (-0.063454) | 0.059895 / 0.419271 (-0.359376) | 0.033676 / 0.043533 (-0.009856) | 0.275917 / 0.255139 (0.020778) | 0.292637 / 0.283200 (0.009437) | 0.017992 / 0.141683 (-0.123691) | 1.199329 / 1.452155 (-0.252826) | 1.259083 / 1.492716 (-0.233633) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092770 / 0.018006 (0.074764) | 0.313363 / 0.000490 (0.312873) | 0.000212 / 0.000200 (0.000013) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022977 / 0.037411 (-0.014434) | 0.076839 / 0.014526 (0.062314) | 0.088289 / 0.176557 (-0.088267) | 0.128625 / 0.737135 (-0.608510) | 0.089348 / 0.296338 (-0.206990) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.300881 / 0.215209 (0.085672) | 2.946499 / 2.077655 (0.868845) | 1.599686 / 1.504120 (0.095566) | 1.479332 / 1.541195 (-0.061862) | 1.476910 / 1.468490 (0.008420) | 0.720536 / 4.584777 (-3.864241) | 0.944822 / 3.745712 (-2.800890) | 2.771864 / 5.269862 (-2.497998) | 1.886573 / 4.565676 (-2.679103) | 0.078462 / 0.424275 (-0.345813) | 0.005392 / 0.007607 (-0.002215) | 0.354984 / 0.226044 (0.128939) | 3.516449 / 2.268929 (1.247520) | 1.977033 / 55.444624 (-53.467592) | 1.671922 / 6.876477 (-5.204555) | 1.785755 / 2.142072 (-0.356318) | 0.795330 / 4.805227 (-4.009897) | 0.132895 / 6.500664 (-6.367769) | 0.041178 / 0.075469 (-0.034291) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.031780 / 1.841788 (-0.810008) | 11.855600 / 8.074308 (3.781292) | 10.245599 / 10.191392 (0.054207) | 0.140649 / 0.680424 (-0.539775) | 0.015332 / 0.534201 (-0.518869) | 0.299402 / 0.579283 (-0.279881) | 0.120007 / 0.434364 (-0.314357) | 0.337770 / 0.540337 (-0.202568) | 0.433679 / 1.386936 (-0.953257) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e83d6fa574710fcb44e341087239d2687183f62b \"CML watermark\")\n" ]
2024-07-19T10:11:47
2024-07-23T13:25:13
2024-07-23T10:34:28
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7054", "html_url": "https://github.com/huggingface/datasets/pull/7054", "diff_url": "https://github.com/huggingface/datasets/pull/7054.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7054.patch", "merged_at": "2024-07-23T10:34:28" }
I've taken a try at implementing a batched `IterableDataset` as requested in issue #6279. This PR adds a new `BatchedExamplesIterable` class and a `.batch()` method to the `IterableDataset` class. The main changes are: 1. A new `BatchedExamplesIterable` that groups examples into batches. 2. A `.batch()` method for `IterableDataset` to easily create batched versions. 3. Support for shuffling and sharding to work with PyTorch DataLoader and multiple workers. I'm not sure if this is exactly what you had in mind and also have not fully tested it atm, so I'd really appreciate your feedback. Does this seem like it's heading in the right direction? I'm happy to make any changes or explore different approaches if needed. Pinging @lhoestq
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7054/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7054/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7053
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7053/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7053/comments
https://api.github.com/repos/huggingface/datasets/issues/7053/events
https://github.com/huggingface/datasets/issues/7053
2,416,423,791
I_kwDODunzps6QB7Nv
7,053
Datasets.datafiles resolve_pattern `TypeError: can only concatenate tuple (not "str") to tuple`
{ "login": "MatthewYZhang", "id": 48289218, "node_id": "MDQ6VXNlcjQ4Mjg5MjE4", "avatar_url": "https://avatars.githubusercontent.com/u/48289218?v=4", "gravatar_id": "", "url": "https://api.github.com/users/MatthewYZhang", "html_url": "https://github.com/MatthewYZhang", "followers_url": "https://api.github.com/users/MatthewYZhang/followers", "following_url": "https://api.github.com/users/MatthewYZhang/following{/other_user}", "gists_url": "https://api.github.com/users/MatthewYZhang/gists{/gist_id}", "starred_url": "https://api.github.com/users/MatthewYZhang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MatthewYZhang/subscriptions", "organizations_url": "https://api.github.com/users/MatthewYZhang/orgs", "repos_url": "https://api.github.com/users/MatthewYZhang/repos", "events_url": "https://api.github.com/users/MatthewYZhang/events{/privacy}", "received_events_url": "https://api.github.com/users/MatthewYZhang/received_events", "type": "User", "site_admin": false }
[]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi,\r\n\r\nThis issue was fixed in `datasets` 2.15.0:\r\n- #6105\r\n\r\nYou will need to update your `datasets`:\r\n```\r\npip install -U datasets\r\n```", "Duplicate of:\r\n- #6100" ]
2024-07-18T13:42:35
2024-07-18T15:17:42
2024-07-18T15:16:18
NONE
null
null
null
### Describe the bug in data_files.py, line 332, `fs, _, _ = get_fs_token_paths(pattern, storage_options=storage_options)` If we run the code on AWS, as fs.protocol will be a tuple like: `('file', 'local')` So, `isinstance(fs.protocol, str) == False` and `protocol_prefix = fs.protocol + "://" if fs.protocol != "file" else ""` will raise `TypeError: can only concatenate tuple (not "str") to tuple`. ### Steps to reproduce the bug Steps to reproduce: 1. Run on a cloud server like AWS, 2. `import datasets.data_files as datafile` 3. datafile.resolve_pattern('path/to/dataset', '.') 4. `TypeError: can only concatenate tuple (not "str") to tuple` ### Expected behavior Should return path of the dataset, with fs.protocol at the beginning ### Environment info - `datasets` version: 2.14.0 - Platform: Linux-3.10.0-1160.119.1.el7.x86_64-x86_64-with-glibc2.17 - Python version: 3.8.19 - Huggingface_hub version: 0.23.5 - PyArrow version: 16.1.0 - Pandas version: 1.1.5
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7053/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7053/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7052
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7052/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7052/comments
https://api.github.com/repos/huggingface/datasets/issues/7052/events
https://github.com/huggingface/datasets/pull/7052
2,411,682,730
PR_kwDODunzps51iuop
7,052
Adding `Music` feature for symbolic music modality (MIDI, abc)
{ "login": "Natooz", "id": 56734983, "node_id": "MDQ6VXNlcjU2NzM0OTgz", "avatar_url": "https://avatars.githubusercontent.com/u/56734983?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Natooz", "html_url": "https://github.com/Natooz", "followers_url": "https://api.github.com/users/Natooz/followers", "following_url": "https://api.github.com/users/Natooz/following{/other_user}", "gists_url": "https://api.github.com/users/Natooz/gists{/gist_id}", "starred_url": "https://api.github.com/users/Natooz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Natooz/subscriptions", "organizations_url": "https://api.github.com/users/Natooz/orgs", "repos_url": "https://api.github.com/users/Natooz/repos", "events_url": "https://api.github.com/users/Natooz/events{/privacy}", "received_events_url": "https://api.github.com/users/Natooz/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-07-16T17:26:04
2024-07-16T17:26:04
null
NONE
null
true
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7052", "html_url": "https://github.com/huggingface/datasets/pull/7052", "diff_url": "https://github.com/huggingface/datasets/pull/7052.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7052.patch", "merged_at": null }
⚠️ (WIP) ⚠️ ### What this PR does This PR adds a `Music` feature for the symbolic music modality, in particular [MIDI](https://en.wikipedia.org/wiki/Musical_Instrument_Digital_Interface) and [abc](https://en.wikipedia.org/wiki/ABC_notation) files. ### Motivations These two file formats are widely used in the [Music Information Retrieval (MIR)](https://en.wikipedia.org/wiki/Music_information_retrieval) for tasks such as music generation, music transcription, music synthesis or music transcription. Having a dedicated feature in the datasets library would allow to both encourage researchers to share datasets of this modality as well as making them more easily usable for end users, benefitting from the perks of the library. These file formats are supported by [symusic](https://github.com/Yikai-Liao/symusic), a lightweight Python library with C bindings (using nanobind) allowing to efficiently read, write and manipulate them. The library is actively developed, and can in the future also implement other file formats such as [musicXML](https://en.wikipedia.org/wiki/MusicXML). As such, this PR relies on it. The music data can then easily be tokenized with appropriate tokenizers such as [MidiTok](https://github.com/Natooz/MidiTok) or converted to pianorolls matrices by symusic. **Jul 16th 2024:** * the tests for the `Music` feature are currently failing due to non-supported access to the LazyBatch in `test_dataset_with_music_feature_map` and `test_dataset_with_music_feature_map_resample_music` (see TODOs). I am a beginner with pyArrow, I'll take any advice to make this work; * additional tests including the `Music` feature with parquet and WebDataset should be implemented. As of right now, I am waiting for your feedback before taking further steps; * a `MusicFolder` should also be implemented to comply with the usages of the `Image` and `Audio` features, waiting for your feedback too. CCing @lhoestq and @albertvillanova
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7052/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7052/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7051
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7051/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7051/comments
https://api.github.com/repos/huggingface/datasets/issues/7051/events
https://github.com/huggingface/datasets/issues/7051
2,409,353,929
I_kwDODunzps6Pm9LJ
7,051
How to set_epoch with interleave_datasets?
{ "login": "jonathanasdf", "id": 511073, "node_id": "MDQ6VXNlcjUxMTA3Mw==", "avatar_url": "https://avatars.githubusercontent.com/u/511073?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jonathanasdf", "html_url": "https://github.com/jonathanasdf", "followers_url": "https://api.github.com/users/jonathanasdf/followers", "following_url": "https://api.github.com/users/jonathanasdf/following{/other_user}", "gists_url": "https://api.github.com/users/jonathanasdf/gists{/gist_id}", "starred_url": "https://api.github.com/users/jonathanasdf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jonathanasdf/subscriptions", "organizations_url": "https://api.github.com/users/jonathanasdf/orgs", "repos_url": "https://api.github.com/users/jonathanasdf/repos", "events_url": "https://api.github.com/users/jonathanasdf/events{/privacy}", "received_events_url": "https://api.github.com/users/jonathanasdf/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "This is not possible right now afaik :/\r\n\r\nMaybe we could have something like this ? wdyt ?\r\n\r\n```python\r\nds = interleave_datasets(\r\n [shuffled_dataset_a, dataset_b],\r\n probabilities=probabilities,\r\n stopping_strategy='all_exhausted',\r\n reshuffle_each_iteration=True,\r\n)", "That would be helpful for this case! \r\n\r\nIf there was some way for from_generator to iterate over just a single shard of some dataset that would probably be more ideal. Maybe something like\r\n\r\n```\r\ndef from_dataset_generator(dataset, generator_fn, gen_kwargs):\r\n # calls generator_fn(dataset=dataset_shard, **gen_kwargs)\r\n```\r\n\r\nAnother transform I was trying to implement is an input bucketing transform. Essentially you need to iterate through a dataset and reorder the examples in them, which is not really possible with a `map()` call. But using `from_generator()` causes the final dataset to be a single shard and loses speed gains from multiple dataloader workers", "I see, there are some internal functions to get a single shard already but the public `.shard()` method hasn't been implemented yet for `IterableDataset` :/\r\n\r\n(see the use of `ex_iterable.shard_data_sources` in `IterableDataset._prepare_ex_iterable_for_iteration` for example)", "Would that be something planned on the roadmap for the near future, or do you suggest hacking through with internal APIs for now?", "Ok this turned out to be not too difficult. Are there any obvious issues with my implementation?\r\n\r\n```\r\nclass ShuffleEveryEpochIterable(iterable_dataset._BaseExamplesIterable):\r\n \"\"\"ExamplesIterable that reshuffles the dataset every epoch.\"\"\"\r\n\r\n def __init__(\r\n self,\r\n ex_iterable: iterable_dataset._BaseExamplesIterable,\r\n generator: np.random.Generator,\r\n ):\r\n \"\"\"Constructor.\"\"\"\r\n super().__init__()\r\n self.ex_iterable = ex_iterable\r\n self.generator = generator\r\n\r\n def _init_state_dict(self) -> dict:\r\n self._state_dict = {\r\n 'ex_iterable': self.ex_iterable._init_state_dict(),\r\n 'epoch': 0,\r\n }\r\n return self._state_dict\r\n\r\n @typing.override\r\n def __iter__(self):\r\n epoch = self._state_dict['epoch'] if self._state_dict else 0\r\n for i in itertools.count(epoch):\r\n # Create effective seed using i (subtract in order to avoir overflow in long_scalars)\r\n effective_seed = copy.deepcopy(self.generator).integers(0, 1 << 63) - i\r\n effective_seed = (1 << 63) + effective_seed if effective_seed < 0 else effective_seed\r\n generator = np.random.default_rng(effective_seed)\r\n self.ex_iterable = self.ex_iterable.shuffle_data_sources(generator)\r\n if self._state_dict:\r\n self._state_dict['epoch'] = i\r\n self._state_dict['ex_iterable'] = self.ex_iterable._init_state_dict()\r\n it = iter(self.ex_iterable)\r\n yield from it\r\n\r\n @typing.override\r\n def shuffle_data_sources(self, generator):\r\n ex_iterable = self.ex_iterable.shuffle_data_sources(generator)\r\n return ShuffleEveryEpochIterable(ex_iterable, generator=generator)\r\n\r\n @typing.override\r\n def shard_data_sources(self, worker_id: int, num_workers: int):\r\n ex_iterable = self.ex_iterable.shard_data_sources(worker_id, num_workers)\r\n return ShuffleEveryEpochIterable(ex_iterable, generator=self.generator)\r\n\r\n @typing.override\r\n @property\r\n def n_shards(self) -> int:\r\n return self.ex_iterable.n_shards\r\n \r\ngenerator = np.random.default_rng(seed)\r\nshuffling = iterable_dataset.ShufflingConfig(generator=generator, _original_seed=seed)\r\nex_iterable = iterable_dataset.BufferShuffledExamplesIterable(\r\n dataset._ex_iterable, buffer_size=buffer_size, generator=generator\r\n)\r\nex_iterable = ShuffleEveryEpochIterable(ex_iterable, generator=generator)\r\ndataset = datasets.IterableDataset(\r\n ex_iterable=ex_iterable,\r\n info=dataset._info.copy(),\r\n split=dataset._split,\r\n formatting=dataset._formatting,\r\n shuffling=shuffling,\r\n distributed=copy.deepcopy(dataset._distributed),\r\n token_per_repo_id=dataset._token_per_repo_id,\r\n)\r\n```\r\n", "Nice ! This iterable is infinite though no ? How would `interleave_dataset` know when to stop ?\r\n\r\nMaybe the re-shuffling can be implemented directly in `RandomlyCyclingMultiSourcesExamplesIterable` (which is the iterable used by `interleave_dataset`) ?", "Infinite is fine for my usecases fortunately." ]
2024-07-15T18:24:52
2024-07-22T16:52:07
null
NONE
null
null
null
Let's say I have dataset A which has 100k examples, and dataset B which has 100m examples. I want to train on an interleaved dataset of A+B, with stopping_strategy='all_exhausted' so dataset B doesn't repeat any examples. But every time A is exhausted I want it to be reshuffled (eg. calling set_epoch) Of course I want to interleave as IterableDatasets / streaming mode so B doesn't have to get tokenized completely at the start. How could I achieve this? I was thinking something like, if I wrap dataset A in some new IterableDataset with from_generator() and manually call set_epoch before interleaving it? But I'm not sure how to keep the number of shards in that dataset... Something like ``` dataset_a = load_dataset(...) dataset_b = load_dataset(...) def epoch_shuffled_dataset(ds): # How to make this maintain the number of shards in ds?? for epoch in itertools.count(): ds.set_epoch(epoch) yield from iter(ds) shuffled_dataset_a = IterableDataset.from_generator(epoch_shuffled_dataset, gen_kwargs={'ds': dataset_a}) interleaved = interleave_datasets([shuffled_dataset_a, dataset_b], probs, stopping_strategy='all_exhausted') ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7051/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 1 }
https://api.github.com/repos/huggingface/datasets/issues/7051/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7050
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7050/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7050/comments
https://api.github.com/repos/huggingface/datasets/issues/7050/events
https://github.com/huggingface/datasets/pull/7050
2,409,048,733
PR_kwDODunzps51Z1Yp
7,050
add checkpoint and resume title in docs
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7050). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005707 / 0.011353 (-0.005646) | 0.004381 / 0.011008 (-0.006627) | 0.063711 / 0.038508 (0.025202) | 0.031882 / 0.023109 (0.008772) | 0.250056 / 0.275898 (-0.025842) | 0.287616 / 0.323480 (-0.035863) | 0.003327 / 0.007986 (-0.004658) | 0.003717 / 0.004328 (-0.000611) | 0.049103 / 0.004250 (0.044853) | 0.048821 / 0.037052 (0.011769) | 0.259688 / 0.258489 (0.001199) | 0.311469 / 0.293841 (0.017628) | 0.030667 / 0.128546 (-0.097879) | 0.013091 / 0.075646 (-0.062555) | 0.204737 / 0.419271 (-0.214534) | 0.038312 / 0.043533 (-0.005221) | 0.250055 / 0.255139 (-0.005084) | 0.272199 / 0.283200 (-0.011001) | 0.021161 / 0.141683 (-0.120522) | 1.116095 / 1.452155 (-0.336060) | 1.153588 / 1.492716 (-0.339129) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.107828 / 0.018006 (0.089822) | 0.315898 / 0.000490 (0.315408) | 0.000228 / 0.000200 (0.000028) | 0.000048 / 0.000054 (-0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018873 / 0.037411 (-0.018539) | 0.063374 / 0.014526 (0.048848) | 0.076424 / 0.176557 (-0.100133) | 0.123468 / 0.737135 (-0.613667) | 0.077432 / 0.296338 (-0.218906) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.288931 / 0.215209 (0.073722) | 2.828745 / 2.077655 (0.751091) | 1.471061 / 1.504120 (-0.033059) | 1.332289 / 1.541195 (-0.208906) | 1.379797 / 1.468490 (-0.088693) | 0.708053 / 4.584777 (-3.876724) | 2.382431 / 3.745712 (-1.363281) | 2.952672 / 5.269862 (-2.317190) | 1.957517 / 4.565676 (-2.608160) | 0.078730 / 0.424275 (-0.345546) | 0.005093 / 0.007607 (-0.002514) | 0.338147 / 0.226044 (0.112102) | 3.340841 / 2.268929 (1.071912) | 1.857083 / 55.444624 (-53.587541) | 1.533659 / 6.876477 (-5.342818) | 1.750549 / 2.142072 (-0.391523) | 0.804125 / 4.805227 (-4.001103) | 0.134618 / 6.500664 (-6.366046) | 0.042517 / 0.075469 (-0.032952) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.968608 / 1.841788 (-0.873180) | 12.326994 / 8.074308 (4.252686) | 9.464889 / 10.191392 (-0.726503) | 0.143979 / 0.680424 (-0.536445) | 0.014577 / 0.534201 (-0.519624) | 0.303205 / 0.579283 (-0.276078) | 0.269866 / 0.434364 (-0.164498) | 0.344846 / 0.540337 (-0.195491) | 0.443794 / 1.386936 (-0.943142) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006452 / 0.011353 (-0.004900) | 0.004264 / 0.011008 (-0.006745) | 0.051355 / 0.038508 (0.012847) | 0.035188 / 0.023109 (0.012079) | 0.267697 / 0.275898 (-0.008201) | 0.295853 / 0.323480 (-0.027627) | 0.004611 / 0.007986 (-0.003374) | 0.005395 / 0.004328 (0.001066) | 0.049903 / 0.004250 (0.045652) | 0.044582 / 0.037052 (0.007530) | 0.284706 / 0.258489 (0.026217) | 0.321623 / 0.293841 (0.027782) | 0.033228 / 0.128546 (-0.095318) | 0.013077 / 0.075646 (-0.062569) | 0.061867 / 0.419271 (-0.357405) | 0.034625 / 0.043533 (-0.008908) | 0.269088 / 0.255139 (0.013949) | 0.284899 / 0.283200 (0.001699) | 0.019972 / 0.141683 (-0.121710) | 1.157976 / 1.452155 (-0.294178) | 1.181658 / 1.492716 (-0.311058) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.111072 / 0.018006 (0.093066) | 0.333310 / 0.000490 (0.332820) | 0.000251 / 0.000200 (0.000051) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023760 / 0.037411 (-0.013652) | 0.080746 / 0.014526 (0.066221) | 0.090231 / 0.176557 (-0.086326) | 0.132200 / 0.737135 (-0.604936) | 0.095679 / 0.296338 (-0.200660) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.297404 / 0.215209 (0.082195) | 2.919779 / 2.077655 (0.842124) | 1.577470 / 1.504120 (0.073350) | 1.452924 / 1.541195 (-0.088271) | 1.523683 / 1.468490 (0.055193) | 0.743801 / 4.584777 (-3.840976) | 1.006944 / 3.745712 (-2.738768) | 3.218161 / 5.269862 (-2.051701) | 2.069762 / 4.565676 (-2.495914) | 0.082900 / 0.424275 (-0.341375) | 0.005239 / 0.007607 (-0.002368) | 0.360124 / 0.226044 (0.134080) | 3.505349 / 2.268929 (1.236420) | 1.959324 / 55.444624 (-53.485300) | 1.663782 / 6.876477 (-5.212694) | 1.725745 / 2.142072 (-0.416327) | 0.825268 / 4.805227 (-3.979959) | 0.138577 / 6.500664 (-6.362087) | 0.042716 / 0.075469 (-0.032753) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.021138 / 1.841788 (-0.820650) | 13.907954 / 8.074308 (5.833646) | 11.023796 / 10.191392 (0.832404) | 0.135224 / 0.680424 (-0.545200) | 0.016232 / 0.534201 (-0.517969) | 0.330389 / 0.579283 (-0.248894) | 0.131702 / 0.434364 (-0.302662) | 0.372499 / 0.540337 (-0.167838) | 0.472702 / 1.386936 (-0.914234) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#87f4c2088854ff33e817e724e75179e9975c1b02 \"CML watermark\")\n" ]
2024-07-15T15:38:04
2024-07-15T16:06:15
2024-07-15T15:59:56
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7050", "html_url": "https://github.com/huggingface/datasets/pull/7050", "diff_url": "https://github.com/huggingface/datasets/pull/7050.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7050.patch", "merged_at": "2024-07-15T15:59:56" }
(minor) just to make it more prominent in the docs page for the soon-to-be-released new torchdata
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7050/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7050/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7049
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7049/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7049/comments
https://api.github.com/repos/huggingface/datasets/issues/7049/events
https://github.com/huggingface/datasets/issues/7049
2,408,514,366
I_kwDODunzps6PjwM-
7,049
Save nparray as list
{ "login": "Sakurakdx", "id": 48399040, "node_id": "MDQ6VXNlcjQ4Mzk5MDQw", "avatar_url": "https://avatars.githubusercontent.com/u/48399040?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Sakurakdx", "html_url": "https://github.com/Sakurakdx", "followers_url": "https://api.github.com/users/Sakurakdx/followers", "following_url": "https://api.github.com/users/Sakurakdx/following{/other_user}", "gists_url": "https://api.github.com/users/Sakurakdx/gists{/gist_id}", "starred_url": "https://api.github.com/users/Sakurakdx/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Sakurakdx/subscriptions", "organizations_url": "https://api.github.com/users/Sakurakdx/orgs", "repos_url": "https://api.github.com/users/Sakurakdx/repos", "events_url": "https://api.github.com/users/Sakurakdx/events{/privacy}", "received_events_url": "https://api.github.com/users/Sakurakdx/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "In addition, when I use `set_format ` and index the ds, the following error occurs:\r\nthe code\r\n```python\r\nds.set_format(type=\"np\", colums=\"pixel_values\")\r\n```\r\nerror\r\n<img width=\"918\" alt=\"image\" src=\"https://github.com/user-attachments/assets/b28bbff2-20ea-4d28-ab62-b4ed2d944996\">\r\n", "> Some people use the set_format function to convert the column back, but doesn't this lose precision?\r\n\r\nUnder the hood the data is saved in Arrow format using the same precision as your numpy arrays?\r\nBy default the Arrow data is read as python lists, but you can indeed read them back as numpy arrays with the same precision", "(you can fix your second issue by fixing the typo `colums` -> `columns`)", "> (you can fix your second issue by fixing the typo `colums` -> `columns`)\r\n\r\nYou are right, I was careless. Thank you.", "> > Some people use the set_format function to convert the column back, but doesn't this lose precision?\r\n> \r\n> Under the hood the data is saved in Arrow format using the same precision as your numpy arrays? By default the Arrow data is read as python lists, but you can indeed read them back as numpy arrays with the same precision\r\n\r\nYes, after testing I found that there was no loss of precision. Thanks again for your answer." ]
2024-07-15T11:36:11
2024-07-18T11:33:34
2024-07-18T11:33:34
NONE
null
null
null
### Describe the bug When I use the `map` function to convert images into features, datasets saves nparray as a list. Some people use the `set_format` function to convert the column back, but doesn't this lose precision? ### Steps to reproduce the bug the map function ```python def convert_image_to_features(inst, processor, image_dir): image_file = inst["image_url"] file = image_file.split("/")[-1] image_path = os.path.join(image_dir, file) image = Image.open(image_path) image = image.convert("RGBA") inst["pixel_values"] = processor(images=image, return_tensors="np")["pixel_values"] return inst ``` main function ```python map_fun = partial( convert_image_to_features, processor=processor, image_dir=image_dir ) ds = ds.map(map_fun, batched=False, num_proc=20) print(type(ds[0]["pixel_values"]) ``` ### Expected behavior (type < list>) ### Environment info - `datasets` version: 2.16.1 - Platform: Linux-4.19.91-009.ali4000.alios7.x86_64-x86_64-with-glibc2.35 - Python version: 3.11.5 - `huggingface_hub` version: 0.23.4 - PyArrow version: 14.0.2 - Pandas version: 2.1.4 - `fsspec` version: 2023.10.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7049/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7049/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7048
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7048/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7048/comments
https://api.github.com/repos/huggingface/datasets/issues/7048/events
https://github.com/huggingface/datasets/issues/7048
2,408,487,547
I_kwDODunzps6Pjpp7
7,048
ImportError: numpy.core.multiarray when using `filter`
{ "login": "kamilakesbi", "id": 45195979, "node_id": "MDQ6VXNlcjQ1MTk1OTc5", "avatar_url": "https://avatars.githubusercontent.com/u/45195979?v=4", "gravatar_id": "", "url": "https://api.github.com/users/kamilakesbi", "html_url": "https://github.com/kamilakesbi", "followers_url": "https://api.github.com/users/kamilakesbi/followers", "following_url": "https://api.github.com/users/kamilakesbi/following{/other_user}", "gists_url": "https://api.github.com/users/kamilakesbi/gists{/gist_id}", "starred_url": "https://api.github.com/users/kamilakesbi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kamilakesbi/subscriptions", "organizations_url": "https://api.github.com/users/kamilakesbi/orgs", "repos_url": "https://api.github.com/users/kamilakesbi/repos", "events_url": "https://api.github.com/users/kamilakesbi/events{/privacy}", "received_events_url": "https://api.github.com/users/kamilakesbi/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Could you please check your `numpy` version?", "I got this issue while using numpy version 2.0. \r\n\r\nI solved it by switching back to numpy 1.26.0 :) ", "We recently added support for numpy 2.0, but it is not released yet.", "Ok I see, thanks! I think we can close this issue for now as switching back to version 1.26.0 solves the problem :) " ]
2024-07-15T11:21:04
2024-07-16T10:11:25
2024-07-16T10:11:25
NONE
null
null
null
### Describe the bug I can't apply the filter method on my dataset. ### Steps to reproduce the bug The following snippet generates a bug: ```python from datasets import load_dataset ami = load_dataset('kamilakesbi/ami', 'ihm') ami['train'].filter( lambda example: example["file_name"] == 'EN2001a' ) ``` I get the following error: `ImportError: numpy.core.multiarray failed to import (auto-generated because you didn't call 'numpy.import_array()' after cimporting numpy; use '<void>numpy._import_array' to disable if you are certain you don't need it).` ### Expected behavior It should work properly! ### Environment info - `datasets` version: 2.20.0 - Platform: Linux-5.15.0-67-generic-x86_64-with-glibc2.35 - Python version: 3.10.6 - `huggingface_hub` version: 0.23.4 - PyArrow version: 16.1.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.5.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7048/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7048/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7047
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7047/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7047/comments
https://api.github.com/repos/huggingface/datasets/issues/7047/events
https://github.com/huggingface/datasets/issues/7047
2,406,495,084
I_kwDODunzps6PcDNs
7,047
Save Dataset as Sharded Parquet
{ "login": "tom-p-reichel", "id": 43631024, "node_id": "MDQ6VXNlcjQzNjMxMDI0", "avatar_url": "https://avatars.githubusercontent.com/u/43631024?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tom-p-reichel", "html_url": "https://github.com/tom-p-reichel", "followers_url": "https://api.github.com/users/tom-p-reichel/followers", "following_url": "https://api.github.com/users/tom-p-reichel/following{/other_user}", "gists_url": "https://api.github.com/users/tom-p-reichel/gists{/gist_id}", "starred_url": "https://api.github.com/users/tom-p-reichel/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tom-p-reichel/subscriptions", "organizations_url": "https://api.github.com/users/tom-p-reichel/orgs", "repos_url": "https://api.github.com/users/tom-p-reichel/repos", "events_url": "https://api.github.com/users/tom-p-reichel/events{/privacy}", "received_events_url": "https://api.github.com/users/tom-p-reichel/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
null
[ "To anyone else who finds themselves in this predicament, it's possible to read the parquet file in the same way that datasets writes it, and then manually break it into pieces. Although, you need a couple of magic options (`thrift_*`) to deal with the huge metadata, otherwise pyarrow immediately crashes.\r\n```python\r\nimport pyarrow.parquet as pq\r\nimport pyarrow as pa\r\n\r\nr = pq.ParquetReader()\r\n\r\nr.open(\"./outrageous-file.parquet\",thrift_string_size_limit=2**31-1, thrift_container_size_limit=2**31-1)\r\n\r\nfrom more_itertools import chunked\r\nimport tqdm\r\n\r\nfor i,chunk in tqdm.tqdm(enumerate(chunked(range(r.num_row_groups),10000))):\r\n w = pq.ParquetWriter(f\"./chunks.parquet/chunk{i}.parquet\",schema=r.schema_arrow)\r\n for idx in chunk:\r\n w.write_table(r.read_row_group(idx))\r\n w.close()\r\n```", "You can also use `.shard()` and call `to_parquet()` on each shard in the meantime:\r\n\r\n```python\r\nnum_shards = 128\r\noutput_path_template = \"output_dir/{index:05d}.parquet\"\r\nfor index in range(num_shards):\r\n shard = ds.shard(index=index, num_shards=num_shards, contiguous=True)\r\n shard.to_parquet(output_path_template.format(index=index))\r\n```" ]
2024-07-12T23:47:51
2024-07-17T12:07:08
null
NONE
null
null
null
### Feature request `to_parquet` currently saves the dataset as one massive, monolithic parquet file, rather than as several small parquet files. It should shard large datasets automatically. ### Motivation This default behavior makes me very sad because a program I ran for 6 hours saved its results using `to_parquet`, putting the entire billion+ row dataset into a 171 GB *single shard parquet file* which pyarrow, apache spark, etc. all cannot work with without completely exhausting the memory of my system. I was previously able to work with larger-than-memory parquet files, but not this one. I *assume* the reason why this is happening is because it is a single shard. Making sharding the default behavior puts datasets in parity with other frameworks, such as spark, which automatically shard when a large dataset is saved as parquet. ### Your contribution I could change the logic here https://github.com/huggingface/datasets/blob/bf6f41e94d9b2f1c620cf937a2e85e5754a8b960/src/datasets/io/parquet.py#L109-L158 to use `pyarrow.dataset.write_dataset`, which seems to support sharding, or periodically open new files. We would only shard if the user passed in a path rather than file handle.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7047/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7047/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7046
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7046/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7046/comments
https://api.github.com/repos/huggingface/datasets/issues/7046/events
https://github.com/huggingface/datasets/pull/7046
2,405,485,582
PR_kwDODunzps51N05n
7,046
Support librosa and numpy 2.0 for Python 3.10
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7046). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005897 / 0.011353 (-0.005456) | 0.003958 / 0.011008 (-0.007050) | 0.063684 / 0.038508 (0.025176) | 0.031743 / 0.023109 (0.008634) | 0.246725 / 0.275898 (-0.029173) | 0.275519 / 0.323480 (-0.047961) | 0.003347 / 0.007986 (-0.004639) | 0.004089 / 0.004328 (-0.000240) | 0.049591 / 0.004250 (0.045341) | 0.049386 / 0.037052 (0.012333) | 0.264929 / 0.258489 (0.006440) | 0.317157 / 0.293841 (0.023316) | 0.029929 / 0.128546 (-0.098617) | 0.012264 / 0.075646 (-0.063382) | 0.209208 / 0.419271 (-0.210064) | 0.037073 / 0.043533 (-0.006460) | 0.247999 / 0.255139 (-0.007140) | 0.273457 / 0.283200 (-0.009742) | 0.020354 / 0.141683 (-0.121328) | 1.109874 / 1.452155 (-0.342281) | 1.180085 / 1.492716 (-0.312631) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.099935 / 0.018006 (0.081929) | 0.305607 / 0.000490 (0.305118) | 0.000214 / 0.000200 (0.000014) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020019 / 0.037411 (-0.017392) | 0.066608 / 0.014526 (0.052083) | 0.079354 / 0.176557 (-0.097202) | 0.123416 / 0.737135 (-0.613719) | 0.078171 / 0.296338 (-0.218167) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.281627 / 0.215209 (0.066418) | 2.809807 / 2.077655 (0.732152) | 1.467007 / 1.504120 (-0.037112) | 1.351367 / 1.541195 (-0.189828) | 1.396782 / 1.468490 (-0.071708) | 0.735605 / 4.584777 (-3.849172) | 2.378455 / 3.745712 (-1.367257) | 2.971739 / 5.269862 (-2.298122) | 2.004970 / 4.565676 (-2.560707) | 0.078156 / 0.424275 (-0.346119) | 0.005276 / 0.007607 (-0.002331) | 0.340370 / 0.226044 (0.114325) | 3.347552 / 2.268929 (1.078624) | 1.851098 / 55.444624 (-53.593527) | 1.518079 / 6.876477 (-5.358398) | 1.703145 / 2.142072 (-0.438927) | 0.799574 / 4.805227 (-4.005654) | 0.133591 / 6.500664 (-6.367074) | 0.043329 / 0.075469 (-0.032141) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.977268 / 1.841788 (-0.864520) | 12.720209 / 8.074308 (4.645901) | 9.798126 / 10.191392 (-0.393266) | 0.132106 / 0.680424 (-0.548318) | 0.014456 / 0.534201 (-0.519745) | 0.312965 / 0.579283 (-0.266318) | 0.271348 / 0.434364 (-0.163016) | 0.343951 / 0.540337 (-0.196386) | 0.449814 / 1.386936 (-0.937122) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005944 / 0.011353 (-0.005409) | 0.004054 / 0.011008 (-0.006954) | 0.050573 / 0.038508 (0.012065) | 0.034580 / 0.023109 (0.011470) | 0.261439 / 0.275898 (-0.014459) | 0.286057 / 0.323480 (-0.037423) | 0.004463 / 0.007986 (-0.003523) | 0.002891 / 0.004328 (-0.001437) | 0.049169 / 0.004250 (0.044919) | 0.041622 / 0.037052 (0.004570) | 0.275216 / 0.258489 (0.016727) | 0.305847 / 0.293841 (0.012006) | 0.032615 / 0.128546 (-0.095932) | 0.012304 / 0.075646 (-0.063343) | 0.062890 / 0.419271 (-0.356382) | 0.033846 / 0.043533 (-0.009687) | 0.262758 / 0.255139 (0.007619) | 0.279451 / 0.283200 (-0.003748) | 0.018953 / 0.141683 (-0.122730) | 1.149158 / 1.452155 (-0.302997) | 1.173981 / 1.492716 (-0.318735) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.100462 / 0.018006 (0.082456) | 0.308390 / 0.000490 (0.307900) | 0.000207 / 0.000200 (0.000007) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023089 / 0.037411 (-0.014322) | 0.078610 / 0.014526 (0.064084) | 0.090348 / 0.176557 (-0.086208) | 0.130784 / 0.737135 (-0.606351) | 0.092538 / 0.296338 (-0.203801) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296255 / 0.215209 (0.081046) | 2.899159 / 2.077655 (0.821504) | 1.603524 / 1.504120 (0.099404) | 1.418002 / 1.541195 (-0.123192) | 1.470221 / 1.468490 (0.001731) | 0.722129 / 4.584777 (-3.862648) | 0.956146 / 3.745712 (-2.789566) | 3.011640 / 5.269862 (-2.258222) | 1.910966 / 4.565676 (-2.654711) | 0.078771 / 0.424275 (-0.345504) | 0.005154 / 0.007607 (-0.002453) | 0.354001 / 0.226044 (0.127956) | 3.484224 / 2.268929 (1.215296) | 1.913612 / 55.444624 (-53.531012) | 1.634492 / 6.876477 (-5.241985) | 1.693292 / 2.142072 (-0.448780) | 0.816837 / 4.805227 (-3.988390) | 0.136631 / 6.500664 (-6.364033) | 0.042291 / 0.075469 (-0.033178) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.994887 / 1.841788 (-0.846901) | 13.144865 / 8.074308 (5.070557) | 10.820098 / 10.191392 (0.628706) | 0.132557 / 0.680424 (-0.547867) | 0.015467 / 0.534201 (-0.518734) | 0.302026 / 0.579283 (-0.277257) | 0.128763 / 0.434364 (-0.305601) | 0.347908 / 0.540337 (-0.192430) | 0.444829 / 1.386936 (-0.942107) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bf6f41e94d9b2f1c620cf937a2e85e5754a8b960 \"CML watermark\")\n" ]
2024-07-12T12:42:47
2024-07-12T13:04:40
2024-07-12T12:58:17
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7046", "html_url": "https://github.com/huggingface/datasets/pull/7046", "diff_url": "https://github.com/huggingface/datasets/pull/7046.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7046.patch", "merged_at": "2024-07-12T12:58:17" }
Support librosa and numpy 2.0 for Python 3.10 by installing soxr 0.4.0b1 pre-release: - https://github.com/dofuuz/python-soxr/releases/tag/v0.4.0b1 - https://github.com/dofuuz/python-soxr/issues/28
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7046/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7046/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7045
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7045/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7045/comments
https://api.github.com/repos/huggingface/datasets/issues/7045/events
https://github.com/huggingface/datasets/pull/7045
2,405,447,858
PR_kwDODunzps51Nsie
7,045
Fix tensorflow min version depending on Python version
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7045). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005426 / 0.011353 (-0.005927) | 0.003896 / 0.011008 (-0.007112) | 0.063492 / 0.038508 (0.024984) | 0.030199 / 0.023109 (0.007090) | 0.249892 / 0.275898 (-0.026006) | 0.291311 / 0.323480 (-0.032168) | 0.004389 / 0.007986 (-0.003597) | 0.002829 / 0.004328 (-0.001500) | 0.049685 / 0.004250 (0.045435) | 0.043351 / 0.037052 (0.006299) | 0.264265 / 0.258489 (0.005776) | 0.290463 / 0.293841 (-0.003378) | 0.030007 / 0.128546 (-0.098539) | 0.012146 / 0.075646 (-0.063500) | 0.203841 / 0.419271 (-0.215430) | 0.037159 / 0.043533 (-0.006373) | 0.253377 / 0.255139 (-0.001762) | 0.275990 / 0.283200 (-0.007209) | 0.018334 / 0.141683 (-0.123349) | 1.112616 / 1.452155 (-0.339539) | 1.157507 / 1.492716 (-0.335209) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097781 / 0.018006 (0.079775) | 0.314381 / 0.000490 (0.313891) | 0.000217 / 0.000200 (0.000017) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018704 / 0.037411 (-0.018708) | 0.062293 / 0.014526 (0.047767) | 0.073997 / 0.176557 (-0.102559) | 0.120309 / 0.737135 (-0.616826) | 0.075592 / 0.296338 (-0.220747) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283178 / 0.215209 (0.067969) | 2.798027 / 2.077655 (0.720372) | 1.431320 / 1.504120 (-0.072800) | 1.316135 / 1.541195 (-0.225060) | 1.345528 / 1.468490 (-0.122962) | 0.717300 / 4.584777 (-3.867477) | 2.401019 / 3.745712 (-1.344693) | 2.866411 / 5.269862 (-2.403451) | 1.933198 / 4.565676 (-2.632479) | 0.079505 / 0.424275 (-0.344771) | 0.005089 / 0.007607 (-0.002519) | 0.333614 / 0.226044 (0.107569) | 3.315449 / 2.268929 (1.046520) | 1.807667 / 55.444624 (-53.636957) | 1.490537 / 6.876477 (-5.385939) | 1.633305 / 2.142072 (-0.508767) | 0.807732 / 4.805227 (-3.997495) | 0.133825 / 6.500664 (-6.366839) | 0.041696 / 0.075469 (-0.033774) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.969063 / 1.841788 (-0.872724) | 11.825985 / 8.074308 (3.751677) | 9.808041 / 10.191392 (-0.383351) | 0.143338 / 0.680424 (-0.537085) | 0.014714 / 0.534201 (-0.519487) | 0.304360 / 0.579283 (-0.274923) | 0.266863 / 0.434364 (-0.167501) | 0.342374 / 0.540337 (-0.197963) | 0.442120 / 1.386936 (-0.944816) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005574 / 0.011353 (-0.005778) | 0.003735 / 0.011008 (-0.007273) | 0.051021 / 0.038508 (0.012513) | 0.032825 / 0.023109 (0.009716) | 0.267775 / 0.275898 (-0.008123) | 0.286015 / 0.323480 (-0.037464) | 0.004332 / 0.007986 (-0.003653) | 0.002796 / 0.004328 (-0.001532) | 0.050183 / 0.004250 (0.045933) | 0.040191 / 0.037052 (0.003138) | 0.279777 / 0.258489 (0.021288) | 0.312161 / 0.293841 (0.018320) | 0.031993 / 0.128546 (-0.096553) | 0.012168 / 0.075646 (-0.063478) | 0.061622 / 0.419271 (-0.357650) | 0.033577 / 0.043533 (-0.009956) | 0.267300 / 0.255139 (0.012161) | 0.284595 / 0.283200 (0.001396) | 0.018476 / 0.141683 (-0.123207) | 1.135917 / 1.452155 (-0.316237) | 1.164516 / 1.492716 (-0.328200) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.108194 / 0.018006 (0.090188) | 0.309514 / 0.000490 (0.309025) | 0.000211 / 0.000200 (0.000011) | 0.000053 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022998 / 0.037411 (-0.014413) | 0.077126 / 0.014526 (0.062600) | 0.088779 / 0.176557 (-0.087778) | 0.128646 / 0.737135 (-0.608489) | 0.089895 / 0.296338 (-0.206443) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.295131 / 0.215209 (0.079922) | 2.887380 / 2.077655 (0.809726) | 1.586450 / 1.504120 (0.082330) | 1.449831 / 1.541195 (-0.091363) | 1.468805 / 1.468490 (0.000315) | 0.721578 / 4.584777 (-3.863199) | 0.970499 / 3.745712 (-2.775214) | 2.975604 / 5.269862 (-2.294258) | 1.935809 / 4.565676 (-2.629867) | 0.078504 / 0.424275 (-0.345771) | 0.005219 / 0.007607 (-0.002388) | 0.347168 / 0.226044 (0.121124) | 3.417040 / 2.268929 (1.148111) | 1.928707 / 55.444624 (-53.515917) | 1.629398 / 6.876477 (-5.247078) | 1.653014 / 2.142072 (-0.489058) | 0.796097 / 4.805227 (-4.009130) | 0.133956 / 6.500664 (-6.366708) | 0.041567 / 0.075469 (-0.033902) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.995511 / 1.841788 (-0.846277) | 12.577211 / 8.074308 (4.502903) | 10.562561 / 10.191392 (0.371169) | 0.144288 / 0.680424 (-0.536136) | 0.016345 / 0.534201 (-0.517856) | 0.304364 / 0.579283 (-0.274920) | 0.134630 / 0.434364 (-0.299734) | 0.341494 / 0.540337 (-0.198843) | 0.436238 / 1.386936 (-0.950698) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3b708bb6611a88c3f00f58ec3c63fe0da2c2b1e1 \"CML watermark\")\n" ]
2024-07-12T12:20:23
2024-07-12T12:38:53
2024-07-12T12:33:00
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7045", "html_url": "https://github.com/huggingface/datasets/pull/7045", "diff_url": "https://github.com/huggingface/datasets/pull/7045.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7045.patch", "merged_at": "2024-07-12T12:33:00" }
Fix tensorflow min version depending on Python version. Related to: - #6991
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7045/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7045/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7044
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7044/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7044/comments
https://api.github.com/repos/huggingface/datasets/issues/7044/events
https://github.com/huggingface/datasets/pull/7044
2,405,002,987
PR_kwDODunzps51MLbh
7,044
Mark tests that require librosa
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7044). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005797 / 0.011353 (-0.005556) | 0.004017 / 0.011008 (-0.006991) | 0.063829 / 0.038508 (0.025321) | 0.031329 / 0.023109 (0.008220) | 0.249388 / 0.275898 (-0.026510) | 0.273129 / 0.323480 (-0.050351) | 0.004250 / 0.007986 (-0.003736) | 0.002821 / 0.004328 (-0.001507) | 0.049250 / 0.004250 (0.044999) | 0.046175 / 0.037052 (0.009123) | 0.252040 / 0.258489 (-0.006449) | 0.296537 / 0.293841 (0.002696) | 0.030579 / 0.128546 (-0.097967) | 0.012436 / 0.075646 (-0.063210) | 0.205829 / 0.419271 (-0.213443) | 0.036979 / 0.043533 (-0.006554) | 0.251354 / 0.255139 (-0.003785) | 0.272262 / 0.283200 (-0.010938) | 0.019047 / 0.141683 (-0.122636) | 1.112410 / 1.452155 (-0.339745) | 1.137445 / 1.492716 (-0.355271) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097270 / 0.018006 (0.079264) | 0.309329 / 0.000490 (0.308839) | 0.000221 / 0.000200 (0.000021) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019021 / 0.037411 (-0.018390) | 0.066801 / 0.014526 (0.052276) | 0.075280 / 0.176557 (-0.101276) | 0.122499 / 0.737135 (-0.614637) | 0.077424 / 0.296338 (-0.218914) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.279469 / 0.215209 (0.064259) | 2.787511 / 2.077655 (0.709856) | 1.411389 / 1.504120 (-0.092731) | 1.285796 / 1.541195 (-0.255399) | 1.354252 / 1.468490 (-0.114238) | 0.735341 / 4.584777 (-3.849436) | 2.418557 / 3.745712 (-1.327155) | 2.983406 / 5.269862 (-2.286455) | 2.005853 / 4.565676 (-2.559823) | 0.080440 / 0.424275 (-0.343835) | 0.005242 / 0.007607 (-0.002365) | 0.343557 / 0.226044 (0.117513) | 3.358984 / 2.268929 (1.090055) | 1.816709 / 55.444624 (-53.627915) | 1.500225 / 6.876477 (-5.376252) | 1.715405 / 2.142072 (-0.426667) | 0.829054 / 4.805227 (-3.976174) | 0.138352 / 6.500664 (-6.362312) | 0.043709 / 0.075469 (-0.031760) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.969135 / 1.841788 (-0.872652) | 12.510750 / 8.074308 (4.436442) | 10.140368 / 10.191392 (-0.051024) | 0.133117 / 0.680424 (-0.547307) | 0.015775 / 0.534201 (-0.518426) | 0.302203 / 0.579283 (-0.277080) | 0.268214 / 0.434364 (-0.166150) | 0.347041 / 0.540337 (-0.193296) | 0.456095 / 1.386936 (-0.930841) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006255 / 0.011353 (-0.005098) | 0.004453 / 0.011008 (-0.006555) | 0.052298 / 0.038508 (0.013790) | 0.034808 / 0.023109 (0.011699) | 0.274723 / 0.275898 (-0.001175) | 0.297199 / 0.323480 (-0.026281) | 0.004499 / 0.007986 (-0.003486) | 0.003086 / 0.004328 (-0.001242) | 0.051315 / 0.004250 (0.047065) | 0.042764 / 0.037052 (0.005712) | 0.285636 / 0.258489 (0.027147) | 0.321819 / 0.293841 (0.027978) | 0.033350 / 0.128546 (-0.095196) | 0.013457 / 0.075646 (-0.062189) | 0.063930 / 0.419271 (-0.355342) | 0.034537 / 0.043533 (-0.008996) | 0.272630 / 0.255139 (0.017491) | 0.289245 / 0.283200 (0.006045) | 0.018910 / 0.141683 (-0.122773) | 1.153064 / 1.452155 (-0.299091) | 1.207065 / 1.492716 (-0.285651) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093008 / 0.018006 (0.075002) | 0.301313 / 0.000490 (0.300823) | 0.000214 / 0.000200 (0.000014) | 0.000054 / 0.000054 (-0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023168 / 0.037411 (-0.014244) | 0.080837 / 0.014526 (0.066312) | 0.089667 / 0.176557 (-0.086889) | 0.135849 / 0.737135 (-0.601286) | 0.092082 / 0.296338 (-0.204257) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298933 / 0.215209 (0.083723) | 2.847736 / 2.077655 (0.770082) | 1.550268 / 1.504120 (0.046148) | 1.425675 / 1.541195 (-0.115520) | 1.469251 / 1.468490 (0.000761) | 0.720446 / 4.584777 (-3.864331) | 0.976149 / 3.745712 (-2.769563) | 3.081804 / 5.269862 (-2.188057) | 1.982797 / 4.565676 (-2.582880) | 0.078598 / 0.424275 (-0.345677) | 0.005229 / 0.007607 (-0.002379) | 0.345475 / 0.226044 (0.119430) | 3.421312 / 2.268929 (1.152384) | 1.929034 / 55.444624 (-53.515590) | 1.631523 / 6.876477 (-5.244953) | 1.671996 / 2.142072 (-0.470077) | 0.776916 / 4.805227 (-4.028311) | 0.133966 / 6.500664 (-6.366699) | 0.042183 / 0.075469 (-0.033286) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.993023 / 1.841788 (-0.848764) | 12.981642 / 8.074308 (4.907334) | 10.610457 / 10.191392 (0.419065) | 0.146748 / 0.680424 (-0.533676) | 0.016556 / 0.534201 (-0.517645) | 0.303613 / 0.579283 (-0.275670) | 0.132671 / 0.434364 (-0.301693) | 0.344786 / 0.540337 (-0.195552) | 0.443049 / 1.386936 (-0.943887) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8419c40a085d67eb5832cecebf3ef8213112857d \"CML watermark\")\n" ]
2024-07-12T08:06:59
2024-07-12T09:06:32
2024-07-12T09:00:09
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7044", "html_url": "https://github.com/huggingface/datasets/pull/7044", "diff_url": "https://github.com/huggingface/datasets/pull/7044.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7044.patch", "merged_at": "2024-07-12T09:00:09" }
Mark tests that require `librosa`. Note that `librosa` is an optional dependency (installed with `audio` option) and we should be able to test environments without that library installed. This is the case if we want to test Numpy 2.0, which is currently incompatible with `librosa` due to its dependency on `soxr`: - https://github.com/dofuuz/python-soxr/issues/28
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7044/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7044/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7043
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7043/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7043/comments
https://api.github.com/repos/huggingface/datasets/issues/7043/events
https://github.com/huggingface/datasets/pull/7043
2,404,951,714
PR_kwDODunzps51MAN0
7,043
Add decorator as explicit test dependency
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7043). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005147 / 0.011353 (-0.006205) | 0.003403 / 0.011008 (-0.007605) | 0.061367 / 0.038508 (0.022859) | 0.030295 / 0.023109 (0.007186) | 0.233503 / 0.275898 (-0.042395) | 0.252644 / 0.323480 (-0.070836) | 0.004072 / 0.007986 (-0.003913) | 0.002678 / 0.004328 (-0.001650) | 0.049099 / 0.004250 (0.044848) | 0.043032 / 0.037052 (0.005979) | 0.248823 / 0.258489 (-0.009666) | 0.274895 / 0.293841 (-0.018946) | 0.029307 / 0.128546 (-0.099239) | 0.011186 / 0.075646 (-0.064460) | 0.197142 / 0.419271 (-0.222129) | 0.035924 / 0.043533 (-0.007609) | 0.234728 / 0.255139 (-0.020411) | 0.252990 / 0.283200 (-0.030209) | 0.017589 / 0.141683 (-0.124094) | 1.108252 / 1.452155 (-0.343903) | 1.135949 / 1.492716 (-0.356767) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093096 / 0.018006 (0.075090) | 0.289284 / 0.000490 (0.288794) | 0.000208 / 0.000200 (0.000008) | 0.000038 / 0.000054 (-0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.017633 / 0.037411 (-0.019778) | 0.060621 / 0.014526 (0.046095) | 0.073194 / 0.176557 (-0.103363) | 0.120176 / 0.737135 (-0.616959) | 0.073575 / 0.296338 (-0.222764) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.277168 / 0.215209 (0.061959) | 2.689714 / 2.077655 (0.612060) | 1.427558 / 1.504120 (-0.076562) | 1.331350 / 1.541195 (-0.209844) | 1.353069 / 1.468490 (-0.115421) | 0.716657 / 4.584777 (-3.868120) | 2.321145 / 3.745712 (-1.424567) | 2.757986 / 5.269862 (-2.511876) | 1.851604 / 4.565676 (-2.714072) | 0.089530 / 0.424275 (-0.334745) | 0.004884 / 0.007607 (-0.002723) | 0.327859 / 0.226044 (0.101814) | 3.290749 / 2.268929 (1.021821) | 1.831090 / 55.444624 (-53.613535) | 1.509247 / 6.876477 (-5.367229) | 1.616545 / 2.142072 (-0.525527) | 0.775228 / 4.805227 (-4.029999) | 0.133794 / 6.500664 (-6.366870) | 0.040644 / 0.075469 (-0.034825) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.950816 / 1.841788 (-0.890972) | 11.109938 / 8.074308 (3.035630) | 9.560673 / 10.191392 (-0.630719) | 0.130685 / 0.680424 (-0.549738) | 0.014096 / 0.534201 (-0.520105) | 0.297222 / 0.579283 (-0.282061) | 0.262777 / 0.434364 (-0.171587) | 0.340983 / 0.540337 (-0.199355) | 0.426107 / 1.386936 (-0.960829) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005547 / 0.011353 (-0.005806) | 0.003425 / 0.011008 (-0.007584) | 0.049791 / 0.038508 (0.011283) | 0.032660 / 0.023109 (0.009550) | 0.257640 / 0.275898 (-0.018258) | 0.283483 / 0.323480 (-0.039997) | 0.004330 / 0.007986 (-0.003655) | 0.002297 / 0.004328 (-0.002032) | 0.047999 / 0.004250 (0.043748) | 0.039875 / 0.037052 (0.002822) | 0.273300 / 0.258489 (0.014811) | 0.303384 / 0.293841 (0.009543) | 0.031696 / 0.128546 (-0.096851) | 0.011913 / 0.075646 (-0.063733) | 0.060330 / 0.419271 (-0.358942) | 0.033253 / 0.043533 (-0.010280) | 0.255378 / 0.255139 (0.000240) | 0.271647 / 0.283200 (-0.011553) | 0.018772 / 0.141683 (-0.122910) | 1.116079 / 1.452155 (-0.336075) | 1.165133 / 1.492716 (-0.327583) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094325 / 0.018006 (0.076319) | 0.297523 / 0.000490 (0.297034) | 0.000210 / 0.000200 (0.000011) | 0.000047 / 0.000054 (-0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022485 / 0.037411 (-0.014926) | 0.073731 / 0.014526 (0.059205) | 0.089039 / 0.176557 (-0.087518) | 0.124035 / 0.737135 (-0.613101) | 0.088053 / 0.296338 (-0.208286) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286676 / 0.215209 (0.071467) | 2.794678 / 2.077655 (0.717024) | 1.541401 / 1.504120 (0.037281) | 1.432928 / 1.541195 (-0.108267) | 1.454940 / 1.468490 (-0.013550) | 0.721779 / 4.584777 (-3.862998) | 0.956514 / 3.745712 (-2.789198) | 2.889533 / 5.269862 (-2.380329) | 1.863980 / 4.565676 (-2.701696) | 0.078366 / 0.424275 (-0.345909) | 0.005137 / 0.007607 (-0.002470) | 0.338835 / 0.226044 (0.112791) | 3.320921 / 2.268929 (1.051993) | 1.903654 / 55.444624 (-53.540970) | 1.615294 / 6.876477 (-5.261182) | 1.624777 / 2.142072 (-0.517295) | 0.792417 / 4.805227 (-4.012810) | 0.133321 / 6.500664 (-6.367343) | 0.040127 / 0.075469 (-0.035342) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.982357 / 1.841788 (-0.859430) | 11.585106 / 8.074308 (3.510798) | 9.991577 / 10.191392 (-0.199815) | 0.149292 / 0.680424 (-0.531131) | 0.015693 / 0.534201 (-0.518508) | 0.297416 / 0.579283 (-0.281867) | 0.118565 / 0.434364 (-0.315799) | 0.335640 / 0.540337 (-0.204697) | 0.429484 / 1.386936 (-0.957452) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3091d7608f20e182f21bb7d0b68be66c0798509a \"CML watermark\")\n" ]
2024-07-12T07:35:23
2024-07-12T08:12:55
2024-07-12T08:07:10
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7043", "html_url": "https://github.com/huggingface/datasets/pull/7043", "diff_url": "https://github.com/huggingface/datasets/pull/7043.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7043.patch", "merged_at": "2024-07-12T08:07:10" }
Add decorator as explicit test dependency. We use `decorator` library in our CI test since PR: - #4845 However we did not add it as an explicit test requirement, and we depended on it indirectly through other libraries' dependencies. I discovered this while testing Numpy 2.0 and removing incompatible libraries.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7043/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7043/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7042
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7042/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7042/comments
https://api.github.com/repos/huggingface/datasets/issues/7042/events
https://github.com/huggingface/datasets/pull/7042
2,404,605,836
PR_kwDODunzps51K8CM
7,042
Improved the tutorial by adding a link for loading datasets
{ "login": "AmboThom", "id": 41874659, "node_id": "MDQ6VXNlcjQxODc0NjU5", "avatar_url": "https://avatars.githubusercontent.com/u/41874659?v=4", "gravatar_id": "", "url": "https://api.github.com/users/AmboThom", "html_url": "https://github.com/AmboThom", "followers_url": "https://api.github.com/users/AmboThom/followers", "following_url": "https://api.github.com/users/AmboThom/following{/other_user}", "gists_url": "https://api.github.com/users/AmboThom/gists{/gist_id}", "starred_url": "https://api.github.com/users/AmboThom/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/AmboThom/subscriptions", "organizations_url": "https://api.github.com/users/AmboThom/orgs", "repos_url": "https://api.github.com/users/AmboThom/repos", "events_url": "https://api.github.com/users/AmboThom/events{/privacy}", "received_events_url": "https://api.github.com/users/AmboThom/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-07-12T03:49:54
2024-07-12T03:49:54
null
NONE
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7042", "html_url": "https://github.com/huggingface/datasets/pull/7042", "diff_url": "https://github.com/huggingface/datasets/pull/7042.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7042.patch", "merged_at": null }
Improved the tutorial by letting readers know about loading datasets with common files and including a link. I left the local files section alone because the methods were already listed with code snippets.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7042/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7042/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7041
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7041/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7041/comments
https://api.github.com/repos/huggingface/datasets/issues/7041/events
https://github.com/huggingface/datasets/issues/7041
2,404,576,038
I_kwDODunzps6PUusm
7,041
`sort` after `filter` unreasonably slow
{ "login": "Tobin-rgb", "id": 56711045, "node_id": "MDQ6VXNlcjU2NzExMDQ1", "avatar_url": "https://avatars.githubusercontent.com/u/56711045?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Tobin-rgb", "html_url": "https://github.com/Tobin-rgb", "followers_url": "https://api.github.com/users/Tobin-rgb/followers", "following_url": "https://api.github.com/users/Tobin-rgb/following{/other_user}", "gists_url": "https://api.github.com/users/Tobin-rgb/gists{/gist_id}", "starred_url": "https://api.github.com/users/Tobin-rgb/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Tobin-rgb/subscriptions", "organizations_url": "https://api.github.com/users/Tobin-rgb/orgs", "repos_url": "https://api.github.com/users/Tobin-rgb/repos", "events_url": "https://api.github.com/users/Tobin-rgb/events{/privacy}", "received_events_url": "https://api.github.com/users/Tobin-rgb/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "`filter` add an indices mapping on top of the dataset, so `sort` has to gather all the rows that are kept to form a new Arrow table and sort the table. Gathering all the rows can take some time, but is a necessary step. You can try calling `ds = ds.flatten_indices()` before sorting to remove the indices mapping." ]
2024-07-12T03:29:27
2024-07-22T13:55:17
null
NONE
null
null
null
### Describe the bug as the tittle says ... ### Steps to reproduce the bug `sort` seems to be normal. ```python from datasets import Dataset import random nums = [{"k":random.choice(range(0,1000))} for _ in range(100000)] ds = Dataset.from_list(nums) print("start sort") ds = ds.sort("k") print("finish sort") ``` but `sort` after `filter` is extremely slow. ```python from datasets import Dataset import random nums = [{"k":random.choice(range(0,1000))} for _ in range(100000)] ds = Dataset.from_list(nums) ds = ds.filter(lambda x:x > 100, input_columns="k") print("start sort") ds = ds.sort("k") print("finish sort") ``` ### Expected behavior Is this a bug, or is it a misuse of the `sort` function? ### Environment info - `datasets` version: 2.20.0 - Platform: Linux-3.10.0-1127.19.1.el7.x86_64-x86_64-with-glibc2.17 - Python version: 3.10.13 - `huggingface_hub` version: 0.23.4 - PyArrow version: 16.1.0 - Pandas version: 2.2.2 - `fsspec` version: 2023.10.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7041/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7041/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7040
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7040/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7040/comments
https://api.github.com/repos/huggingface/datasets/issues/7040/events
https://github.com/huggingface/datasets/issues/7040
2,402,918,335
I_kwDODunzps6POZ-_
7,040
load `streaming=True` dataset with downloaded cache
{ "login": "wanghaoyucn", "id": 39429965, "node_id": "MDQ6VXNlcjM5NDI5OTY1", "avatar_url": "https://avatars.githubusercontent.com/u/39429965?v=4", "gravatar_id": "", "url": "https://api.github.com/users/wanghaoyucn", "html_url": "https://github.com/wanghaoyucn", "followers_url": "https://api.github.com/users/wanghaoyucn/followers", "following_url": "https://api.github.com/users/wanghaoyucn/following{/other_user}", "gists_url": "https://api.github.com/users/wanghaoyucn/gists{/gist_id}", "starred_url": "https://api.github.com/users/wanghaoyucn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wanghaoyucn/subscriptions", "organizations_url": "https://api.github.com/users/wanghaoyucn/orgs", "repos_url": "https://api.github.com/users/wanghaoyucn/repos", "events_url": "https://api.github.com/users/wanghaoyucn/events{/privacy}", "received_events_url": "https://api.github.com/users/wanghaoyucn/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "When you pass `streaming=True`, the cache is ignored. The remote data URL is used instead and the data is streamed from the remote server.", "Thanks for your reply! So is there any solution to get my expected behavior besides clone the whole repo ? Or could I adjust my script to load the downloaded arrow files and generate the dataset streamingly?" ]
2024-07-11T11:14:13
2024-07-11T14:11:56
null
NONE
null
null
null
### Describe the bug We build a dataset which contains several hdf5 files and write a script using `h5py` to generate the dataset. The hdf5 files are large and the processed dataset cache takes more disk space. So we hope to try streaming iterable dataset. Unfortunately, `h5py` can't convert a remote URL into a hdf5 file descriptor. So we use `fsspec` as an interface like below: ```python def _generate_examples(self, filepath, split): for file in filepath: with fsspec.open(file, "rb") as fs: with h5py.File(fs, "r") as fp: # for event_id in sorted(list(fp.keys())): event_ids = list(fp.keys()) ...... ``` ### Steps to reproduce the bug The `fsspec` works, but it takes 10+ min to print the first 10 examples, which is even longer than the downloading time. I'm not sure if it just caches the whole hdf5 file and generates the examples. ### Expected behavior So does the following make sense so far? 1. download the files ```python dataset = datasets.load('path/to/myscripts', split="train", name="event", trust_remote_code=True) ``` 2. load the iterable dataset faster (using the raw file cache at path `.cache/huggingface/datasets/downloads`) ```python dataset = datasets.load('path/to/myscripts', split="train", name="event", trust_remote_code=True, streaming=true) ``` I made some tests, but the code above can't get the expected result. I'm not sure if this is supported. I also find the issue #6327 . It seemed similar to mine, but I couldn't find a solution. ### Environment info - `datasets` = 2.18.0 - `h5py` = 3.10.0 - `fsspec` = 2023.10.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7040/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7040/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7039
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7039/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7039/comments
https://api.github.com/repos/huggingface/datasets/issues/7039/events
https://github.com/huggingface/datasets/pull/7039
2,402,403,390
PR_kwDODunzps51DgCY
7,039
Fix export to JSON when dataset larger than batch size
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7039). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "The test before confirms the bug.\r\n\r\nThere are different possible solutions to this issue:\r\n- the easiest would be to write multiple JSON files, one for each batch; this solution can be done in parallel if `num_proc` is passed\r\n- alternatively, we could tweak the writing and remove the extra `[` and `]` characters; this solution will only be valid if `orient=\"records\"`\r\n- others?" ]
2024-07-11T06:52:22
2024-07-11T07:27:58
null
MEMBER
null
true
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7039", "html_url": "https://github.com/huggingface/datasets/pull/7039", "diff_url": "https://github.com/huggingface/datasets/pull/7039.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7039.patch", "merged_at": null }
Fix export to JSON (`files=False`) when dataset larger than batch size. Fix #7037.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7039/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7039/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7038
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7038/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7038/comments
https://api.github.com/repos/huggingface/datasets/issues/7038/events
https://github.com/huggingface/datasets/issues/7038
2,402,081,227
I_kwDODunzps6PLNnL
7,038
Yes, can definitely elaborate:
{ "login": "Khaliq88", "id": 165458456, "node_id": "U_kgDOCdyyGA", "avatar_url": "https://avatars.githubusercontent.com/u/165458456?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Khaliq88", "html_url": "https://github.com/Khaliq88", "followers_url": "https://api.github.com/users/Khaliq88/followers", "following_url": "https://api.github.com/users/Khaliq88/following{/other_user}", "gists_url": "https://api.github.com/users/Khaliq88/gists{/gist_id}", "starred_url": "https://api.github.com/users/Khaliq88/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Khaliq88/subscriptions", "organizations_url": "https://api.github.com/users/Khaliq88/orgs", "repos_url": "https://api.github.com/users/Khaliq88/repos", "events_url": "https://api.github.com/users/Khaliq88/events{/privacy}", "received_events_url": "https://api.github.com/users/Khaliq88/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "This is the `datasets` repository, and the issue should be opened in the `transformers` repo instead." ]
2024-07-11T02:22:30
2024-07-11T05:28:39
2024-07-11T05:28:39
NONE
null
null
null
Yes, can definitely elaborate: Say I want to use HF Trainer with an arbitrary PyTorch optimizer (`AdamW` here just as an example). Then I should intuitively extend `Trainer` like: ```python class CustomOptimizerTrainer(Trainer): @staticmethod def get_optimizer_cls_and_kwargs(args: HfTrainingArguments, model=None) -> tuple[type[torch.optim.Optimizer], dict[str, Any]]: optimizer = torch.optim.AdamW optimizer_kwargs = { "lr": 4e-3, "betas": (0.9, 0.999), "weight_decay": 0.05, } return optimizer, optimizer_kwargs ``` However, this won't take effect, because `Trainer.create_optimizer` hardcodes the `Trainer` class name when calling `get_optimizer_cls_and_kwargs`: https://github.com/huggingface/transformers/blob/6c1d0b069de22d7ed8aa83f733c25045eea0585d/src/transformers/trainer.py#L1076 `CustomOptimizerTrainer.get_optimizer_cls_and_kwargs` will never be called. So I could either: - also override the entire `create_optimizer` and rewrite `Trainer.get_optimizer_cls_and_kwargs` to `self.get_optimizer_cls_and_kwargs` (overkill) - or monkey-patch (not ideal): ```python class CustomOptimizerTrainer(Trainer): # def get_optimizer_cls_and_kwargs ... def create_optimizer(self): trainer_get_optimizer_fn = Trainer.get_optimizer_cls_and_kwargs Trainer.get_optimizer_cls_and_kwargs = self.get_optimizer_cls_and_kwargs optimizer = super().create_optimizer() Trainer.get_optimizer_cls_and_kwargs = trainer_get_optimizer_fn return optimizer ``` But I think the best fix is to change `Trainer.get_optimizer_cls_and_kwargs` to `self.get_optimizer_cls_and_kwargs` in the original source of `Trainer.create_optimizer`. I also made `get_optimizer_cls_and_kwargs` an instance method instead of a static method, but that probably doesn't matter as much and can be reverted. It breaks the syntax of the tests. Please let me know if that's clearer and if you agree! Thanks! _Originally posted by @apoorvkh in https://github.com/huggingface/transformers/issues/31875#issuecomment-2221491647_
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7038/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7038/timeline
null
not_planned
false
https://api.github.com/repos/huggingface/datasets/issues/7037
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7037/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7037/comments
https://api.github.com/repos/huggingface/datasets/issues/7037/events
https://github.com/huggingface/datasets/issues/7037
2,400,192,419
I_kwDODunzps6PEAej
7,037
A bug of Dataset.to_json() function
{ "login": "LinglingGreat", "id": 26499566, "node_id": "MDQ6VXNlcjI2NDk5NTY2", "avatar_url": "https://avatars.githubusercontent.com/u/26499566?v=4", "gravatar_id": "", "url": "https://api.github.com/users/LinglingGreat", "html_url": "https://github.com/LinglingGreat", "followers_url": "https://api.github.com/users/LinglingGreat/followers", "following_url": "https://api.github.com/users/LinglingGreat/following{/other_user}", "gists_url": "https://api.github.com/users/LinglingGreat/gists{/gist_id}", "starred_url": "https://api.github.com/users/LinglingGreat/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/LinglingGreat/subscriptions", "organizations_url": "https://api.github.com/users/LinglingGreat/orgs", "repos_url": "https://api.github.com/users/LinglingGreat/repos", "events_url": "https://api.github.com/users/LinglingGreat/events{/privacy}", "received_events_url": "https://api.github.com/users/LinglingGreat/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892857, "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" } ]
open
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[ "Thanks for reporting, @LinglingGreat.\r\n\r\nI confirm this is a bug." ]
2024-07-10T09:11:22
2024-07-10T13:07:44
null
NONE
null
null
null
### Describe the bug When using the Dataset.to_json() function, an unexpected error occurs if the parameter is set to lines=False. The stored data should be in the form of a list, but it actually turns into multiple lists, which causes an error when reading the data again. The reason is that to_json() writes to the file in several segments based on the batch size. This is not a problem when lines=True, but it is incorrect when lines=False, because writing in several times will produce multiple lists(when len(dataset) > batch_size). ### Steps to reproduce the bug try this code: ```python from datasets import load_dataset import json train_dataset = load_dataset("Anthropic/hh-rlhf", data_dir="harmless-base")["train"] output_path = "./harmless-base_hftojs.json" print(len(train_dataset)) train_dataset.to_json(output_path, lines=False, force_ascii=False, indent=2) with open(output_path, encoding="utf-8") as f: data = json.loads(f.read()) ``` it raise error: json.decoder.JSONDecodeError: Extra data: line 4003 column 1 (char 1373709) Extra square brackets have appeared here: <img width="265" alt="image" src="https://github.com/huggingface/datasets/assets/26499566/81492332-386d-42e8-88d1-b6d4ae3682cc"> ### Expected behavior The code runs normally. ### Environment info datasets=2.20.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7037/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7037/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7036
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7036/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7036/comments
https://api.github.com/repos/huggingface/datasets/issues/7036/events
https://github.com/huggingface/datasets/pull/7036
2,400,035,672
PR_kwDODunzps507bZk
7,036
Fix doc generation when NamedSplit is used as parameter default value
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7036). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-07-10T07:58:46
2024-07-10T08:01:00
null
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7036", "html_url": "https://github.com/huggingface/datasets/pull/7036", "diff_url": "https://github.com/huggingface/datasets/pull/7036.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7036.patch", "merged_at": null }
Fix doc generation when `NamedSplit` is used as parameter default value. Fix #7035.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7036/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7036/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7035
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7035/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7035/comments
https://api.github.com/repos/huggingface/datasets/issues/7035/events
https://github.com/huggingface/datasets/issues/7035
2,400,021,225
I_kwDODunzps6PDWrp
7,035
Docs are not generated when a parameter defaults to a NamedSplit value
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "id": 4296013012, "node_id": "LA_kwDODunzps8AAAABAA_01A", "url": "https://api.github.com/repos/huggingface/datasets/labels/maintenance", "name": "maintenance", "color": "d4c5f9", "default": false, "description": "Maintenance tasks" } ]
open
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[]
2024-07-10T07:51:24
2024-07-10T07:53:08
null
MEMBER
null
null
null
While generating the docs, we get an error when some parameter defaults to a `NamedSplit` value, like: ```python def call_function(split=Split.TRAIN): ... ``` The error is: ValueError: Equality not supported between split train and <class 'inspect._empty'> See: https://github.com/huggingface/datasets/actions/runs/9869660902/job/27254359863?pr=7015 ``` Building the MDX files: 97%|█████████▋| 58/60 [00:00<00:00, 91.94it/s] Traceback (most recent call last): File "/home/runner/work/datasets/datasets/.venv/lib/python3.10/site-packages/doc_builder/build_doc.py", line 197, in build_mdx_files content, new_anchors, source_files, errors = resolve_autodoc( File "/home/runner/work/datasets/datasets/.venv/lib/python3.10/site-packages/doc_builder/build_doc.py", line 123, in resolve_autodoc doc = autodoc( File "/home/runner/work/datasets/datasets/.venv/lib/python3.10/site-packages/doc_builder/autodoc.py", line 499, in autodoc method_doc, check = document_object( File "/home/runner/work/datasets/datasets/.venv/lib/python3.10/site-packages/doc_builder/autodoc.py", line 395, in document_object signature = format_signature(obj) File "/home/runner/work/datasets/datasets/.venv/lib/python3.10/site-packages/doc_builder/autodoc.py", line 126, in format_signature if param.default != inspect._empty: File "/home/runner/work/datasets/datasets/.venv/lib/python3.10/site-packages/datasets/splits.py", line 136, in __ne__ return not self.__eq__(other) File "/home/runner/work/datasets/datasets/.venv/lib/python3.10/site-packages/datasets/splits.py", line 379, in __eq__ raise ValueError(f"Equality not supported between split {self} and {other}") ValueError: Equality not supported between split train and <class 'inspect._empty'> The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/runner/work/datasets/datasets/.venv/bin/doc-builder", line 8, in <module> sys.exit(main()) File "/home/runner/work/datasets/datasets/.venv/lib/python3.10/site-packages/doc_builder/commands/doc_builder_cli.py", line 47, in main args.func(args) File "/home/runner/work/datasets/datasets/.venv/lib/python3.10/site-packages/doc_builder/commands/build.py", line 102, in build_command build_doc( File "/home/runner/work/datasets/datasets/.venv/lib/python3.10/site-packages/doc_builder/build_doc.py", line 367, in build_doc anchors_mapping, source_files_mapping = build_mdx_files( File "/home/runner/work/datasets/datasets/.venv/lib/python3.10/site-packages/doc_builder/build_doc.py", line 230, in build_mdx_files raise type(e)(f"There was an error when converting {file} to the MDX format.\n" + e.args[0]) from e ValueError: There was an error when converting ../datasets/docs/source/package_reference/main_classes.mdx to the MDX format. Equality not supported between split train and <class 'inspect._empty'> ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7035/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7035/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7034
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7034/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7034/comments
https://api.github.com/repos/huggingface/datasets/issues/7034/events
https://github.com/huggingface/datasets/pull/7034
2,397,525,974
PR_kwDODunzps50y-ya
7,034
chore: fix typos in docs
{ "login": "hattizai", "id": 150505746, "node_id": "U_kgDOCPiJEg", "avatar_url": "https://avatars.githubusercontent.com/u/150505746?v=4", "gravatar_id": "", "url": "https://api.github.com/users/hattizai", "html_url": "https://github.com/hattizai", "followers_url": "https://api.github.com/users/hattizai/followers", "following_url": "https://api.github.com/users/hattizai/following{/other_user}", "gists_url": "https://api.github.com/users/hattizai/gists{/gist_id}", "starred_url": "https://api.github.com/users/hattizai/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hattizai/subscriptions", "organizations_url": "https://api.github.com/users/hattizai/orgs", "repos_url": "https://api.github.com/users/hattizai/repos", "events_url": "https://api.github.com/users/hattizai/events{/privacy}", "received_events_url": "https://api.github.com/users/hattizai/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-07-09T08:35:05
2024-07-09T13:32:05
null
NONE
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7034", "html_url": "https://github.com/huggingface/datasets/pull/7034", "diff_url": "https://github.com/huggingface/datasets/pull/7034.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7034.patch", "merged_at": null }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7034/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7034/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7033
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7033/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7033/comments
https://api.github.com/repos/huggingface/datasets/issues/7033/events
https://github.com/huggingface/datasets/issues/7033
2,397,419,768
I_kwDODunzps6O5bj4
7,033
`from_generator` does not allow to specify the split name
{ "login": "pminervini", "id": 227357, "node_id": "MDQ6VXNlcjIyNzM1Nw==", "avatar_url": "https://avatars.githubusercontent.com/u/227357?v=4", "gravatar_id": "", "url": "https://api.github.com/users/pminervini", "html_url": "https://github.com/pminervini", "followers_url": "https://api.github.com/users/pminervini/followers", "following_url": "https://api.github.com/users/pminervini/following{/other_user}", "gists_url": "https://api.github.com/users/pminervini/gists{/gist_id}", "starred_url": "https://api.github.com/users/pminervini/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/pminervini/subscriptions", "organizations_url": "https://api.github.com/users/pminervini/orgs", "repos_url": "https://api.github.com/users/pminervini/repos", "events_url": "https://api.github.com/users/pminervini/events{/privacy}", "received_events_url": "https://api.github.com/users/pminervini/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Thanks for reporting, @pminervini.\r\n\r\nI agree we should give the option to define the split name.\r\n\r\nIndeed, there is a PR that addresses precisely this issue:\r\n- #7015\r\n\r\nI am reviewing it." ]
2024-07-09T07:47:58
2024-07-09T08:05:23
null
CONTRIBUTOR
null
null
null
### Describe the bug I'm building train, dev, and test using `from_generator`; however, in all three cases, the logger prints `Generating train split:` It's not possible to change the split name since it seems to be hardcoded: https://github.com/huggingface/datasets/blob/main/src/datasets/packaged_modules/generator/generator.py ### Steps to reproduce the bug ``` In [1]: from datasets import Dataset In [2]: def gen(): ...: yield {"pokemon": "bulbasaur", "type": "grass"} ...: In [3]: ds = Dataset.from_generator(gen) Generating train split: 1 examples [00:00, 133.89 examples/s] ``` ### Expected behavior It should be possible to specify any split name ### Environment info - `datasets` version: 2.19.2 - Platform: macOS-10.16-x86_64-i386-64bit - Python version: 3.8.5 - `huggingface_hub` version: 0.23.3 - PyArrow version: 15.0.0 - Pandas version: 2.0.3 - `fsspec` version: 2023.10.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7033/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7033/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7032
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7032/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7032/comments
https://api.github.com/repos/huggingface/datasets/issues/7032/events
https://github.com/huggingface/datasets/pull/7032
2,395,531,699
PR_kwDODunzps50sJTq
7,032
Register `.zstd` extension for zstd-compressed files
{ "login": "polinaeterna", "id": 16348744, "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "gravatar_id": "", "url": "https://api.github.com/users/polinaeterna", "html_url": "https://github.com/polinaeterna", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "repos_url": "https://api.github.com/users/polinaeterna/repos", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7032). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "@albertvillanova hm I don't know tbh, it's just that \"mlfoundations/dclm-baseline-1.0\" dataset contains [files](https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0/tree/main/global-shard_01_of_10/local-shard_0_of_10) with this extension and these files seem to be valid ", "not sure why CI is failing but seems to be unrelated to this pr? can I merge @lhoestq @albertvillanova ?", "yes you can merge, the CI failure is unrelated (surely an issue with hub-ci)", "ah why not, you could try opening a PR\r\n\r\nbtw there is a channel with them at (internal) https://app.slack.com/client/T1RCG4490/C079AKTV11P if you want to let them know", "@lhoestq, your previous comment was addressed to me or Polina?\r\n\r\n@polinaeterna let me know if it is OK for you.", "I opened https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0/discussions/7", "Should we close this PR then?" ]
2024-07-08T12:39:50
2024-07-12T15:07:03
2024-07-12T15:07:03
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7032", "html_url": "https://github.com/huggingface/datasets/pull/7032", "diff_url": "https://github.com/huggingface/datasets/pull/7032.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7032.patch", "merged_at": null }
For example, https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0 dataset files have `.zstd` extension which is currently ignored (only `.zst` is registered).
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7032/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7032/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7031
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7031/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7031/comments
https://api.github.com/repos/huggingface/datasets/issues/7031/events
https://github.com/huggingface/datasets/issues/7031
2,395,401,692
I_kwDODunzps6Oxu3c
7,031
CI quality is broken: use ruff check instead
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[]
2024-07-08T11:42:24
2024-07-08T11:47:29
2024-07-08T11:47:29
MEMBER
null
null
null
CI quality is broken: https://github.com/huggingface/datasets/actions/runs/9838873879/job/27159697027 ``` error: `ruff <path>` has been removed. Use `ruff check <path>` instead. ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7031/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7031/timeline
null
not_planned
false
https://api.github.com/repos/huggingface/datasets/issues/7030
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7030/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7030/comments
https://api.github.com/repos/huggingface/datasets/issues/7030/events
https://github.com/huggingface/datasets/issues/7030
2,393,411,631
I_kwDODunzps6OqJAv
7,030
Add option to disable progress bar when reading a dataset ("Loading dataset from disk")
{ "login": "yuvalkirstain", "id": 57996478, "node_id": "MDQ6VXNlcjU3OTk2NDc4", "avatar_url": "https://avatars.githubusercontent.com/u/57996478?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yuvalkirstain", "html_url": "https://github.com/yuvalkirstain", "followers_url": "https://api.github.com/users/yuvalkirstain/followers", "following_url": "https://api.github.com/users/yuvalkirstain/following{/other_user}", "gists_url": "https://api.github.com/users/yuvalkirstain/gists{/gist_id}", "starred_url": "https://api.github.com/users/yuvalkirstain/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yuvalkirstain/subscriptions", "organizations_url": "https://api.github.com/users/yuvalkirstain/orgs", "repos_url": "https://api.github.com/users/yuvalkirstain/repos", "events_url": "https://api.github.com/users/yuvalkirstain/events{/privacy}", "received_events_url": "https://api.github.com/users/yuvalkirstain/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
closed
false
null
[]
null
[ "You can disable progress bars for all of `datasets` with `disable_progress_bars`. [Link](https://huggingface.co/docs/datasets/en/package_reference/utilities#datasets.enable_progress_bars)\r\n\r\nSo you could do something like:\r\n\r\n```python\r\nfrom datasets import load_from_disk, enable_progress_bars, disable_progress_bars\r\n\r\ndisable_progress_bars()\r\n# Your code\r\nload_from_disk(....)\r\n\r\nenable_progress_bars()\r\n```\r\n", "Thank you! Closing the issue." ]
2024-07-06T05:43:37
2024-07-13T14:35:59
2024-07-13T14:35:59
NONE
null
null
null
### Feature request Add an option in load_from_disk to disable the progress bar even if the number of files is larger than 16. ### Motivation I am reading a lot of datasets that it creates lots of logs. <img width="1432" alt="image" src="https://github.com/huggingface/datasets/assets/57996478/8d4bbf03-6b89-44b6-937c-932f01b4eb2a"> ### Your contribution Seems like an easy fix to make. I can create a PR if necessary.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7030/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7030/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7029
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7029/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7029/comments
https://api.github.com/repos/huggingface/datasets/issues/7029/events
https://github.com/huggingface/datasets/issues/7029
2,391,366,696
I_kwDODunzps6OiVwo
7,029
load_dataset on AWS lambda throws OSError(30, 'Read-only file system') error
{ "login": "sugam-nexusflow", "id": 171606538, "node_id": "U_kgDOCjqCCg", "avatar_url": "https://avatars.githubusercontent.com/u/171606538?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sugam-nexusflow", "html_url": "https://github.com/sugam-nexusflow", "followers_url": "https://api.github.com/users/sugam-nexusflow/followers", "following_url": "https://api.github.com/users/sugam-nexusflow/following{/other_user}", "gists_url": "https://api.github.com/users/sugam-nexusflow/gists{/gist_id}", "starred_url": "https://api.github.com/users/sugam-nexusflow/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sugam-nexusflow/subscriptions", "organizations_url": "https://api.github.com/users/sugam-nexusflow/orgs", "repos_url": "https://api.github.com/users/sugam-nexusflow/repos", "events_url": "https://api.github.com/users/sugam-nexusflow/events{/privacy}", "received_events_url": "https://api.github.com/users/sugam-nexusflow/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "hi ! can you share the full stack trace ? this should help locate what files is not written in the cache_dir" ]
2024-07-04T19:15:16
2024-07-17T12:44:03
null
NONE
null
null
null
### Describe the bug I'm using AWS lambda to run a python application. I run the `load_dataset` function with cache_dir="/tmp" and is still throws the OSError(30, 'Read-only file system') error. Is even updated all the HF envs to point to /tmp dir but the issue still persists. I can confirm that the I can write to /tmp directory. ### Steps to reproduce the bug ```python d = load_dataset( path=hugging_face_link, split=split, token=token, cache_dir="/tmp/hugging_face_cache", ) ``` ### Expected behavior Everything written to the file system as part of the load_datasets function should be in the /tmp directory. ### Environment info datasets version: 2.16.1 Platform: Linux-5.10.216-225.855.amzn2.x86_64-x86_64-with-glibc2.26 Python version: 3.11.9 huggingface_hub version: 0.19.4 PyArrow version: 16.1.0 Pandas version: 2.2.2 fsspec version: 2023.10.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7029/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7029/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7028
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7028/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7028/comments
https://api.github.com/repos/huggingface/datasets/issues/7028/events
https://github.com/huggingface/datasets/pull/7028
2,391,077,531
PR_kwDODunzps50dQ1w
7,028
Fix ci
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7028). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005748 / 0.011353 (-0.005605) | 0.004109 / 0.011008 (-0.006899) | 0.067017 / 0.038508 (0.028509) | 0.031950 / 0.023109 (0.008841) | 0.239939 / 0.275898 (-0.035959) | 0.266339 / 0.323480 (-0.057141) | 0.003176 / 0.007986 (-0.004809) | 0.003556 / 0.004328 (-0.000773) | 0.050725 / 0.004250 (0.046475) | 0.047711 / 0.037052 (0.010658) | 0.251048 / 0.258489 (-0.007441) | 0.287049 / 0.293841 (-0.006792) | 0.029919 / 0.128546 (-0.098627) | 0.012562 / 0.075646 (-0.063085) | 0.212903 / 0.419271 (-0.206369) | 0.036570 / 0.043533 (-0.006963) | 0.240975 / 0.255139 (-0.014164) | 0.266473 / 0.283200 (-0.016726) | 0.019959 / 0.141683 (-0.121724) | 1.152224 / 1.452155 (-0.299931) | 1.186046 / 1.492716 (-0.306671) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095836 / 0.018006 (0.077829) | 0.303402 / 0.000490 (0.302913) | 0.000210 / 0.000200 (0.000010) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020552 / 0.037411 (-0.016859) | 0.063619 / 0.014526 (0.049093) | 0.076969 / 0.176557 (-0.099588) | 0.123368 / 0.737135 (-0.613767) | 0.077005 / 0.296338 (-0.219334) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282005 / 0.215209 (0.066796) | 2.794144 / 2.077655 (0.716489) | 1.463569 / 1.504120 (-0.040551) | 1.334295 / 1.541195 (-0.206899) | 1.387198 / 1.468490 (-0.081292) | 0.707654 / 4.584777 (-3.877123) | 2.341698 / 3.745712 (-1.404014) | 2.865131 / 5.269862 (-2.404731) | 1.945168 / 4.565676 (-2.620509) | 0.077926 / 0.424275 (-0.346349) | 0.005470 / 0.007607 (-0.002137) | 0.336498 / 0.226044 (0.110454) | 3.330262 / 2.268929 (1.061334) | 1.865574 / 55.444624 (-53.579050) | 1.536932 / 6.876477 (-5.339545) | 1.720960 / 2.142072 (-0.421113) | 0.794753 / 4.805227 (-4.010475) | 0.133491 / 6.500664 (-6.367173) | 0.042437 / 0.075469 (-0.033032) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.976788 / 1.841788 (-0.865000) | 11.895137 / 8.074308 (3.820829) | 9.211969 / 10.191392 (-0.979423) | 0.141798 / 0.680424 (-0.538626) | 0.014354 / 0.534201 (-0.519847) | 0.306044 / 0.579283 (-0.273239) | 0.265016 / 0.434364 (-0.169348) | 0.340877 / 0.540337 (-0.199460) | 0.470449 / 1.386936 (-0.916487) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006134 / 0.011353 (-0.005219) | 0.004023 / 0.011008 (-0.006985) | 0.050419 / 0.038508 (0.011911) | 0.033853 / 0.023109 (0.010744) | 0.266799 / 0.275898 (-0.009099) | 0.291248 / 0.323480 (-0.032232) | 0.004474 / 0.007986 (-0.003511) | 0.002847 / 0.004328 (-0.001481) | 0.049895 / 0.004250 (0.045645) | 0.041160 / 0.037052 (0.004108) | 0.278818 / 0.258489 (0.020329) | 0.314027 / 0.293841 (0.020186) | 0.032303 / 0.128546 (-0.096243) | 0.012367 / 0.075646 (-0.063279) | 0.061495 / 0.419271 (-0.357776) | 0.033512 / 0.043533 (-0.010021) | 0.266168 / 0.255139 (0.011029) | 0.283129 / 0.283200 (-0.000071) | 0.018674 / 0.141683 (-0.123009) | 1.124453 / 1.452155 (-0.327701) | 1.164527 / 1.492716 (-0.328189) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098522 / 0.018006 (0.080516) | 0.315069 / 0.000490 (0.314579) | 0.000202 / 0.000200 (0.000002) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022809 / 0.037411 (-0.014602) | 0.078409 / 0.014526 (0.063883) | 0.088558 / 0.176557 (-0.087998) | 0.130004 / 0.737135 (-0.607131) | 0.090507 / 0.296338 (-0.205832) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291323 / 0.215209 (0.076114) | 2.836363 / 2.077655 (0.758708) | 1.548889 / 1.504120 (0.044769) | 1.423857 / 1.541195 (-0.117337) | 1.461667 / 1.468490 (-0.006823) | 0.714956 / 4.584777 (-3.869821) | 0.948170 / 3.745712 (-2.797542) | 3.036151 / 5.269862 (-2.233711) | 1.923824 / 4.565676 (-2.641853) | 0.078002 / 0.424275 (-0.346273) | 0.005198 / 0.007607 (-0.002409) | 0.337007 / 0.226044 (0.110963) | 3.310255 / 2.268929 (1.041327) | 1.910371 / 55.444624 (-53.534253) | 1.619855 / 6.876477 (-5.256622) | 1.682093 / 2.142072 (-0.459979) | 0.789903 / 4.805227 (-4.015324) | 0.132117 / 6.500664 (-6.368547) | 0.041312 / 0.075469 (-0.034157) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.997658 / 1.841788 (-0.844130) | 12.447878 / 8.074308 (4.373570) | 10.277662 / 10.191392 (0.086270) | 0.143580 / 0.680424 (-0.536844) | 0.016472 / 0.534201 (-0.517729) | 0.307235 / 0.579283 (-0.272048) | 0.125469 / 0.434364 (-0.308895) | 0.339525 / 0.540337 (-0.200813) | 0.427371 / 1.386936 (-0.959566) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#689447f8c86f777829a4db9ccc5d8133c12ec84c \"CML watermark\")\n" ]
2024-07-04T15:11:08
2024-07-04T15:26:35
2024-07-04T15:19:16
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7028", "html_url": "https://github.com/huggingface/datasets/pull/7028", "diff_url": "https://github.com/huggingface/datasets/pull/7028.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7028.patch", "merged_at": "2024-07-04T15:19:16" }
...after last pr errors
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7028/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7028/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7027
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7027/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7027/comments
https://api.github.com/repos/huggingface/datasets/issues/7027/events
https://github.com/huggingface/datasets/pull/7027
2,391,013,330
PR_kwDODunzps50dCsE
7,027
Missing line from previous pr
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7027). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005612 / 0.011353 (-0.005741) | 0.004023 / 0.011008 (-0.006985) | 0.065578 / 0.038508 (0.027070) | 0.030476 / 0.023109 (0.007367) | 0.237131 / 0.275898 (-0.038767) | 0.269388 / 0.323480 (-0.054092) | 0.003364 / 0.007986 (-0.004622) | 0.002938 / 0.004328 (-0.001390) | 0.050867 / 0.004250 (0.046617) | 0.049456 / 0.037052 (0.012403) | 0.249587 / 0.258489 (-0.008902) | 0.291132 / 0.293841 (-0.002709) | 0.029373 / 0.128546 (-0.099174) | 0.012266 / 0.075646 (-0.063380) | 0.206239 / 0.419271 (-0.213033) | 0.037192 / 0.043533 (-0.006340) | 0.244902 / 0.255139 (-0.010237) | 0.269779 / 0.283200 (-0.013421) | 0.019870 / 0.141683 (-0.121813) | 1.123697 / 1.452155 (-0.328458) | 1.181256 / 1.492716 (-0.311460) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.108535 / 0.018006 (0.090529) | 0.317838 / 0.000490 (0.317348) | 0.000216 / 0.000200 (0.000016) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019097 / 0.037411 (-0.018315) | 0.063836 / 0.014526 (0.049310) | 0.075446 / 0.176557 (-0.101111) | 0.124503 / 0.737135 (-0.612632) | 0.077730 / 0.296338 (-0.218608) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284688 / 0.215209 (0.069479) | 2.817832 / 2.077655 (0.740178) | 1.487342 / 1.504120 (-0.016778) | 1.354037 / 1.541195 (-0.187158) | 1.426904 / 1.468490 (-0.041586) | 0.728754 / 4.584777 (-3.856022) | 2.361140 / 3.745712 (-1.384573) | 2.926215 / 5.269862 (-2.343647) | 1.981767 / 4.565676 (-2.583909) | 0.079278 / 0.424275 (-0.344997) | 0.005567 / 0.007607 (-0.002040) | 0.336590 / 0.226044 (0.110546) | 3.371062 / 2.268929 (1.102134) | 1.845343 / 55.444624 (-53.599282) | 1.537699 / 6.876477 (-5.338777) | 1.731407 / 2.142072 (-0.410665) | 0.796148 / 4.805227 (-4.009079) | 0.133830 / 6.500664 (-6.366835) | 0.043117 / 0.075469 (-0.032352) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.980786 / 1.841788 (-0.861001) | 12.653553 / 8.074308 (4.579245) | 9.402636 / 10.191392 (-0.788756) | 0.143756 / 0.680424 (-0.536667) | 0.014896 / 0.534201 (-0.519304) | 0.328796 / 0.579283 (-0.250487) | 0.275108 / 0.434364 (-0.159255) | 0.343397 / 0.540337 (-0.196940) | 0.472301 / 1.386936 (-0.914635) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005882 / 0.011353 (-0.005471) | 0.003982 / 0.011008 (-0.007026) | 0.050484 / 0.038508 (0.011976) | 0.035217 / 0.023109 (0.012108) | 0.271683 / 0.275898 (-0.004215) | 0.291498 / 0.323480 (-0.031982) | 0.004429 / 0.007986 (-0.003557) | 0.002928 / 0.004328 (-0.001401) | 0.049386 / 0.004250 (0.045136) | 0.040868 / 0.037052 (0.003815) | 0.280968 / 0.258489 (0.022479) | 0.314880 / 0.293841 (0.021039) | 0.032590 / 0.128546 (-0.095956) | 0.012319 / 0.075646 (-0.063327) | 0.060354 / 0.419271 (-0.358917) | 0.034138 / 0.043533 (-0.009394) | 0.267491 / 0.255139 (0.012352) | 0.283077 / 0.283200 (-0.000123) | 0.017784 / 0.141683 (-0.123899) | 1.154835 / 1.452155 (-0.297320) | 1.179271 / 1.492716 (-0.313446) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.100519 / 0.018006 (0.082513) | 0.309043 / 0.000490 (0.308553) | 0.000222 / 0.000200 (0.000022) | 0.000055 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024056 / 0.037411 (-0.013356) | 0.077810 / 0.014526 (0.063284) | 0.092682 / 0.176557 (-0.083875) | 0.132101 / 0.737135 (-0.605034) | 0.091986 / 0.296338 (-0.204352) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298186 / 0.215209 (0.082977) | 2.905134 / 2.077655 (0.827479) | 1.552364 / 1.504120 (0.048245) | 1.424644 / 1.541195 (-0.116551) | 1.457667 / 1.468490 (-0.010823) | 0.717606 / 4.584777 (-3.867171) | 0.944470 / 3.745712 (-2.801242) | 3.056236 / 5.269862 (-2.213626) | 1.946453 / 4.565676 (-2.619223) | 0.080525 / 0.424275 (-0.343750) | 0.005235 / 0.007607 (-0.002372) | 0.348561 / 0.226044 (0.122516) | 3.449350 / 2.268929 (1.180421) | 1.930165 / 55.444624 (-53.514459) | 1.620883 / 6.876477 (-5.255593) | 1.671963 / 2.142072 (-0.470109) | 0.801978 / 4.805227 (-4.003249) | 0.134494 / 6.500664 (-6.366170) | 0.041888 / 0.075469 (-0.033581) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.005961 / 1.841788 (-0.835826) | 12.687638 / 8.074308 (4.613330) | 10.398730 / 10.191392 (0.207338) | 0.134503 / 0.680424 (-0.545920) | 0.015839 / 0.534201 (-0.518362) | 0.307465 / 0.579283 (-0.271819) | 0.130805 / 0.434364 (-0.303559) | 0.349079 / 0.540337 (-0.191259) | 0.437609 / 1.386936 (-0.949327) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#cc6ac9e5f70811a450198203ddc077c0c7bff206 \"CML watermark\")\n" ]
2024-07-04T14:34:29
2024-07-04T14:40:46
2024-07-04T14:34:36
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7027", "html_url": "https://github.com/huggingface/datasets/pull/7027", "diff_url": "https://github.com/huggingface/datasets/pull/7027.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7027.patch", "merged_at": "2024-07-04T14:34:36" }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7027/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7027/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7026
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7026/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7026/comments
https://api.github.com/repos/huggingface/datasets/issues/7026/events
https://github.com/huggingface/datasets/pull/7026
2,390,983,889
PR_kwDODunzps50c8Mf
7,026
Fix check_library_imports
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7026). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005637 / 0.011353 (-0.005716) | 0.003967 / 0.011008 (-0.007041) | 0.064187 / 0.038508 (0.025679) | 0.031356 / 0.023109 (0.008246) | 0.239203 / 0.275898 (-0.036695) | 0.261033 / 0.323480 (-0.062447) | 0.003256 / 0.007986 (-0.004730) | 0.003416 / 0.004328 (-0.000913) | 0.049673 / 0.004250 (0.045423) | 0.047021 / 0.037052 (0.009969) | 0.252146 / 0.258489 (-0.006343) | 0.283663 / 0.293841 (-0.010178) | 0.030223 / 0.128546 (-0.098324) | 0.012342 / 0.075646 (-0.063304) | 0.213061 / 0.419271 (-0.206211) | 0.036867 / 0.043533 (-0.006665) | 0.242589 / 0.255139 (-0.012550) | 0.265584 / 0.283200 (-0.017616) | 0.019149 / 0.141683 (-0.122533) | 1.108909 / 1.452155 (-0.343246) | 1.148484 / 1.492716 (-0.344232) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096815 / 0.018006 (0.078809) | 0.299633 / 0.000490 (0.299143) | 0.000212 / 0.000200 (0.000013) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018947 / 0.037411 (-0.018464) | 0.061640 / 0.014526 (0.047114) | 0.074621 / 0.176557 (-0.101935) | 0.120830 / 0.737135 (-0.616305) | 0.075472 / 0.296338 (-0.220866) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284626 / 0.215209 (0.069417) | 2.805299 / 2.077655 (0.727644) | 1.469879 / 1.504120 (-0.034241) | 1.355524 / 1.541195 (-0.185671) | 1.388246 / 1.468490 (-0.080244) | 0.726740 / 4.584777 (-3.858037) | 2.387461 / 3.745712 (-1.358251) | 2.834137 / 5.269862 (-2.435724) | 1.915750 / 4.565676 (-2.649927) | 0.079223 / 0.424275 (-0.345052) | 0.005489 / 0.007607 (-0.002118) | 0.335517 / 0.226044 (0.109473) | 3.299332 / 2.268929 (1.030403) | 1.817726 / 55.444624 (-53.626898) | 1.520834 / 6.876477 (-5.355642) | 1.696285 / 2.142072 (-0.445788) | 0.815147 / 4.805227 (-3.990080) | 0.136566 / 6.500664 (-6.364098) | 0.043482 / 0.075469 (-0.031987) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.981382 / 1.841788 (-0.860406) | 11.472890 / 8.074308 (3.398582) | 9.274181 / 10.191392 (-0.917211) | 0.133051 / 0.680424 (-0.547373) | 0.015417 / 0.534201 (-0.518784) | 0.306098 / 0.579283 (-0.273185) | 0.261424 / 0.434364 (-0.172940) | 0.338946 / 0.540337 (-0.201391) | 0.460776 / 1.386936 (-0.926160) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005806 / 0.011353 (-0.005547) | 0.004274 / 0.011008 (-0.006734) | 0.050831 / 0.038508 (0.012323) | 0.033717 / 0.023109 (0.010607) | 0.280561 / 0.275898 (0.004663) | 0.302437 / 0.323480 (-0.021043) | 0.004543 / 0.007986 (-0.003442) | 0.002905 / 0.004328 (-0.001424) | 0.048897 / 0.004250 (0.044646) | 0.041089 / 0.037052 (0.004037) | 0.291439 / 0.258489 (0.032950) | 0.319762 / 0.293841 (0.025921) | 0.033178 / 0.128546 (-0.095368) | 0.012336 / 0.075646 (-0.063311) | 0.061033 / 0.419271 (-0.358238) | 0.034018 / 0.043533 (-0.009515) | 0.278514 / 0.255139 (0.023375) | 0.295648 / 0.283200 (0.012448) | 0.018621 / 0.141683 (-0.123062) | 1.160250 / 1.452155 (-0.291905) | 1.183867 / 1.492716 (-0.308850) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096354 / 0.018006 (0.078348) | 0.301907 / 0.000490 (0.301417) | 0.000205 / 0.000200 (0.000006) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022357 / 0.037411 (-0.015054) | 0.076218 / 0.014526 (0.061692) | 0.088172 / 0.176557 (-0.088385) | 0.128621 / 0.737135 (-0.608515) | 0.089250 / 0.296338 (-0.207089) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292633 / 0.215209 (0.077424) | 2.862456 / 2.077655 (0.784801) | 1.581967 / 1.504120 (0.077847) | 1.459822 / 1.541195 (-0.081373) | 1.475896 / 1.468490 (0.007406) | 0.728550 / 4.584777 (-3.856226) | 0.958819 / 3.745712 (-2.786893) | 3.011074 / 5.269862 (-2.258788) | 1.934393 / 4.565676 (-2.631283) | 0.079831 / 0.424275 (-0.344444) | 0.005249 / 0.007607 (-0.002358) | 0.346334 / 0.226044 (0.120290) | 3.438979 / 2.268929 (1.170051) | 1.935567 / 55.444624 (-53.509057) | 1.648723 / 6.876477 (-5.227754) | 1.685489 / 2.142072 (-0.456583) | 0.800992 / 4.805227 (-4.004236) | 0.139388 / 6.500664 (-6.361276) | 0.042518 / 0.075469 (-0.032951) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.031715 / 1.841788 (-0.810072) | 12.486711 / 8.074308 (4.412403) | 10.430191 / 10.191392 (0.238799) | 0.146884 / 0.680424 (-0.533540) | 0.015735 / 0.534201 (-0.518466) | 0.303938 / 0.579283 (-0.275346) | 0.140374 / 0.434364 (-0.293989) | 0.338508 / 0.540337 (-0.201830) | 0.429551 / 1.386936 (-0.957385) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e32336195f3ea69988148df5f129f9f59d3ab595 \"CML watermark\")\n" ]
2024-07-04T14:18:38
2024-07-04T14:28:36
2024-07-04T14:20:02
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7026", "html_url": "https://github.com/huggingface/datasets/pull/7026", "diff_url": "https://github.com/huggingface/datasets/pull/7026.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7026.patch", "merged_at": "2024-07-04T14:20:02" }
move it to after the `trust_remote_code` check Note that it only affects local datasets that already exist on disk, not datasets loaded from HF directly
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7026/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7026/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7025
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7025/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7025/comments
https://api.github.com/repos/huggingface/datasets/issues/7025/events
https://github.com/huggingface/datasets/pull/7025
2,390,488,546
PR_kwDODunzps50bSyD
7,025
feat: support non streamable arrow file binary format
{ "login": "kmehant", "id": 15800200, "node_id": "MDQ6VXNlcjE1ODAwMjAw", "avatar_url": "https://avatars.githubusercontent.com/u/15800200?v=4", "gravatar_id": "", "url": "https://api.github.com/users/kmehant", "html_url": "https://github.com/kmehant", "followers_url": "https://api.github.com/users/kmehant/followers", "following_url": "https://api.github.com/users/kmehant/following{/other_user}", "gists_url": "https://api.github.com/users/kmehant/gists{/gist_id}", "starred_url": "https://api.github.com/users/kmehant/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kmehant/subscriptions", "organizations_url": "https://api.github.com/users/kmehant/orgs", "repos_url": "https://api.github.com/users/kmehant/repos", "events_url": "https://api.github.com/users/kmehant/events{/privacy}", "received_events_url": "https://api.github.com/users/kmehant/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "requesting review - @albertvillanova @lhoestq ", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7025). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Thank you for the review.\r\n\r\n> Before we merge could you also add a test in tests/packaged_modules/test_arrow.py ?\r\n\r\n> I noticed it's pretty empty right now compared to test_json.py or test_csv.py though, maybe I can take care of it next week if needed\r\n\r\n@lhoestq Would you like to take that up? since it needs adding some test data and I see no supportive examples for similar data formats - parquet pandas etc. Thanks", "@lhoestq rebased the PR, It would be really helpful to have this feature into datasets, please let me know if there is anything pending on this PR, thanks. " ]
2024-07-04T10:11:12
2024-07-17T17:16:13
null
NONE
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7025", "html_url": "https://github.com/huggingface/datasets/pull/7025", "diff_url": "https://github.com/huggingface/datasets/pull/7025.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7025.patch", "merged_at": null }
Support Arrow files (`.arrow`) that are in non streamable binary file formats.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7025/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7025/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7024
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7024/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7024/comments
https://api.github.com/repos/huggingface/datasets/issues/7024/events
https://github.com/huggingface/datasets/issues/7024
2,390,141,626
I_kwDODunzps6Odqq6
7,024
Streaming dataset not returning data
{ "login": "johnwee1", "id": 91670254, "node_id": "U_kgDOBXbG7g", "avatar_url": "https://avatars.githubusercontent.com/u/91670254?v=4", "gravatar_id": "", "url": "https://api.github.com/users/johnwee1", "html_url": "https://github.com/johnwee1", "followers_url": "https://api.github.com/users/johnwee1/followers", "following_url": "https://api.github.com/users/johnwee1/following{/other_user}", "gists_url": "https://api.github.com/users/johnwee1/gists{/gist_id}", "starred_url": "https://api.github.com/users/johnwee1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/johnwee1/subscriptions", "organizations_url": "https://api.github.com/users/johnwee1/orgs", "repos_url": "https://api.github.com/users/johnwee1/repos", "events_url": "https://api.github.com/users/johnwee1/events{/privacy}", "received_events_url": "https://api.github.com/users/johnwee1/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-07-04T07:21:47
2024-07-04T07:21:47
null
NONE
null
null
null
### Describe the bug I'm deciding to post here because I'm still not sure what the issue is, or if I am using IterableDatasets wrongly. I'm following the guide on here https://huggingface.co/learn/cookbook/en/fine_tuning_code_llm_on_single_gpu pretty much to a tee and have verified that it works when I'm fine-tuning on the provided dataset. However, I'm doing some data preprocessing steps (filtering out entries), when I try to swap out the dataset for mine, it fails to train. However, I eventually fixed this by simply setting `stream=False` in `load_dataset`. Coud this be some sort of network / firewall issue I'm facing? ### Steps to reproduce the bug I made a post with greater description about how I reproduced this problem before I found my workaround: https://discuss.huggingface.co/t/problem-with-custom-iterator-of-streaming-dataset-not-returning-anything/94551 Here is the problematic dataset snippet, which works when streaming=False (and with buffer keyword removed from shuffle) ``` commitpackft = load_dataset( "chargoddard/commitpack-ft-instruct", split="train", streaming=True ).filter(lambda example: example["language"] == "Python") def form_template(example): """Forms a template for each example following the alpaca format for CommitPack""" example["content"] = ( "### Human: " + example["instruction"] + " " + example["input"] + " ### Assistant: " + example["output"] ) return example dataset = commitpackft.map( form_template, remove_columns=["id", "language", "license", "instruction", "input", "output"], ).shuffle( seed=42, buffer_size=10000 ) # remove everything since its all inside "content" now validation_data = dataset.take(4000) train_data = dataset.skip(4000) ``` The annoying part about this is that it only fails during training and I don't know when it will fail, except that it always fails during evaluation. ### Expected behavior The expected behavior is that I should be able to get something from the iterator when called instead of getting nothing / stuck in a loop somewhere. ### Environment info - `datasets` version: 2.20.0 - Platform: Linux-5.4.0-121-generic-x86_64-with-glibc2.31 - Python version: 3.11.7 - `huggingface_hub` version: 0.23.4 - PyArrow version: 16.1.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.5.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7024/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7024/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7023
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7023/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7023/comments
https://api.github.com/repos/huggingface/datasets/issues/7023/events
https://github.com/huggingface/datasets/pull/7023
2,388,090,424
PR_kwDODunzps50TDot
7,023
Remove dead code for pyarrow < 15.0.0
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7023). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005669 / 0.011353 (-0.005684) | 0.004233 / 0.011008 (-0.006775) | 0.063550 / 0.038508 (0.025041) | 0.031269 / 0.023109 (0.008160) | 0.234280 / 0.275898 (-0.041618) | 0.264517 / 0.323480 (-0.058963) | 0.003310 / 0.007986 (-0.004676) | 0.003640 / 0.004328 (-0.000688) | 0.050139 / 0.004250 (0.045889) | 0.046909 / 0.037052 (0.009856) | 0.253101 / 0.258489 (-0.005388) | 0.280281 / 0.293841 (-0.013560) | 0.029558 / 0.128546 (-0.098989) | 0.012537 / 0.075646 (-0.063110) | 0.209624 / 0.419271 (-0.209648) | 0.036857 / 0.043533 (-0.006676) | 0.236957 / 0.255139 (-0.018182) | 0.260510 / 0.283200 (-0.022689) | 0.019802 / 0.141683 (-0.121881) | 1.141747 / 1.452155 (-0.310407) | 1.172617 / 1.492716 (-0.320099) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.107381 / 0.018006 (0.089375) | 0.308401 / 0.000490 (0.307911) | 0.000227 / 0.000200 (0.000027) | 0.000056 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019504 / 0.037411 (-0.017907) | 0.063920 / 0.014526 (0.049394) | 0.075375 / 0.176557 (-0.101181) | 0.122707 / 0.737135 (-0.614428) | 0.080015 / 0.296338 (-0.216324) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.288716 / 0.215209 (0.073507) | 2.862022 / 2.077655 (0.784368) | 1.472510 / 1.504120 (-0.031610) | 1.332989 / 1.541195 (-0.208206) | 1.395140 / 1.468490 (-0.073350) | 0.728042 / 4.584777 (-3.856735) | 2.409914 / 3.745712 (-1.335799) | 2.912514 / 5.269862 (-2.357347) | 1.986980 / 4.565676 (-2.578697) | 0.078587 / 0.424275 (-0.345688) | 0.005601 / 0.007607 (-0.002006) | 0.342510 / 0.226044 (0.116466) | 3.354621 / 2.268929 (1.085692) | 1.852472 / 55.444624 (-53.592153) | 1.542567 / 6.876477 (-5.333910) | 1.726756 / 2.142072 (-0.415317) | 0.794567 / 4.805227 (-4.010660) | 0.135279 / 6.500664 (-6.365386) | 0.042591 / 0.075469 (-0.032878) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.968336 / 1.841788 (-0.873452) | 12.334614 / 8.074308 (4.260305) | 9.638775 / 10.191392 (-0.552617) | 0.143625 / 0.680424 (-0.536799) | 0.015475 / 0.534201 (-0.518726) | 0.313357 / 0.579283 (-0.265926) | 0.271257 / 0.434364 (-0.163107) | 0.362074 / 0.540337 (-0.178263) | 0.468595 / 1.386936 (-0.918341) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006243 / 0.011353 (-0.005110) | 0.004496 / 0.011008 (-0.006512) | 0.051271 / 0.038508 (0.012763) | 0.035718 / 0.023109 (0.012609) | 0.272623 / 0.275898 (-0.003275) | 0.297060 / 0.323480 (-0.026420) | 0.004801 / 0.007986 (-0.003185) | 0.003060 / 0.004328 (-0.001269) | 0.049990 / 0.004250 (0.045740) | 0.042413 / 0.037052 (0.005360) | 0.281268 / 0.258489 (0.022779) | 0.327224 / 0.293841 (0.033383) | 0.033745 / 0.128546 (-0.094801) | 0.012777 / 0.075646 (-0.062869) | 0.061808 / 0.419271 (-0.357464) | 0.034428 / 0.043533 (-0.009105) | 0.272211 / 0.255139 (0.017072) | 0.327260 / 0.283200 (0.044061) | 0.019756 / 0.141683 (-0.121927) | 1.137768 / 1.452155 (-0.314387) | 1.220347 / 1.492716 (-0.272369) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.099737 / 0.018006 (0.081731) | 0.304627 / 0.000490 (0.304137) | 0.000210 / 0.000200 (0.000011) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023177 / 0.037411 (-0.014234) | 0.077505 / 0.014526 (0.062979) | 0.088957 / 0.176557 (-0.087599) | 0.129187 / 0.737135 (-0.607948) | 0.090386 / 0.296338 (-0.205953) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291558 / 0.215209 (0.076349) | 2.874297 / 2.077655 (0.796642) | 1.562316 / 1.504120 (0.058196) | 1.439950 / 1.541195 (-0.101244) | 1.492316 / 1.468490 (0.023826) | 0.729885 / 4.584777 (-3.854892) | 0.985075 / 3.745712 (-2.760637) | 3.108313 / 5.269862 (-2.161549) | 1.998072 / 4.565676 (-2.567604) | 0.079367 / 0.424275 (-0.344908) | 0.005210 / 0.007607 (-0.002398) | 0.347335 / 0.226044 (0.121290) | 3.519375 / 2.268929 (1.250446) | 1.949395 / 55.444624 (-53.495229) | 1.650379 / 6.876477 (-5.226097) | 1.691606 / 2.142072 (-0.450466) | 0.816023 / 4.805227 (-3.989204) | 0.135318 / 6.500664 (-6.365346) | 0.041390 / 0.075469 (-0.034079) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.018964 / 1.841788 (-0.822823) | 13.120135 / 8.074308 (5.045827) | 10.618095 / 10.191392 (0.426703) | 0.134507 / 0.680424 (-0.545917) | 0.015895 / 0.534201 (-0.518306) | 0.302864 / 0.579283 (-0.276420) | 0.131117 / 0.434364 (-0.303247) | 0.342374 / 0.540337 (-0.197964) | 0.441640 / 1.386936 (-0.945296) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c5fdb68cd12d069f05a3db8add8e6feab3c06930 \"CML watermark\")\n" ]
2024-07-03T09:05:03
2024-07-03T09:24:46
2024-07-03T09:17:35
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7023", "html_url": "https://github.com/huggingface/datasets/pull/7023", "diff_url": "https://github.com/huggingface/datasets/pull/7023.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7023.patch", "merged_at": "2024-07-03T09:17:35" }
Remove dead code for pyarrow < 15.0.0. Code is dead since the merge of: - #6892 Fix #7022.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7023/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7023/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7022
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7022/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7022/comments
https://api.github.com/repos/huggingface/datasets/issues/7022/events
https://github.com/huggingface/datasets/issues/7022
2,388,064,650
I_kwDODunzps6OVvmK
7,022
There is dead code after we require pyarrow >= 15.0.0
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "id": 4296013012, "node_id": "LA_kwDODunzps8AAAABAA_01A", "url": "https://api.github.com/repos/huggingface/datasets/labels/maintenance", "name": "maintenance", "color": "d4c5f9", "default": false, "description": "Maintenance tasks" } ]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[]
2024-07-03T08:52:57
2024-07-03T09:17:36
2024-07-03T09:17:36
MEMBER
null
null
null
There are code lines specific for pyarrow versions < 15.0.0. However, we require pyarrow >= 15.0.0 since the merge of PR: - #6892 Those code lines are now dead code and should be removed.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7022/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7022/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7021
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7021/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7021/comments
https://api.github.com/repos/huggingface/datasets/issues/7021/events
https://github.com/huggingface/datasets/pull/7021
2,387,948,935
PR_kwDODunzps50SlKR
7,021
Fix casting list array to fixed size list
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7021). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005126 / 0.011353 (-0.006227) | 0.003417 / 0.011008 (-0.007591) | 0.063274 / 0.038508 (0.024766) | 0.030896 / 0.023109 (0.007787) | 0.246661 / 0.275898 (-0.029237) | 0.275037 / 0.323480 (-0.048443) | 0.003243 / 0.007986 (-0.004742) | 0.003460 / 0.004328 (-0.000868) | 0.049665 / 0.004250 (0.045414) | 0.045826 / 0.037052 (0.008773) | 0.254360 / 0.258489 (-0.004129) | 0.294934 / 0.293841 (0.001094) | 0.029115 / 0.128546 (-0.099431) | 0.011908 / 0.075646 (-0.063738) | 0.207429 / 0.419271 (-0.211842) | 0.036371 / 0.043533 (-0.007162) | 0.249127 / 0.255139 (-0.006012) | 0.273982 / 0.283200 (-0.009218) | 0.019318 / 0.141683 (-0.122365) | 1.108985 / 1.452155 (-0.343169) | 1.147234 / 1.492716 (-0.345482) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.104830 / 0.018006 (0.086824) | 0.313453 / 0.000490 (0.312964) | 0.000213 / 0.000200 (0.000013) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019140 / 0.037411 (-0.018271) | 0.062160 / 0.014526 (0.047634) | 0.073537 / 0.176557 (-0.103020) | 0.119605 / 0.737135 (-0.617530) | 0.074707 / 0.296338 (-0.221632) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282600 / 0.215209 (0.067391) | 2.805560 / 2.077655 (0.727906) | 1.471312 / 1.504120 (-0.032808) | 1.360920 / 1.541195 (-0.180275) | 1.361132 / 1.468490 (-0.107358) | 0.714791 / 4.584777 (-3.869986) | 2.405224 / 3.745712 (-1.340488) | 2.814498 / 5.269862 (-2.455363) | 1.896792 / 4.565676 (-2.668884) | 0.078138 / 0.424275 (-0.346137) | 0.005430 / 0.007607 (-0.002177) | 0.345529 / 0.226044 (0.119485) | 3.366205 / 2.268929 (1.097277) | 1.862820 / 55.444624 (-53.581805) | 1.555970 / 6.876477 (-5.320507) | 1.665102 / 2.142072 (-0.476970) | 0.798679 / 4.805227 (-4.006548) | 0.132601 / 6.500664 (-6.368064) | 0.041819 / 0.075469 (-0.033650) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.972545 / 1.841788 (-0.869242) | 11.250626 / 8.074308 (3.176318) | 9.211127 / 10.191392 (-0.980265) | 0.130818 / 0.680424 (-0.549605) | 0.014123 / 0.534201 (-0.520078) | 0.298384 / 0.579283 (-0.280899) | 0.269736 / 0.434364 (-0.164628) | 0.341322 / 0.540337 (-0.199015) | 0.466915 / 1.386936 (-0.920021) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005884 / 0.011353 (-0.005469) | 0.003983 / 0.011008 (-0.007025) | 0.050295 / 0.038508 (0.011787) | 0.033906 / 0.023109 (0.010797) | 0.271364 / 0.275898 (-0.004534) | 0.290652 / 0.323480 (-0.032828) | 0.004503 / 0.007986 (-0.003483) | 0.002946 / 0.004328 (-0.001382) | 0.049336 / 0.004250 (0.045086) | 0.040987 / 0.037052 (0.003935) | 0.283088 / 0.258489 (0.024599) | 0.313132 / 0.293841 (0.019291) | 0.032545 / 0.128546 (-0.096001) | 0.012622 / 0.075646 (-0.063024) | 0.060574 / 0.419271 (-0.358698) | 0.033625 / 0.043533 (-0.009908) | 0.266765 / 0.255139 (0.011626) | 0.286164 / 0.283200 (0.002964) | 0.018840 / 0.141683 (-0.122843) | 1.167874 / 1.452155 (-0.284281) | 1.170767 / 1.492716 (-0.321950) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.102266 / 0.018006 (0.084260) | 0.309530 / 0.000490 (0.309040) | 0.000210 / 0.000200 (0.000010) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023879 / 0.037411 (-0.013533) | 0.076837 / 0.014526 (0.062311) | 0.088718 / 0.176557 (-0.087839) | 0.129422 / 0.737135 (-0.607714) | 0.090051 / 0.296338 (-0.206287) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.287325 / 0.215209 (0.072116) | 2.844051 / 2.077655 (0.766397) | 1.552338 / 1.504120 (0.048218) | 1.422390 / 1.541195 (-0.118804) | 1.458580 / 1.468490 (-0.009910) | 0.712103 / 4.584777 (-3.872674) | 0.935116 / 3.745712 (-2.810596) | 2.891878 / 5.269862 (-2.377984) | 1.884683 / 4.565676 (-2.680994) | 0.077810 / 0.424275 (-0.346465) | 0.005087 / 0.007607 (-0.002520) | 0.337981 / 0.226044 (0.111937) | 3.346176 / 2.268929 (1.077248) | 1.892525 / 55.444624 (-53.552100) | 1.595472 / 6.876477 (-5.281004) | 1.595617 / 2.142072 (-0.546455) | 0.779581 / 4.805227 (-4.025647) | 0.131042 / 6.500664 (-6.369623) | 0.040665 / 0.075469 (-0.034804) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.063560 / 1.841788 (-0.778227) | 12.030321 / 8.074308 (3.956013) | 10.213963 / 10.191392 (0.022571) | 0.142954 / 0.680424 (-0.537470) | 0.015700 / 0.534201 (-0.518501) | 0.311536 / 0.579283 (-0.267747) | 0.127064 / 0.434364 (-0.307300) | 0.351636 / 0.540337 (-0.188702) | 0.442281 / 1.386936 (-0.944655) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9ccc1f3d533712baf15cb7a93182add3e5446165 \"CML watermark\")\n" ]
2024-07-03T07:58:57
2024-07-03T08:47:49
2024-07-03T08:41:55
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7021", "html_url": "https://github.com/huggingface/datasets/pull/7021", "diff_url": "https://github.com/huggingface/datasets/pull/7021.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7021.patch", "merged_at": "2024-07-03T08:41:55" }
Fix casting list array to fixed size list. This bug was introduced in [datasets-2.17.0](https://github.com/huggingface/datasets/releases/tag/2.17.0) by PR: https://github.com/huggingface/datasets/pull/6283/files#diff-1cb2b66aa9311d729cfd83013dad56cf5afcda35b39dfd0bfe9c3813a049eab0R1899 - #6283 Fix #7020.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7021/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7021/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7020
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7020/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7020/comments
https://api.github.com/repos/huggingface/datasets/issues/7020/events
https://github.com/huggingface/datasets/issues/7020
2,387,940,990
I_kwDODunzps6OVRZ-
7,020
Casting list array to fixed size list raises error
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892857, "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" } ]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[]
2024-07-03T07:54:49
2024-07-03T08:41:56
2024-07-03T08:41:56
MEMBER
null
null
null
When trying to cast a list array to fixed size list, an AttributeError is raised: > AttributeError: 'pyarrow.lib.FixedSizeListType' object has no attribute 'length' Steps to reproduce the bug: ```python import pyarrow as pa from datasets.table import array_cast arr = pa.array([[0, 1]]) array_cast(arr, pa.list_(pa.int64(), 2)) ``` Stack trace: ``` --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) <ipython-input-12-6cb90a1d8216> in <module> 3 4 arr = pa.array([[0, 1]]) ----> 5 array_cast(arr, pa.list_(pa.int64(), 2)) ~/huggingface/datasets/src/datasets/table.py in wrapper(array, *args, **kwargs) 1802 return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) 1803 else: -> 1804 return func(array, *args, **kwargs) 1805 1806 return wrapper ~/huggingface/datasets/src/datasets/table.py in array_cast(array, pa_type, allow_primitive_to_str, allow_decimal_to_str) 1920 else: 1921 array_values = array.values[ -> 1922 array.offset * pa_type.length : (array.offset + len(array)) * pa_type.length 1923 ] 1924 return pa.FixedSizeListArray.from_arrays(_c(array_values, pa_type.value_type), pa_type.list_size) AttributeError: 'pyarrow.lib.FixedSizeListType' object has no attribute 'length' ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7020/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7020/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7019
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7019/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7019/comments
https://api.github.com/repos/huggingface/datasets/issues/7019/events
https://github.com/huggingface/datasets/pull/7019
2,385,793,897
PR_kwDODunzps50LMjW
7,019
Support pyarrow large_list
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7019). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "@albertvillanova really happy to see this fix.\r\n\r\nHave you attempted to save a dataset to disk after this? I attempted to utilize your fix in a build from source, and while I can now successfully get a dataset object from a polars df containing a large list, I am getting the following error when attempting to save the resulting dataset to disk:\r\n```\r\nFile \"/Users/x/VSCodeProjects/HuggingFace/hf.py\", line 9, in <module>\r\n dataset.save_to_disk(\"data/test.hf\")\r\n File \"/Users/x/VSCodeProjects/HuggingFace/datasets/src/datasets/arrow_dataset.py\", line 1591, in save_to_disk\r\n for kwargs in kwargs_per_job:\r\n File \"/Users/x/VSCodeProjects/HuggingFace/datasets/src/datasets/arrow_dataset.py\", line 1568, in <genexpr>\r\n \"shard\": self.shard(num_shards=num_shards, index=shard_idx, contiguous=True),\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n File \"/Users/x/VSCodeProjects/HuggingFace/datasets/src/datasets/arrow_dataset.py\", line 4757, in shard\r\n return self.select(\r\n ^^^^^^^^^^^^\r\n File \"/Users/x/VSCodeProjects/HuggingFace/datasets/src/datasets/arrow_dataset.py\", line 567, in wrapper\r\n out: Union[\"Dataset\", \"DatasetDict\"] = func(self, *args, **kwargs)\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n File \"/Users/x/VSCodeProjects/HuggingFace/datasets/src/datasets/fingerprint.py\", line 482, in wrapper\r\n out = func(dataset, *args, **kwargs)\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n File \"/Users/x/VSCodeProjects/HuggingFace/datasets/src/datasets/arrow_dataset.py\", line 3892, in select\r\n return self._select_contiguous(start, length, new_fingerprint=new_fingerprint)\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n File \"/Users/x/VSCodeProjects/HuggingFace/datasets/src/datasets/arrow_dataset.py\", line 567, in wrapper\r\n out: Union[\"Dataset\", \"DatasetDict\"] = func(self, *args, **kwargs)\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n File \"/Users/x/VSCodeProjects/HuggingFace/datasets/src/datasets/fingerprint.py\", line 482, in wrapper\r\n out = func(dataset, *args, **kwargs)\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n File \"/Users/x/VSCodeProjects/HuggingFace/datasets/src/datasets/arrow_dataset.py\", line 3955, in _select_contiguous\r\n return Dataset(\r\n ^^^^^^^^\r\n File \"/Users/x/VSCodeProjects/HuggingFace/datasets/src/datasets/arrow_dataset.py\", line 731, in __init__\r\n raise ValueError(\r\nValueError: External features info don't match the dataset:\r\nGot\r\n{'0': Value(dtype='int64', id=None), '1': Value(dtype='int64', id=None), '2': Value(dtype='int64', id=None), '3': Value(dtype='int64', id=None), '4': Value(dtype='int64', id=None), '5': Value(dtype='int64', id=None), '6': Value(dtype='int64', id=None), '7': Value(dtype='int64', id=None), '8': Value(dtype='int64', id=None), '9': Value(dtype='int64', id=None), '10': Value(dtype='int64', id=None), '11': Value(dtype='int64', id=None), '12': Value(dtype='int64', id=None), '13': Value(dtype='int64', id=None), '14': Value(dtype='int64', id=None), '15': Value(dtype='int64', id=None), '16': Value(dtype='int64', id=None), '17': Value(dtype='int64', id=None), '18': Value(dtype='int64', id=None), '19': Value(dtype='int64', id=None), 'A': Sequence(feature=Value(dtype='int64', id=None), length=-1, large=False, id=None), 'B': Sequence(feature=Value(dtype='int64', id=None), length=-1, large=False, id=None), 'C': Sequence(feature=Value(dtype='int64', id=None), length=-1, large=False, id=None), 'D': Sequence(feature=Value(dtype='int64', id=None), length=-1, large=False, id=None), '__index_level_0__': Value(dtype='int64', id=None)}\r\nwith type\r\nstruct<0: int64, 1: int64, 2: int64, 3: int64, 4: int64, 5: int64, 6: int64, 7: int64, 8: int64, 9: int64, 10: int64, 11: int64, 12: int64, 13: int64, 14: int64, 15: int64, 16: int64, 17: int64, 18: int64, 19: int64, A: list<item: int64>, B: list<item: int64>, C: list<item: int64>, D: list<item: int64>, __index_level_0__: int64>\r\n\r\nbut expected something like\r\n{'0': Value(dtype='int64', id=None), '1': Value(dtype='int64', id=None), '2': Value(dtype='int64', id=None), '3': Value(dtype='int64', id=None), '4': Value(dtype='int64', id=None), '5': Value(dtype='int64', id=None), '6': Value(dtype='int64', id=None), '7': Value(dtype='int64', id=None), '8': Value(dtype='int64', id=None), '9': Value(dtype='int64', id=None), '10': Value(dtype='int64', id=None), '11': Value(dtype='int64', id=None), '12': Value(dtype='int64', id=None), '13': Value(dtype='int64', id=None), '14': Value(dtype='int64', id=None), '15': Value(dtype='int64', id=None), '16': Value(dtype='int64', id=None), '17': Value(dtype='int64', id=None), '18': Value(dtype='int64', id=None), '19': Value(dtype='int64', id=None), 'A': Sequence(feature=Value(dtype='int64', id=None), length=-1, large=True, id=None), 'B': Sequence(feature=Value(dtype='int64', id=None), length=-1, large=True, id=None), 'C': Sequence(feature=Value(dtype='int64', id=None), length=-1, large=True, id=None), 'D': Sequence(feature=Value(dtype='int64', id=None), length=-1, large=True, id=None), '__index_level_0__': Value(dtype='int64', id=None)}\r\nwith type\r\nstruct<0: int64, 1: int64, 2: int64, 3: int64, 4: int64, 5: int64, 6: int64, 7: int64, 8: int64, 9: int64, 10: int64, 11: int64, 12: int64, 13: int64, 14: int64, 15: int64, 16: int64, 17: int64, 18: int64, 19: int64, A: large_list<item: int64>, B: large_list<item: int64>, C: large_list<item: int64>, D: large_list<item: int64>, __index_level_0__: int64>\r\n```\r\n\r\ncode to reproduce is actually 2 separate scripts below.\r\n\r\ncreating test data:\r\n```\r\nimport pandas as pd\r\nimport numpy as np\r\n\r\ndf = pd.DataFrame(np.random.randint(0, 100000, size=(100000, 20)))\r\nfeatureVector = np.random.randint(0, 100000, size=(100000, 1000)).tolist()\r\n\r\ndf['A'] = featureVector\r\ndf['B'] = featureVector\r\ndf['C'] = featureVector\r\ndf['D'] = featureVector\r\n\r\ndf.to_parquet('data/train_data.parquet', engine='pyarrow')\r\n```\r\n\r\nloading data, converting to HF dataset, attempting to save to disk\r\n```\r\nimport datasets\r\nimport polars as pl\r\n\r\ndf = pl.read_parquet('data/train_data.parquet')\r\n\r\ndataset = datasets.Dataset.from_polars(df)\r\n\r\ndataset.save_to_disk(\"data/test.hf\")\r\n```\r\n\r\nIf this isn't the appropriate place to put this, let me know. Since it isn't merged yet I didn't think raising an issue was appropriate.", "Thanks for your useful review comments, @dakotamurdock. \r\n\r\nI am investigating that issue to fix it in this PR." ]
2024-07-02T09:52:52
2024-07-19T09:23:40
null
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7019", "html_url": "https://github.com/huggingface/datasets/pull/7019", "diff_url": "https://github.com/huggingface/datasets/pull/7019.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7019.patch", "merged_at": null }
Allow Polars round trip by supporting pyarrow large list. Fix #6834, fix #6984. Supersede and close #4800, close #6835, close #6986.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7019/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7019/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7018
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7018/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7018/comments
https://api.github.com/repos/huggingface/datasets/issues/7018/events
https://github.com/huggingface/datasets/issues/7018
2,383,700,286
I_kwDODunzps6OFGE-
7,018
`load_dataset` fails to load dataset saved by `save_to_disk`
{ "login": "sliedes", "id": 2307997, "node_id": "MDQ6VXNlcjIzMDc5OTc=", "avatar_url": "https://avatars.githubusercontent.com/u/2307997?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sliedes", "html_url": "https://github.com/sliedes", "followers_url": "https://api.github.com/users/sliedes/followers", "following_url": "https://api.github.com/users/sliedes/following{/other_user}", "gists_url": "https://api.github.com/users/sliedes/gists{/gist_id}", "starred_url": "https://api.github.com/users/sliedes/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sliedes/subscriptions", "organizations_url": "https://api.github.com/users/sliedes/orgs", "repos_url": "https://api.github.com/users/sliedes/repos", "events_url": "https://api.github.com/users/sliedes/events{/privacy}", "received_events_url": "https://api.github.com/users/sliedes/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "In my case the error was:\r\n```\r\nValueError: You are trying to load a dataset that was saved using `save_to_disk`. Please use `load_from_disk` instead.\r\n```\r\nDid you try `load_from_disk`?" ]
2024-07-01T12:19:19
2024-07-23T09:09:17
null
NONE
null
null
null
### Describe the bug This code fails to load the dataset it just saved: ```python from datasets import load_dataset from transformers import AutoTokenizer MODEL = "google-bert/bert-base-cased" tokenizer = AutoTokenizer.from_pretrained(MODEL) dataset = load_dataset("yelp_review_full") def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True) tokenized_datasets = dataset.map(tokenize_function, batched=True) tokenized_datasets.save_to_disk("dataset") tokenized_datasets = load_dataset("dataset/") # raises ``` It raises `ValueError: Couldn't infer the same data file format for all splits. Got {NamedSplit('train'): ('arrow', {}), NamedSplit('test'): ('json', {})}`. I believe this bug is caused by the [logic that tries to infer dataset format](https://github.com/huggingface/datasets/blob/9af8dd3de7626183a9a9ec8973cebc672d690400/src/datasets/load.py#L556). It counts the most common file extension. However, a small dataset can fit in a single `.arrow` file and have two JSON metadata files, causing the format to be inferred as JSON: ```shell $ ls -l dataset/test -rw-r--r-- 1 sliedes sliedes 191498784 Jul 1 13:55 data-00000-of-00001.arrow -rw-r--r-- 1 sliedes sliedes 1730 Jul 1 13:55 dataset_info.json -rw-r--r-- 1 sliedes sliedes 249 Jul 1 13:55 state.json ``` ### Steps to reproduce the bug Execute the code above. ### Expected behavior The dataset is loaded successfully. ### Environment info - `datasets` version: 2.20.0 - Platform: Linux-6.9.3-arch1-1-x86_64-with-glibc2.39 - Python version: 3.12.4 - `huggingface_hub` version: 0.23.4 - PyArrow version: 16.1.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.5.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7018/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7018/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7017
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7017/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7017/comments
https://api.github.com/repos/huggingface/datasets/issues/7017/events
https://github.com/huggingface/datasets/pull/7017
2,383,647,419
PR_kwDODunzps50D3gi
7,017
Support fsspec 2024.6.1
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7017). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005520 / 0.011353 (-0.005832) | 0.004216 / 0.011008 (-0.006792) | 0.063465 / 0.038508 (0.024957) | 0.032116 / 0.023109 (0.009007) | 0.242486 / 0.275898 (-0.033412) | 0.262554 / 0.323480 (-0.060925) | 0.004218 / 0.007986 (-0.003768) | 0.003264 / 0.004328 (-0.001064) | 0.050306 / 0.004250 (0.046056) | 0.044995 / 0.037052 (0.007942) | 0.257797 / 0.258489 (-0.000693) | 0.284595 / 0.293841 (-0.009246) | 0.030623 / 0.128546 (-0.097924) | 0.012245 / 0.075646 (-0.063401) | 0.205496 / 0.419271 (-0.213775) | 0.039327 / 0.043533 (-0.004206) | 0.246834 / 0.255139 (-0.008305) | 0.269296 / 0.283200 (-0.013903) | 0.017714 / 0.141683 (-0.123969) | 1.127246 / 1.452155 (-0.324909) | 1.172147 / 1.492716 (-0.320569) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.137621 / 0.018006 (0.119615) | 0.299843 / 0.000490 (0.299353) | 0.000248 / 0.000200 (0.000048) | 0.000051 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018968 / 0.037411 (-0.018443) | 0.062636 / 0.014526 (0.048111) | 0.074098 / 0.176557 (-0.102459) | 0.121139 / 0.737135 (-0.615996) | 0.075121 / 0.296338 (-0.221217) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.289907 / 0.215209 (0.074698) | 2.872250 / 2.077655 (0.794595) | 1.508635 / 1.504120 (0.004515) | 1.345356 / 1.541195 (-0.195839) | 1.361858 / 1.468490 (-0.106632) | 0.738961 / 4.584777 (-3.845816) | 2.414616 / 3.745712 (-1.331097) | 2.843464 / 5.269862 (-2.426398) | 1.953716 / 4.565676 (-2.611961) | 0.079063 / 0.424275 (-0.345212) | 0.005498 / 0.007607 (-0.002109) | 0.346211 / 0.226044 (0.120166) | 3.446294 / 2.268929 (1.177366) | 1.857191 / 55.444624 (-53.587433) | 1.536924 / 6.876477 (-5.339553) | 1.655782 / 2.142072 (-0.486290) | 0.800508 / 4.805227 (-4.004719) | 0.136116 / 6.500664 (-6.364548) | 0.042648 / 0.075469 (-0.032821) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.964286 / 1.841788 (-0.877501) | 11.574645 / 8.074308 (3.500336) | 9.351631 / 10.191392 (-0.839761) | 0.139693 / 0.680424 (-0.540731) | 0.014368 / 0.534201 (-0.519833) | 0.303953 / 0.579283 (-0.275330) | 0.263302 / 0.434364 (-0.171062) | 0.342436 / 0.540337 (-0.197901) | 0.457195 / 1.386936 (-0.929741) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005526 / 0.011353 (-0.005827) | 0.003959 / 0.011008 (-0.007050) | 0.049979 / 0.038508 (0.011471) | 0.032695 / 0.023109 (0.009586) | 0.269461 / 0.275898 (-0.006437) | 0.296622 / 0.323480 (-0.026858) | 0.004410 / 0.007986 (-0.003576) | 0.002708 / 0.004328 (-0.001621) | 0.048413 / 0.004250 (0.044163) | 0.040567 / 0.037052 (0.003515) | 0.278854 / 0.258489 (0.020364) | 0.318839 / 0.293841 (0.024998) | 0.031228 / 0.128546 (-0.097318) | 0.012411 / 0.075646 (-0.063236) | 0.060077 / 0.419271 (-0.359194) | 0.033072 / 0.043533 (-0.010461) | 0.275281 / 0.255139 (0.020142) | 0.292588 / 0.283200 (0.009388) | 0.018218 / 0.141683 (-0.123465) | 1.124877 / 1.452155 (-0.327278) | 1.164880 / 1.492716 (-0.327836) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095098 / 0.018006 (0.077092) | 0.298341 / 0.000490 (0.297851) | 0.000225 / 0.000200 (0.000025) | 0.000049 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022502 / 0.037411 (-0.014909) | 0.076650 / 0.014526 (0.062124) | 0.088851 / 0.176557 (-0.087705) | 0.128261 / 0.737135 (-0.608875) | 0.089305 / 0.296338 (-0.207033) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298704 / 0.215209 (0.083495) | 2.917605 / 2.077655 (0.839951) | 1.568964 / 1.504120 (0.064844) | 1.437668 / 1.541195 (-0.103527) | 1.458787 / 1.468490 (-0.009704) | 0.732347 / 4.584777 (-3.852430) | 0.960834 / 3.745712 (-2.784878) | 2.947899 / 5.269862 (-2.321963) | 1.885576 / 4.565676 (-2.680100) | 0.079093 / 0.424275 (-0.345182) | 0.005199 / 0.007607 (-0.002408) | 0.353754 / 0.226044 (0.127710) | 3.495197 / 2.268929 (1.226268) | 1.936840 / 55.444624 (-53.507785) | 1.622797 / 6.876477 (-5.253680) | 1.627132 / 2.142072 (-0.514940) | 0.804007 / 4.805227 (-4.001221) | 0.135990 / 6.500664 (-6.364674) | 0.041606 / 0.075469 (-0.033863) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.004860 / 1.841788 (-0.836928) | 12.027573 / 8.074308 (3.953265) | 10.478055 / 10.191392 (0.286663) | 0.143946 / 0.680424 (-0.536477) | 0.015538 / 0.534201 (-0.518663) | 0.302592 / 0.579283 (-0.276691) | 0.123177 / 0.434364 (-0.311187) | 0.340752 / 0.540337 (-0.199585) | 0.436536 / 1.386936 (-0.950400) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#100361d7ccae451a34c6bd9e48dee55d6a3c6006 \"CML watermark\")\n" ]
2024-07-01T11:57:15
2024-07-01T12:12:32
2024-07-01T12:06:24
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7017", "html_url": "https://github.com/huggingface/datasets/pull/7017", "diff_url": "https://github.com/huggingface/datasets/pull/7017.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7017.patch", "merged_at": "2024-07-01T12:06:24" }
Support fsspec 2024.6.1.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7017/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7017/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7016
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7016/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7016/comments
https://api.github.com/repos/huggingface/datasets/issues/7016/events
https://github.com/huggingface/datasets/issues/7016
2,383,262,608
I_kwDODunzps6ODbOQ
7,016
`drop_duplicates` method
{ "login": "MohamedAliRashad", "id": 26205298, "node_id": "MDQ6VXNlcjI2MjA1Mjk4", "avatar_url": "https://avatars.githubusercontent.com/u/26205298?v=4", "gravatar_id": "", "url": "https://api.github.com/users/MohamedAliRashad", "html_url": "https://github.com/MohamedAliRashad", "followers_url": "https://api.github.com/users/MohamedAliRashad/followers", "following_url": "https://api.github.com/users/MohamedAliRashad/following{/other_user}", "gists_url": "https://api.github.com/users/MohamedAliRashad/gists{/gist_id}", "starred_url": "https://api.github.com/users/MohamedAliRashad/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MohamedAliRashad/subscriptions", "organizations_url": "https://api.github.com/users/MohamedAliRashad/orgs", "repos_url": "https://api.github.com/users/MohamedAliRashad/repos", "events_url": "https://api.github.com/users/MohamedAliRashad/events{/privacy}", "received_events_url": "https://api.github.com/users/MohamedAliRashad/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892865, "node_id": "MDU6TGFiZWwxOTM1ODkyODY1", "url": "https://api.github.com/repos/huggingface/datasets/labels/duplicate", "name": "duplicate", "color": "cfd3d7", "default": true, "description": "This issue or pull request already exists" }, { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
null
[]
null
[ "There is an open issue #2514 about this which also proposes solutions." ]
2024-07-01T09:01:06
2024-07-20T06:51:58
null
NONE
null
null
null
### Feature request `drop_duplicates` method for huggingface datasets (similiar in simplicity to the `pandas` one) ### Motivation Ease of use ### Your contribution I don't think i am good enough to help
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7016/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7016/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7015
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7015/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7015/comments
https://api.github.com/repos/huggingface/datasets/issues/7015/events
https://github.com/huggingface/datasets/pull/7015
2,383,151,220
PR_kwDODunzps50CJuE
7,015
add split argument to Generator
{ "login": "piercus", "id": 156736, "node_id": "MDQ6VXNlcjE1NjczNg==", "avatar_url": "https://avatars.githubusercontent.com/u/156736?v=4", "gravatar_id": "", "url": "https://api.github.com/users/piercus", "html_url": "https://github.com/piercus", "followers_url": "https://api.github.com/users/piercus/followers", "following_url": "https://api.github.com/users/piercus/following{/other_user}", "gists_url": "https://api.github.com/users/piercus/gists{/gist_id}", "starred_url": "https://api.github.com/users/piercus/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/piercus/subscriptions", "organizations_url": "https://api.github.com/users/piercus/orgs", "repos_url": "https://api.github.com/users/piercus/repos", "events_url": "https://api.github.com/users/piercus/events{/privacy}", "received_events_url": "https://api.github.com/users/piercus/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7015). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "@albertvillanova thanks for the review, please take a look", "@albertvillanova please take a look" ]
2024-07-01T08:09:25
2024-07-11T08:20:16
null
NONE
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7015", "html_url": "https://github.com/huggingface/datasets/pull/7015", "diff_url": "https://github.com/huggingface/datasets/pull/7015.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7015.patch", "merged_at": null }
## Actual When creating a multi-split dataset using generators like ```python datasets.DatasetDict({ "val": datasets.Dataset.from_generator( generator=generator_val, features=features ), "test": datasets.Dataset.from_generator( generator=generator_test, features=features, ) }) ``` It displays (for both test and val) ``` Generating train split ``` ## Expected I would like to be able to improve this behavior by doing ```python datasets.DatasetDict({ "val": datasets.Dataset.from_generator( generator=generator_val, features=features, split="val" ), "test": datasets.Dataset.from_generator( generator=generator_test, features=features, split="test" ) }) ``` It would display ``` Generating val split ``` and ``` Generating test split ``` ## Proposal Current PR is adding an explicit `split` argument and replace the implicit "train" split in the following classes/function : * Generator * from_generator * AbstractDatasetInputStream * GeneratorDatasetInputStream Please share your feedbacks
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7015/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7015/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7014
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7014/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7014/comments
https://api.github.com/repos/huggingface/datasets/issues/7014/events
https://github.com/huggingface/datasets/pull/7014
2,382,985,847
PR_kwDODunzps50BlwV
7,014
Skip faiss tests on Windows to avoid running CI for 360 minutes
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7014). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "The failing CI tests are unrelated to this PR.\r\n\r\nWe can see that now the integration tests on Windows finish in a reasonable amount of time, e.g. 8m 10s.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005219 / 0.011353 (-0.006134) | 0.003825 / 0.011008 (-0.007183) | 0.063082 / 0.038508 (0.024574) | 0.031258 / 0.023109 (0.008149) | 0.232288 / 0.275898 (-0.043610) | 0.261140 / 0.323480 (-0.062340) | 0.003185 / 0.007986 (-0.004801) | 0.002807 / 0.004328 (-0.001522) | 0.049438 / 0.004250 (0.045188) | 0.045112 / 0.037052 (0.008059) | 0.245327 / 0.258489 (-0.013162) | 0.277941 / 0.293841 (-0.015900) | 0.029190 / 0.128546 (-0.099357) | 0.012071 / 0.075646 (-0.063575) | 0.204351 / 0.419271 (-0.214921) | 0.036546 / 0.043533 (-0.006987) | 0.235999 / 0.255139 (-0.019140) | 0.269069 / 0.283200 (-0.014131) | 0.019047 / 0.141683 (-0.122636) | 1.117213 / 1.452155 (-0.334941) | 1.202807 / 1.492716 (-0.289909) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096680 / 0.018006 (0.078674) | 0.304513 / 0.000490 (0.304023) | 0.000211 / 0.000200 (0.000011) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019526 / 0.037411 (-0.017885) | 0.062239 / 0.014526 (0.047713) | 0.073988 / 0.176557 (-0.102569) | 0.122156 / 0.737135 (-0.614980) | 0.075727 / 0.296338 (-0.220611) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284125 / 0.215209 (0.068916) | 2.804235 / 2.077655 (0.726581) | 1.463729 / 1.504120 (-0.040390) | 1.337854 / 1.541195 (-0.203341) | 1.340435 / 1.468490 (-0.128055) | 0.711647 / 4.584777 (-3.873130) | 2.365194 / 3.745712 (-1.380518) | 2.839193 / 5.269862 (-2.430669) | 1.909730 / 4.565676 (-2.655947) | 0.077399 / 0.424275 (-0.346876) | 0.005432 / 0.007607 (-0.002175) | 0.332281 / 0.226044 (0.106236) | 3.301854 / 2.268929 (1.032925) | 1.836672 / 55.444624 (-53.607952) | 1.511144 / 6.876477 (-5.365333) | 1.624167 / 2.142072 (-0.517905) | 0.803453 / 4.805227 (-4.001775) | 0.132760 / 6.500664 (-6.367904) | 0.042323 / 0.075469 (-0.033146) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.951576 / 1.841788 (-0.890212) | 11.476809 / 8.074308 (3.402501) | 9.208285 / 10.191392 (-0.983107) | 0.131797 / 0.680424 (-0.548626) | 0.014362 / 0.534201 (-0.519839) | 0.316051 / 0.579283 (-0.263232) | 0.269250 / 0.434364 (-0.165114) | 0.366949 / 0.540337 (-0.173388) | 0.471047 / 1.386936 (-0.915889) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005905 / 0.011353 (-0.005448) | 0.003892 / 0.011008 (-0.007116) | 0.050513 / 0.038508 (0.012005) | 0.030903 / 0.023109 (0.007794) | 0.268835 / 0.275898 (-0.007063) | 0.288825 / 0.323480 (-0.034655) | 0.004372 / 0.007986 (-0.003614) | 0.002805 / 0.004328 (-0.001523) | 0.048497 / 0.004250 (0.044246) | 0.040665 / 0.037052 (0.003613) | 0.279842 / 0.258489 (0.021352) | 0.310715 / 0.293841 (0.016874) | 0.032133 / 0.128546 (-0.096413) | 0.012288 / 0.075646 (-0.063358) | 0.059719 / 0.419271 (-0.359552) | 0.033825 / 0.043533 (-0.009708) | 0.264670 / 0.255139 (0.009531) | 0.283799 / 0.283200 (0.000599) | 0.017968 / 0.141683 (-0.123715) | 1.160578 / 1.452155 (-0.291577) | 1.198602 / 1.492716 (-0.294115) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094388 / 0.018006 (0.076382) | 0.301861 / 0.000490 (0.301371) | 0.000212 / 0.000200 (0.000012) | 0.000045 / 0.000054 (-0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022901 / 0.037411 (-0.014510) | 0.076816 / 0.014526 (0.062290) | 0.089203 / 0.176557 (-0.087354) | 0.129040 / 0.737135 (-0.608096) | 0.090758 / 0.296338 (-0.205580) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.301191 / 0.215209 (0.085982) | 2.962887 / 2.077655 (0.885232) | 1.607134 / 1.504120 (0.103014) | 1.477817 / 1.541195 (-0.063377) | 1.485984 / 1.468490 (0.017494) | 0.717358 / 4.584777 (-3.867419) | 0.976018 / 3.745712 (-2.769694) | 2.951509 / 5.269862 (-2.318352) | 1.910619 / 4.565676 (-2.655057) | 0.078579 / 0.424275 (-0.345697) | 0.005209 / 0.007607 (-0.002398) | 0.345287 / 0.226044 (0.119243) | 3.487012 / 2.268929 (1.218084) | 1.938104 / 55.444624 (-53.506521) | 1.639341 / 6.876477 (-5.237136) | 1.617874 / 2.142072 (-0.524198) | 0.793721 / 4.805227 (-4.011506) | 0.136834 / 6.500664 (-6.363830) | 0.041211 / 0.075469 (-0.034258) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.988106 / 1.841788 (-0.853682) | 12.035176 / 8.074308 (3.960868) | 10.594559 / 10.191392 (0.403167) | 0.149917 / 0.680424 (-0.530507) | 0.015913 / 0.534201 (-0.518288) | 0.307658 / 0.579283 (-0.271625) | 0.130645 / 0.434364 (-0.303719) | 0.348450 / 0.540337 (-0.191887) | 0.443559 / 1.386936 (-0.943377) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9af8dd3de7626183a9a9ec8973cebc672d690400 \"CML watermark\")\n" ]
2024-07-01T06:45:35
2024-07-01T07:16:36
2024-07-01T07:10:27
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7014", "html_url": "https://github.com/huggingface/datasets/pull/7014", "diff_url": "https://github.com/huggingface/datasets/pull/7014.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7014.patch", "merged_at": "2024-07-01T07:10:27" }
Skip faiss tests on Windows to avoid running CI for 360 minutes. Fix #7013. Revert once the underlying issue is fixed.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7014/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7014/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7013
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7013/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7013/comments
https://api.github.com/repos/huggingface/datasets/issues/7013/events
https://github.com/huggingface/datasets/issues/7013
2,382,976,738
I_kwDODunzps6OCVbi
7,013
CI is broken for faiss tests on Windows: node down: Not properly terminated
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "id": 4296013012, "node_id": "LA_kwDODunzps8AAAABAA_01A", "url": "https://api.github.com/repos/huggingface/datasets/labels/maintenance", "name": "maintenance", "color": "d4c5f9", "default": false, "description": "Maintenance tasks" } ]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[]
2024-07-01T06:40:03
2024-07-01T07:10:28
2024-07-01T07:10:28
MEMBER
null
null
null
Faiss tests on Windows make the CI run indefinitely until maximum execution time (360 minutes) is reached. See: https://github.com/huggingface/datasets/actions/runs/9712659783 ``` test (integration, windows-latest, deps-minimum) The job running on runner GitHub Actions 60 has exceeded the maximum execution time of 360 minutes. test (integration, windows-latest, deps-latest) The job running on runner GitHub Actions 238 has exceeded the maximum execution time of 360 minutes. ``` ``` ____________________________ tests/test_search.py _____________________________ [gw1] win32 -- Python 3.8.10 C:\hostedtoolcache\windows\Python\3.8.10\x64\python.exe worker 'gw1' crashed while running 'tests/test_search.py::IndexableDatasetTest::test_add_faiss_index' ____________________________ tests/test_search.py _____________________________ [gw2] win32 -- Python 3.8.10 C:\hostedtoolcache\windows\Python\3.8.10\x64\python.exe worker 'gw2' crashed while running 'tests/test_search.py::IndexableDatasetTest::test_add_faiss_index' ``` ``` tests/test_search.py::IndexableDatasetTest::test_add_faiss_index [gw0] node down: Not properly terminated [gw0] FAILED tests/test_search.py::IndexableDatasetTest::test_add_faiss_index replacing crashed worker gw0 tests/test_search.py::IndexableDatasetTest::test_add_faiss_index [gw1] node down: Not properly terminated [gw1] FAILED tests/test_search.py::IndexableDatasetTest::test_add_faiss_index replacing crashed worker gw1 tests/test_search.py::IndexableDatasetTest::test_add_faiss_index [gw2] node down: Not properly terminated [gw2] FAILED tests/test_search.py::IndexableDatasetTest::test_add_faiss_index replacing crashed worker gw2 ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7013/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7013/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7012
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7012/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7012/comments
https://api.github.com/repos/huggingface/datasets/issues/7012/events
https://github.com/huggingface/datasets/pull/7012
2,380,934,047
PR_kwDODunzps5z61A3
7,012
Raise an error when a nested object is expected to be a mapping that displays the object
{ "login": "sebbyjp", "id": 22511797, "node_id": "MDQ6VXNlcjIyNTExNzk3", "avatar_url": "https://avatars.githubusercontent.com/u/22511797?v=4", "gravatar_id": "", "url": "https://api.github.com/users/sebbyjp", "html_url": "https://github.com/sebbyjp", "followers_url": "https://api.github.com/users/sebbyjp/followers", "following_url": "https://api.github.com/users/sebbyjp/following{/other_user}", "gists_url": "https://api.github.com/users/sebbyjp/gists{/gist_id}", "starred_url": "https://api.github.com/users/sebbyjp/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sebbyjp/subscriptions", "organizations_url": "https://api.github.com/users/sebbyjp/orgs", "repos_url": "https://api.github.com/users/sebbyjp/repos", "events_url": "https://api.github.com/users/sebbyjp/events{/privacy}", "received_events_url": "https://api.github.com/users/sebbyjp/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[]
2024-06-28T18:10:59
2024-07-11T02:06:16
2024-07-11T02:06:16
NONE
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7012", "html_url": "https://github.com/huggingface/datasets/pull/7012", "diff_url": "https://github.com/huggingface/datasets/pull/7012.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7012.patch", "merged_at": null }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7012/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7012/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7011
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7011/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7011/comments
https://api.github.com/repos/huggingface/datasets/issues/7011/events
https://github.com/huggingface/datasets/pull/7011
2,379,785,262
PR_kwDODunzps5z27Fs
7,011
Re-enable raising error from huggingface-hub FutureWarning in CI
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7011). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005589 / 0.011353 (-0.005764) | 0.003855 / 0.011008 (-0.007153) | 0.063445 / 0.038508 (0.024937) | 0.030815 / 0.023109 (0.007706) | 0.244052 / 0.275898 (-0.031846) | 0.269916 / 0.323480 (-0.053563) | 0.003130 / 0.007986 (-0.004856) | 0.003349 / 0.004328 (-0.000980) | 0.049338 / 0.004250 (0.045088) | 0.045314 / 0.037052 (0.008261) | 0.250646 / 0.258489 (-0.007844) | 0.295828 / 0.293841 (0.001987) | 0.029808 / 0.128546 (-0.098738) | 0.012299 / 0.075646 (-0.063347) | 0.204946 / 0.419271 (-0.214325) | 0.036387 / 0.043533 (-0.007146) | 0.244316 / 0.255139 (-0.010823) | 0.269308 / 0.283200 (-0.013892) | 0.019226 / 0.141683 (-0.122457) | 1.138739 / 1.452155 (-0.313416) | 1.155265 / 1.492716 (-0.337451) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094085 / 0.018006 (0.076078) | 0.299764 / 0.000490 (0.299275) | 0.000205 / 0.000200 (0.000005) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018361 / 0.037411 (-0.019050) | 0.062665 / 0.014526 (0.048139) | 0.075888 / 0.176557 (-0.100668) | 0.120915 / 0.737135 (-0.616221) | 0.075465 / 0.296338 (-0.220873) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.279698 / 0.215209 (0.064489) | 2.784544 / 2.077655 (0.706889) | 1.498441 / 1.504120 (-0.005679) | 1.379789 / 1.541195 (-0.161406) | 1.388480 / 1.468490 (-0.080011) | 0.724249 / 4.584777 (-3.860528) | 2.343139 / 3.745712 (-1.402573) | 2.816179 / 5.269862 (-2.453683) | 1.908737 / 4.565676 (-2.656940) | 0.077686 / 0.424275 (-0.346589) | 0.005444 / 0.007607 (-0.002163) | 0.344084 / 0.226044 (0.118039) | 3.367548 / 2.268929 (1.098619) | 1.849200 / 55.444624 (-53.595424) | 1.556390 / 6.876477 (-5.320087) | 1.672902 / 2.142072 (-0.469170) | 0.795457 / 4.805227 (-4.009770) | 0.133521 / 6.500664 (-6.367143) | 0.042883 / 0.075469 (-0.032586) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.959094 / 1.841788 (-0.882694) | 11.399783 / 8.074308 (3.325475) | 9.075784 / 10.191392 (-1.115608) | 0.142897 / 0.680424 (-0.537527) | 0.014765 / 0.534201 (-0.519436) | 0.302259 / 0.579283 (-0.277024) | 0.261148 / 0.434364 (-0.173216) | 0.340302 / 0.540337 (-0.200035) | 0.459203 / 1.386936 (-0.927733) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005821 / 0.011353 (-0.005532) | 0.003964 / 0.011008 (-0.007044) | 0.049904 / 0.038508 (0.011396) | 0.031061 / 0.023109 (0.007952) | 0.270002 / 0.275898 (-0.005896) | 0.289489 / 0.323480 (-0.033991) | 0.004477 / 0.007986 (-0.003509) | 0.002800 / 0.004328 (-0.001528) | 0.048029 / 0.004250 (0.043779) | 0.040486 / 0.037052 (0.003434) | 0.278442 / 0.258489 (0.019953) | 0.312606 / 0.293841 (0.018765) | 0.032920 / 0.128546 (-0.095626) | 0.012572 / 0.075646 (-0.063075) | 0.060589 / 0.419271 (-0.358682) | 0.034147 / 0.043533 (-0.009386) | 0.275282 / 0.255139 (0.020143) | 0.314073 / 0.283200 (0.030873) | 0.017555 / 0.141683 (-0.124128) | 1.149974 / 1.452155 (-0.302181) | 1.183715 / 1.492716 (-0.309002) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095616 / 0.018006 (0.077610) | 0.302101 / 0.000490 (0.301611) | 0.000201 / 0.000200 (0.000001) | 0.000051 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022245 / 0.037411 (-0.015166) | 0.076890 / 0.014526 (0.062364) | 0.088471 / 0.176557 (-0.088085) | 0.128364 / 0.737135 (-0.608771) | 0.089907 / 0.296338 (-0.206431) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.302662 / 0.215209 (0.087453) | 2.979054 / 2.077655 (0.901399) | 1.576534 / 1.504120 (0.072414) | 1.443784 / 1.541195 (-0.097410) | 1.476000 / 1.468490 (0.007510) | 0.740580 / 4.584777 (-3.844197) | 0.953349 / 3.745712 (-2.792363) | 2.925619 / 5.269862 (-2.344243) | 1.904701 / 4.565676 (-2.660975) | 0.078404 / 0.424275 (-0.345872) | 0.005179 / 0.007607 (-0.002429) | 0.357217 / 0.226044 (0.131173) | 3.494812 / 2.268929 (1.225884) | 1.927345 / 55.444624 (-53.517280) | 1.627162 / 6.876477 (-5.249315) | 1.676748 / 2.142072 (-0.465324) | 0.798826 / 4.805227 (-4.006401) | 0.133617 / 6.500664 (-6.367047) | 0.041229 / 0.075469 (-0.034240) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.017046 / 1.841788 (-0.824742) | 12.045942 / 8.074308 (3.971634) | 10.430383 / 10.191392 (0.238991) | 0.144497 / 0.680424 (-0.535926) | 0.015809 / 0.534201 (-0.518392) | 0.304701 / 0.579283 (-0.274582) | 0.126496 / 0.434364 (-0.307868) | 0.340308 / 0.540337 (-0.200030) | 0.434917 / 1.386936 (-0.952019) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#054e57a8468af9fff5b75c08d2d6adf3e05fa763 \"CML watermark\")\n" ]
2024-06-28T07:28:32
2024-06-28T12:25:25
2024-06-28T12:19:28
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7011", "html_url": "https://github.com/huggingface/datasets/pull/7011", "diff_url": "https://github.com/huggingface/datasets/pull/7011.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7011.patch", "merged_at": "2024-06-28T12:19:28" }
Re-enable raising error from huggingface-hub FutureWarning in tests, once that the fix in transformers - https://github.com/huggingface/transformers/pull/31007 was just released yesterday in transformers-4.42.0: https://github.com/huggingface/transformers/releases/tag/v4.42.0 Fix #7010.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7011/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7011/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7010
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7010/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7010/comments
https://api.github.com/repos/huggingface/datasets/issues/7010/events
https://github.com/huggingface/datasets/issues/7010
2,379,777,480
I_kwDODunzps6N2IXI
7,010
Re-enable raising error from huggingface-hub FutureWarning in CI
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "id": 4296013012, "node_id": "LA_kwDODunzps8AAAABAA_01A", "url": "https://api.github.com/repos/huggingface/datasets/labels/maintenance", "name": "maintenance", "color": "d4c5f9", "default": false, "description": "Maintenance tasks" } ]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[]
2024-06-28T07:23:40
2024-06-28T12:19:30
2024-06-28T12:19:29
MEMBER
null
null
null
Re-enable raising error from huggingface-hub FutureWarning in CI, which was disabled by PR: - #6876 Note that this can only be done once transformers releases the fix: - https://github.com/huggingface/transformers/pull/31007
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7010/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7010/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7009
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7009/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7009/comments
https://api.github.com/repos/huggingface/datasets/issues/7009/events
https://github.com/huggingface/datasets/pull/7009
2,379,619,132
PR_kwDODunzps5z2Xe6
7,009
Support ruff 0.5.0 in CI
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7009). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005481 / 0.011353 (-0.005872) | 0.003580 / 0.011008 (-0.007428) | 0.062682 / 0.038508 (0.024174) | 0.031125 / 0.023109 (0.008015) | 0.239443 / 0.275898 (-0.036455) | 0.262950 / 0.323480 (-0.060529) | 0.003129 / 0.007986 (-0.004857) | 0.003393 / 0.004328 (-0.000935) | 0.048765 / 0.004250 (0.044514) | 0.044363 / 0.037052 (0.007311) | 0.248632 / 0.258489 (-0.009857) | 0.285056 / 0.293841 (-0.008785) | 0.029674 / 0.128546 (-0.098872) | 0.011963 / 0.075646 (-0.063684) | 0.204122 / 0.419271 (-0.215150) | 0.035867 / 0.043533 (-0.007665) | 0.245422 / 0.255139 (-0.009717) | 0.267165 / 0.283200 (-0.016035) | 0.018556 / 0.141683 (-0.123127) | 1.132112 / 1.452155 (-0.320043) | 1.173512 / 1.492716 (-0.319204) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092749 / 0.018006 (0.074743) | 0.298946 / 0.000490 (0.298457) | 0.000211 / 0.000200 (0.000011) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019496 / 0.037411 (-0.017915) | 0.062209 / 0.014526 (0.047683) | 0.074656 / 0.176557 (-0.101901) | 0.121238 / 0.737135 (-0.615897) | 0.075810 / 0.296338 (-0.220528) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.278089 / 0.215209 (0.062880) | 2.725602 / 2.077655 (0.647948) | 1.413346 / 1.504120 (-0.090774) | 1.290352 / 1.541195 (-0.250843) | 1.306732 / 1.468490 (-0.161758) | 0.713945 / 4.584777 (-3.870832) | 2.380131 / 3.745712 (-1.365581) | 2.804548 / 5.269862 (-2.465314) | 1.896506 / 4.565676 (-2.669170) | 0.078303 / 0.424275 (-0.345972) | 0.005475 / 0.007607 (-0.002132) | 0.340162 / 0.226044 (0.114117) | 3.355732 / 2.268929 (1.086803) | 1.776012 / 55.444624 (-53.668613) | 1.507006 / 6.876477 (-5.369471) | 1.607234 / 2.142072 (-0.534838) | 0.796458 / 4.805227 (-4.008769) | 0.135888 / 6.500664 (-6.364776) | 0.042352 / 0.075469 (-0.033118) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.988337 / 1.841788 (-0.853450) | 11.299311 / 8.074308 (3.225003) | 9.166845 / 10.191392 (-1.024547) | 0.140351 / 0.680424 (-0.540073) | 0.013932 / 0.534201 (-0.520269) | 0.302157 / 0.579283 (-0.277126) | 0.259355 / 0.434364 (-0.175009) | 0.339850 / 0.540337 (-0.200488) | 0.465345 / 1.386936 (-0.921591) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005707 / 0.011353 (-0.005646) | 0.003846 / 0.011008 (-0.007162) | 0.050100 / 0.038508 (0.011591) | 0.031810 / 0.023109 (0.008701) | 0.265120 / 0.275898 (-0.010778) | 0.286635 / 0.323480 (-0.036845) | 0.004329 / 0.007986 (-0.003657) | 0.002757 / 0.004328 (-0.001571) | 0.050864 / 0.004250 (0.046614) | 0.039872 / 0.037052 (0.002820) | 0.277675 / 0.258489 (0.019186) | 0.310251 / 0.293841 (0.016410) | 0.032458 / 0.128546 (-0.096088) | 0.012072 / 0.075646 (-0.063574) | 0.060539 / 0.419271 (-0.358733) | 0.033772 / 0.043533 (-0.009761) | 0.265992 / 0.255139 (0.010853) | 0.286152 / 0.283200 (0.002953) | 0.018210 / 0.141683 (-0.123473) | 1.151461 / 1.452155 (-0.300694) | 1.199998 / 1.492716 (-0.292718) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094109 / 0.018006 (0.076103) | 0.298190 / 0.000490 (0.297701) | 0.000199 / 0.000200 (-0.000001) | 0.000045 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022431 / 0.037411 (-0.014980) | 0.076319 / 0.014526 (0.061794) | 0.090023 / 0.176557 (-0.086533) | 0.128189 / 0.737135 (-0.608946) | 0.089564 / 0.296338 (-0.206774) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298887 / 0.215209 (0.083678) | 2.928580 / 2.077655 (0.850926) | 1.565379 / 1.504120 (0.061259) | 1.424704 / 1.541195 (-0.116490) | 1.446336 / 1.468490 (-0.022154) | 0.716348 / 4.584777 (-3.868429) | 0.967465 / 3.745712 (-2.778247) | 2.967318 / 5.269862 (-2.302544) | 1.918878 / 4.565676 (-2.646798) | 0.077167 / 0.424275 (-0.347108) | 0.005271 / 0.007607 (-0.002336) | 0.342376 / 0.226044 (0.116332) | 3.386044 / 2.268929 (1.117115) | 1.915308 / 55.444624 (-53.529316) | 1.612729 / 6.876477 (-5.263748) | 1.621278 / 2.142072 (-0.520794) | 0.804639 / 4.805227 (-4.000589) | 0.132596 / 6.500664 (-6.368069) | 0.041075 / 0.075469 (-0.034394) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.996521 / 1.841788 (-0.845267) | 12.328856 / 8.074308 (4.254548) | 10.585154 / 10.191392 (0.393762) | 0.131720 / 0.680424 (-0.548704) | 0.016777 / 0.534201 (-0.517424) | 0.300424 / 0.579283 (-0.278860) | 0.128526 / 0.434364 (-0.305838) | 0.339961 / 0.540337 (-0.200377) | 0.441661 / 1.386936 (-0.945275) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a16477ddf8f96e590e9597225a5d180cce343f26 \"CML watermark\")\n" ]
2024-06-28T05:37:36
2024-06-28T07:17:26
2024-06-28T07:11:17
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7009", "html_url": "https://github.com/huggingface/datasets/pull/7009", "diff_url": "https://github.com/huggingface/datasets/pull/7009.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7009.patch", "merged_at": "2024-06-28T07:11:17" }
Support ruff 0.5.0 in CI and revert: - #7007 Fix #7008.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7009/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7009/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7008
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7008/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7008/comments
https://api.github.com/repos/huggingface/datasets/issues/7008/events
https://github.com/huggingface/datasets/issues/7008
2,379,591,141
I_kwDODunzps6N1a3l
7,008
Support ruff 0.5.0 in CI
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "id": 4296013012, "node_id": "LA_kwDODunzps8AAAABAA_01A", "url": "https://api.github.com/repos/huggingface/datasets/labels/maintenance", "name": "maintenance", "color": "d4c5f9", "default": false, "description": "Maintenance tasks" } ]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[]
2024-06-28T05:11:26
2024-06-28T07:11:18
2024-06-28T07:11:18
MEMBER
null
null
null
Support ruff 0.5.0 in CI. Also revert: - #7007
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7008/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7008/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7007
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7007/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7007/comments
https://api.github.com/repos/huggingface/datasets/issues/7007/events
https://github.com/huggingface/datasets/pull/7007
2,379,588,676
PR_kwDODunzps5z2Q68
7,007
Fix CI by temporarily pinning ruff < 0.5.0
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7007). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005225 / 0.011353 (-0.006128) | 0.003856 / 0.011008 (-0.007152) | 0.063455 / 0.038508 (0.024947) | 0.030184 / 0.023109 (0.007075) | 0.248518 / 0.275898 (-0.027380) | 0.270596 / 0.323480 (-0.052884) | 0.003185 / 0.007986 (-0.004800) | 0.002739 / 0.004328 (-0.001590) | 0.049379 / 0.004250 (0.045129) | 0.043190 / 0.037052 (0.006138) | 0.257181 / 0.258489 (-0.001308) | 0.283385 / 0.293841 (-0.010456) | 0.029702 / 0.128546 (-0.098844) | 0.012022 / 0.075646 (-0.063624) | 0.204531 / 0.419271 (-0.214741) | 0.035621 / 0.043533 (-0.007912) | 0.257745 / 0.255139 (0.002606) | 0.269033 / 0.283200 (-0.014167) | 0.019283 / 0.141683 (-0.122400) | 1.152477 / 1.452155 (-0.299678) | 1.180929 / 1.492716 (-0.311788) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094520 / 0.018006 (0.076514) | 0.299383 / 0.000490 (0.298893) | 0.000224 / 0.000200 (0.000024) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019267 / 0.037411 (-0.018145) | 0.062458 / 0.014526 (0.047933) | 0.075743 / 0.176557 (-0.100814) | 0.128564 / 0.737135 (-0.608572) | 0.075549 / 0.296338 (-0.220789) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.288809 / 0.215209 (0.073600) | 2.854469 / 2.077655 (0.776814) | 1.581731 / 1.504120 (0.077611) | 1.460196 / 1.541195 (-0.080999) | 1.485567 / 1.468490 (0.017077) | 0.708824 / 4.584777 (-3.875953) | 2.362389 / 3.745712 (-1.383323) | 2.980804 / 5.269862 (-2.289057) | 1.918788 / 4.565676 (-2.646888) | 0.088389 / 0.424275 (-0.335886) | 0.005266 / 0.007607 (-0.002341) | 0.348598 / 0.226044 (0.122554) | 3.443202 / 2.268929 (1.174273) | 1.979311 / 55.444624 (-53.465314) | 1.655774 / 6.876477 (-5.220702) | 1.685538 / 2.142072 (-0.456535) | 0.788695 / 4.805227 (-4.016532) | 0.138403 / 6.500664 (-6.362261) | 0.043288 / 0.075469 (-0.032181) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.975874 / 1.841788 (-0.865913) | 11.506991 / 8.074308 (3.432683) | 9.640619 / 10.191392 (-0.550773) | 0.131897 / 0.680424 (-0.548527) | 0.014912 / 0.534201 (-0.519289) | 0.304173 / 0.579283 (-0.275110) | 0.262483 / 0.434364 (-0.171881) | 0.342636 / 0.540337 (-0.197701) | 0.440337 / 1.386936 (-0.946599) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005961 / 0.011353 (-0.005392) | 0.004023 / 0.011008 (-0.006985) | 0.050230 / 0.038508 (0.011722) | 0.033204 / 0.023109 (0.010095) | 0.263462 / 0.275898 (-0.012436) | 0.287517 / 0.323480 (-0.035963) | 0.004432 / 0.007986 (-0.003553) | 0.002938 / 0.004328 (-0.001390) | 0.049297 / 0.004250 (0.045047) | 0.041166 / 0.037052 (0.004113) | 0.279220 / 0.258489 (0.020731) | 0.312857 / 0.293841 (0.019016) | 0.032567 / 0.128546 (-0.095979) | 0.012566 / 0.075646 (-0.063080) | 0.060579 / 0.419271 (-0.358692) | 0.033760 / 0.043533 (-0.009773) | 0.264219 / 0.255139 (0.009080) | 0.282929 / 0.283200 (-0.000270) | 0.017434 / 0.141683 (-0.124248) | 1.148472 / 1.452155 (-0.303683) | 1.247434 / 1.492716 (-0.245282) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004566 / 0.018006 (-0.013440) | 0.296110 / 0.000490 (0.295621) | 0.000219 / 0.000200 (0.000019) | 0.000051 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022514 / 0.037411 (-0.014897) | 0.076554 / 0.014526 (0.062029) | 0.090427 / 0.176557 (-0.086130) | 0.128611 / 0.737135 (-0.608524) | 0.090748 / 0.296338 (-0.205590) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.315051 / 0.215209 (0.099842) | 3.099662 / 2.077655 (1.022007) | 1.706009 / 1.504120 (0.201889) | 1.574637 / 1.541195 (0.033442) | 1.592454 / 1.468490 (0.123964) | 0.724699 / 4.584777 (-3.860078) | 0.949954 / 3.745712 (-2.795758) | 2.818915 / 5.269862 (-2.450946) | 1.931290 / 4.565676 (-2.634386) | 0.079308 / 0.424275 (-0.344967) | 0.005414 / 0.007607 (-0.002193) | 0.373547 / 0.226044 (0.147503) | 3.742222 / 2.268929 (1.473293) | 2.076239 / 55.444624 (-53.368385) | 1.772359 / 6.876477 (-5.104118) | 1.894369 / 2.142072 (-0.247703) | 0.803650 / 4.805227 (-4.001578) | 0.136995 / 6.500664 (-6.363669) | 0.041565 / 0.075469 (-0.033905) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.989806 / 1.841788 (-0.851982) | 12.151497 / 8.074308 (4.077189) | 10.188075 / 10.191392 (-0.003317) | 0.141194 / 0.680424 (-0.539230) | 0.016351 / 0.534201 (-0.517850) | 0.303242 / 0.579283 (-0.276041) | 0.127446 / 0.434364 (-0.306918) | 0.339806 / 0.540337 (-0.200532) | 0.443527 / 1.386936 (-0.943409) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#dd631431cb73c3ca434dfd6b115a6c30c5a665a5 \"CML watermark\")\n" ]
2024-06-28T05:09:17
2024-06-28T05:31:21
2024-06-28T05:25:17
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7007", "html_url": "https://github.com/huggingface/datasets/pull/7007", "diff_url": "https://github.com/huggingface/datasets/pull/7007.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7007.patch", "merged_at": "2024-06-28T05:25:17" }
As a hotfix for CI, temporarily pin ruff upper version < 0.5.0. Fix #7006. Revert once root cause is fixed.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7007/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7007/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7006
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7006/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7006/comments
https://api.github.com/repos/huggingface/datasets/issues/7006/events
https://github.com/huggingface/datasets/issues/7006
2,379,581,543
I_kwDODunzps6N1Yhn
7,006
CI is broken after ruff-0.5.0: E721
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "id": 4296013012, "node_id": "LA_kwDODunzps8AAAABAA_01A", "url": "https://api.github.com/repos/huggingface/datasets/labels/maintenance", "name": "maintenance", "color": "d4c5f9", "default": false, "description": "Maintenance tasks" } ]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[]
2024-06-28T05:03:28
2024-06-28T05:25:18
2024-06-28T05:25:18
MEMBER
null
null
null
After ruff-0.5.0 release (https://github.com/astral-sh/ruff/releases/tag/0.5.0), our CI is broken due to E721 rule. See: https://github.com/huggingface/datasets/actions/runs/9707641618/job/26793170961?pr=6983 > src/datasets/features/features.py:844:12: E721 Use `is` and `is not` for type comparisons, or `isinstance()` for isinstance checks
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7006/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7006/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7005
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7005/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7005/comments
https://api.github.com/repos/huggingface/datasets/issues/7005/events
https://github.com/huggingface/datasets/issues/7005
2,378,424,349
I_kwDODunzps6Nw-Ad
7,005
EmptyDatasetError: The directory at /metadata.jsonl doesn't contain any data files
{ "login": "Aki1991", "id": 117731544, "node_id": "U_kgDOBwRw2A", "avatar_url": "https://avatars.githubusercontent.com/u/117731544?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Aki1991", "html_url": "https://github.com/Aki1991", "followers_url": "https://api.github.com/users/Aki1991/followers", "following_url": "https://api.github.com/users/Aki1991/following{/other_user}", "gists_url": "https://api.github.com/users/Aki1991/gists{/gist_id}", "starred_url": "https://api.github.com/users/Aki1991/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Aki1991/subscriptions", "organizations_url": "https://api.github.com/users/Aki1991/orgs", "repos_url": "https://api.github.com/users/Aki1991/repos", "events_url": "https://api.github.com/users/Aki1991/events{/privacy}", "received_events_url": "https://api.github.com/users/Aki1991/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hi ! `data_dir=` is for directories, can you try using `data_files=` instead ?", "If you are trying to load your image dataset from a local folder, you should replace \"data_dir=path/to/jsonl/metadata.jsonl\" with the real folder path in your computer.\r\n\r\nhttps://huggingface.co/docs/datasets/en/image_load#imagefolder", "Ah yes. My bad. I was giving file name. I should have given the folder directory as the path. That solved my issue. Thank you @albertvillanova and @lhoestq. " ]
2024-06-27T15:08:26
2024-06-28T09:56:19
2024-06-28T09:56:19
NONE
null
null
null
### Describe the bug while trying to load custom dataset from jsonl file, I get the error: "metadata.jsonl doesn't contain any data files" ### Steps to reproduce the bug This is my [metadata_v2.jsonl](https://github.com/user-attachments/files/16016011/metadata_v2.json) file. I have this file in the folder with all images mentioned in that json(l) file. Through below mentioned command I am trying to load_dataset so that I can upload it as mentioned here on the [official website](https://huggingface.co/docs/datasets/en/image_dataset#upload-dataset-to-the-hub). ```` from datasets import load_dataset dataset = load_dataset("imagefolder", data_dir="path/to/jsonl/metadata.jsonl") ```` error: ```` EmptyDatasetError Traceback (most recent call last) Cell In[18], line 3 1 from datasets import load_dataset ----> 3 dataset = load_dataset("imagefolder", 4 data_dir="path/to/jsonl/file/metadata.jsonl") 5 dataset[0]["objects"] File ~/anaconda3/envs/lvis/lib/python3.11/site-packages/datasets/load.py:2594, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs) 2589 verification_mode = VerificationMode( 2590 (verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS 2591 ) 2593 # Create a dataset builder -> 2594 builder_instance = load_dataset_builder( 2595 path=path, 2596 name=name, 2597 data_dir=data_dir, 2598 data_files=data_files, 2599 cache_dir=cache_dir, 2600 features=features, 2601 download_config=download_config, 2602 download_mode=download_mode, 2603 revision=revision, 2604 token=token, 2605 storage_options=storage_options, 2606 trust_remote_code=trust_remote_code, 2607 _require_default_config_name=name is None, 2608 **config_kwargs, 2609 ) 2611 # Return iterable dataset in case of streaming 2612 if streaming: File ~/anaconda3/envs/lvis/lib/python3.11/site-packages/datasets/load.py:2266, in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, use_auth_token, storage_options, trust_remote_code, _require_default_config_name, **config_kwargs) 2264 download_config = download_config.copy() if download_config else DownloadConfig() 2265 download_config.storage_options.update(storage_options) -> 2266 dataset_module = dataset_module_factory( 2267 path, 2268 revision=revision, 2269 download_config=download_config, 2270 download_mode=download_mode, 2271 data_dir=data_dir, 2272 data_files=data_files, 2273 cache_dir=cache_dir, 2274 trust_remote_code=trust_remote_code, 2275 _require_default_config_name=_require_default_config_name, 2276 _require_custom_configs=bool(config_kwargs), 2277 ) 2278 # Get dataset builder class from the processing script 2279 builder_kwargs = dataset_module.builder_kwargs File ~/anaconda3/envs/lvis/lib/python3.11/site-packages/datasets/load.py:1805, in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, cache_dir, trust_remote_code, _require_default_config_name, _require_custom_configs, **download_kwargs) 1782 # We have several ways to get a dataset builder: 1783 # 1784 # - if path is the name of a packaged dataset module (...) 1796 1797 # Try packaged 1798 if path in _PACKAGED_DATASETS_MODULES: 1799 return PackagedDatasetModuleFactory( 1800 path, 1801 data_dir=data_dir, 1802 data_files=data_files, 1803 download_config=download_config, 1804 download_mode=download_mode, -> 1805 ).get_module() 1806 # Try locally 1807 elif path.endswith(filename): File ~/anaconda3/envs/lvis/lib/python3.11/site-packages/datasets/load.py:1140, in PackagedDatasetModuleFactory.get_module(self) 1135 def get_module(self) -> DatasetModule: 1136 base_path = Path(self.data_dir or "").expanduser().resolve().as_posix() 1137 patterns = ( 1138 sanitize_patterns(self.data_files) 1139 if self.data_files is not None -> 1140 else get_data_patterns(base_path, download_config=self.download_config) 1141 ) 1142 data_files = DataFilesDict.from_patterns( 1143 patterns, 1144 download_config=self.download_config, 1145 base_path=base_path, 1146 ) 1147 supports_metadata = self.name in _MODULE_SUPPORTS_METADATA File ~/anaconda3/envs/lvis/lib/python3.11/site-packages/datasets/data_files.py:503, in get_data_patterns(base_path, download_config) 501 return _get_data_files_patterns(resolver) 502 except FileNotFoundError: --> 503 raise EmptyDatasetError(f"The directory at {base_path} doesn't contain any data files") from None EmptyDatasetError: The directory at path/to/jsonl/file/metadata.jsonl doesn't contain any data files` ``` ### Expected behavior It should be able load the whole file in a format of "dataset" inside the dataset variable. But it gives error "The directory at "path/to/jsonl/metadata.jsonl" doesn't contain any data files." ### Environment info I am using conda environment.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7005/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7005/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7004
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7004/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7004/comments
https://api.github.com/repos/huggingface/datasets/issues/7004/events
https://github.com/huggingface/datasets/pull/7004
2,376,064,264
PR_kwDODunzps5zrIYR
7,004
Fix WebDatasets KeyError for user-defined Features when a field is missing in an example
{ "login": "ProGamerGov", "id": 10626398, "node_id": "MDQ6VXNlcjEwNjI2Mzk4", "avatar_url": "https://avatars.githubusercontent.com/u/10626398?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ProGamerGov", "html_url": "https://github.com/ProGamerGov", "followers_url": "https://api.github.com/users/ProGamerGov/followers", "following_url": "https://api.github.com/users/ProGamerGov/following{/other_user}", "gists_url": "https://api.github.com/users/ProGamerGov/gists{/gist_id}", "starred_url": "https://api.github.com/users/ProGamerGov/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ProGamerGov/subscriptions", "organizations_url": "https://api.github.com/users/ProGamerGov/orgs", "repos_url": "https://api.github.com/users/ProGamerGov/repos", "events_url": "https://api.github.com/users/ProGamerGov/events{/privacy}", "received_events_url": "https://api.github.com/users/ProGamerGov/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7004). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005188 / 0.011353 (-0.006165) | 0.003812 / 0.011008 (-0.007196) | 0.062408 / 0.038508 (0.023900) | 0.030734 / 0.023109 (0.007625) | 0.236528 / 0.275898 (-0.039370) | 0.267684 / 0.323480 (-0.055796) | 0.003182 / 0.007986 (-0.004804) | 0.004009 / 0.004328 (-0.000319) | 0.048966 / 0.004250 (0.044715) | 0.045259 / 0.037052 (0.008207) | 0.250586 / 0.258489 (-0.007903) | 0.287079 / 0.293841 (-0.006762) | 0.029235 / 0.128546 (-0.099311) | 0.012216 / 0.075646 (-0.063431) | 0.203864 / 0.419271 (-0.215408) | 0.036324 / 0.043533 (-0.007209) | 0.245180 / 0.255139 (-0.009959) | 0.270327 / 0.283200 (-0.012872) | 0.018676 / 0.141683 (-0.123007) | 1.115568 / 1.452155 (-0.336586) | 1.183267 / 1.492716 (-0.309449) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094307 / 0.018006 (0.076301) | 0.299071 / 0.000490 (0.298581) | 0.000219 / 0.000200 (0.000019) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018336 / 0.037411 (-0.019076) | 0.062973 / 0.014526 (0.048447) | 0.074137 / 0.176557 (-0.102420) | 0.120553 / 0.737135 (-0.616582) | 0.075411 / 0.296338 (-0.220927) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284751 / 0.215209 (0.069542) | 2.789294 / 2.077655 (0.711640) | 1.457789 / 1.504120 (-0.046331) | 1.339140 / 1.541195 (-0.202055) | 1.341685 / 1.468490 (-0.126805) | 0.714928 / 4.584777 (-3.869849) | 2.361197 / 3.745712 (-1.384516) | 2.791569 / 5.269862 (-2.478293) | 1.892261 / 4.565676 (-2.673416) | 0.077954 / 0.424275 (-0.346321) | 0.005454 / 0.007607 (-0.002153) | 0.350766 / 0.226044 (0.124721) | 3.416749 / 2.268929 (1.147820) | 1.835377 / 55.444624 (-53.609247) | 1.506456 / 6.876477 (-5.370020) | 1.642728 / 2.142072 (-0.499344) | 0.791543 / 4.805227 (-4.013684) | 0.133102 / 6.500664 (-6.367562) | 0.042572 / 0.075469 (-0.032897) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.977958 / 1.841788 (-0.863830) | 11.438271 / 8.074308 (3.363963) | 9.305719 / 10.191392 (-0.885673) | 0.141239 / 0.680424 (-0.539185) | 0.014330 / 0.534201 (-0.519871) | 0.302201 / 0.579283 (-0.277082) | 0.261688 / 0.434364 (-0.172676) | 0.338752 / 0.540337 (-0.201586) | 0.468466 / 1.386936 (-0.918470) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005629 / 0.011353 (-0.005723) | 0.003997 / 0.011008 (-0.007011) | 0.050447 / 0.038508 (0.011939) | 0.031694 / 0.023109 (0.008585) | 0.277392 / 0.275898 (0.001494) | 0.290440 / 0.323480 (-0.033040) | 0.004403 / 0.007986 (-0.003583) | 0.002851 / 0.004328 (-0.001478) | 0.048593 / 0.004250 (0.044343) | 0.040622 / 0.037052 (0.003570) | 0.282640 / 0.258489 (0.024151) | 0.309390 / 0.293841 (0.015549) | 0.031453 / 0.128546 (-0.097094) | 0.012424 / 0.075646 (-0.063223) | 0.060311 / 0.419271 (-0.358960) | 0.033195 / 0.043533 (-0.010338) | 0.266867 / 0.255139 (0.011728) | 0.281966 / 0.283200 (-0.001234) | 0.018026 / 0.141683 (-0.123657) | 1.136273 / 1.452155 (-0.315882) | 1.141643 / 1.492716 (-0.351073) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095011 / 0.018006 (0.077005) | 0.300571 / 0.000490 (0.300082) | 0.000220 / 0.000200 (0.000020) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022903 / 0.037411 (-0.014508) | 0.077130 / 0.014526 (0.062604) | 0.089576 / 0.176557 (-0.086980) | 0.127156 / 0.737135 (-0.609980) | 0.090008 / 0.296338 (-0.206331) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.289270 / 0.215209 (0.074061) | 2.848239 / 2.077655 (0.770585) | 1.546788 / 1.504120 (0.042668) | 1.417275 / 1.541195 (-0.123920) | 1.456214 / 1.468490 (-0.012276) | 0.716688 / 4.584777 (-3.868088) | 0.940242 / 3.745712 (-2.805470) | 2.911956 / 5.269862 (-2.357906) | 1.871358 / 4.565676 (-2.694318) | 0.077553 / 0.424275 (-0.346722) | 0.005279 / 0.007607 (-0.002328) | 0.343338 / 0.226044 (0.117294) | 3.368694 / 2.268929 (1.099766) | 1.896765 / 55.444624 (-53.547859) | 1.612414 / 6.876477 (-5.264063) | 1.615934 / 2.142072 (-0.526138) | 0.794016 / 4.805227 (-4.011212) | 0.131821 / 6.500664 (-6.368843) | 0.041495 / 0.075469 (-0.033975) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.003418 / 1.841788 (-0.838370) | 12.073906 / 8.074308 (3.999598) | 10.166291 / 10.191392 (-0.025101) | 0.131224 / 0.680424 (-0.549200) | 0.015246 / 0.534201 (-0.518955) | 0.299835 / 0.579283 (-0.279448) | 0.124308 / 0.434364 (-0.310056) | 0.336414 / 0.540337 (-0.203924) | 0.429569 / 1.386936 (-0.957367) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#83d28601fad73755b74314a9bc1e327005514d54 \"CML watermark\")\n", "@lhoestq Thank you!" ]
2024-06-26T18:58:05
2024-06-29T00:15:49
2024-06-28T09:30:12
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7004", "html_url": "https://github.com/huggingface/datasets/pull/7004", "diff_url": "https://github.com/huggingface/datasets/pull/7004.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7004.patch", "merged_at": "2024-06-28T09:30:12" }
Fixes: https://github.com/huggingface/datasets/issues/6900 Not sure if this needs any addition stuff before merging
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7004/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7004/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7003
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7003/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7003/comments
https://api.github.com/repos/huggingface/datasets/issues/7003/events
https://github.com/huggingface/datasets/pull/7003
2,373,084,132
PR_kwDODunzps5zhRAK
7,003
minor fix for bfloat16
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7003). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005633 / 0.011353 (-0.005720) | 0.004366 / 0.011008 (-0.006642) | 0.064081 / 0.038508 (0.025573) | 0.031790 / 0.023109 (0.008681) | 0.239270 / 0.275898 (-0.036628) | 0.267424 / 0.323480 (-0.056055) | 0.003229 / 0.007986 (-0.004756) | 0.002849 / 0.004328 (-0.001479) | 0.050147 / 0.004250 (0.045897) | 0.046119 / 0.037052 (0.009066) | 0.253506 / 0.258489 (-0.004983) | 0.280464 / 0.293841 (-0.013377) | 0.030561 / 0.128546 (-0.097985) | 0.012258 / 0.075646 (-0.063388) | 0.212222 / 0.419271 (-0.207049) | 0.036695 / 0.043533 (-0.006838) | 0.242141 / 0.255139 (-0.012998) | 0.263014 / 0.283200 (-0.020186) | 0.020008 / 0.141683 (-0.121675) | 1.103701 / 1.452155 (-0.348453) | 1.151641 / 1.492716 (-0.341076) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095884 / 0.018006 (0.077878) | 0.300858 / 0.000490 (0.300368) | 0.000209 / 0.000200 (0.000009) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018713 / 0.037411 (-0.018698) | 0.063659 / 0.014526 (0.049134) | 0.074588 / 0.176557 (-0.101968) | 0.120779 / 0.737135 (-0.616356) | 0.077768 / 0.296338 (-0.218570) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.281680 / 0.215209 (0.066471) | 2.754658 / 2.077655 (0.677003) | 1.454036 / 1.504120 (-0.050084) | 1.333153 / 1.541195 (-0.208042) | 1.383616 / 1.468490 (-0.084874) | 0.728933 / 4.584777 (-3.855844) | 2.374989 / 3.745712 (-1.370723) | 2.990824 / 5.269862 (-2.279038) | 1.899065 / 4.565676 (-2.666612) | 0.078657 / 0.424275 (-0.345619) | 0.005162 / 0.007607 (-0.002445) | 0.335883 / 0.226044 (0.109838) | 3.323047 / 2.268929 (1.054119) | 1.848290 / 55.444624 (-53.596335) | 1.519510 / 6.876477 (-5.356966) | 1.563608 / 2.142072 (-0.578465) | 0.807890 / 4.805227 (-3.997337) | 0.134517 / 6.500664 (-6.366147) | 0.042208 / 0.075469 (-0.033262) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.963634 / 1.841788 (-0.878154) | 11.617868 / 8.074308 (3.543560) | 9.804648 / 10.191392 (-0.386744) | 0.142311 / 0.680424 (-0.538113) | 0.013748 / 0.534201 (-0.520453) | 0.300309 / 0.579283 (-0.278974) | 0.268214 / 0.434364 (-0.166150) | 0.342406 / 0.540337 (-0.197931) | 0.430315 / 1.386936 (-0.956621) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005533 / 0.011353 (-0.005820) | 0.004208 / 0.011008 (-0.006800) | 0.051732 / 0.038508 (0.013224) | 0.031296 / 0.023109 (0.008187) | 0.275091 / 0.275898 (-0.000807) | 0.296889 / 0.323480 (-0.026591) | 0.004363 / 0.007986 (-0.003623) | 0.002807 / 0.004328 (-0.001522) | 0.049727 / 0.004250 (0.045476) | 0.039798 / 0.037052 (0.002746) | 0.284379 / 0.258489 (0.025890) | 0.317281 / 0.293841 (0.023440) | 0.031286 / 0.128546 (-0.097261) | 0.012384 / 0.075646 (-0.063263) | 0.061619 / 0.419271 (-0.357652) | 0.032974 / 0.043533 (-0.010559) | 0.274313 / 0.255139 (0.019174) | 0.296142 / 0.283200 (0.012943) | 0.017391 / 0.141683 (-0.124291) | 1.148369 / 1.452155 (-0.303786) | 1.171539 / 1.492716 (-0.321177) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097309 / 0.018006 (0.079302) | 0.304701 / 0.000490 (0.304212) | 0.000208 / 0.000200 (0.000008) | 0.000110 / 0.000054 (0.000055) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022382 / 0.037411 (-0.015030) | 0.077000 / 0.014526 (0.062474) | 0.088165 / 0.176557 (-0.088392) | 0.129060 / 0.737135 (-0.608075) | 0.090128 / 0.296338 (-0.206211) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285308 / 0.215209 (0.070099) | 2.816680 / 2.077655 (0.739025) | 1.542418 / 1.504120 (0.038298) | 1.418567 / 1.541195 (-0.122628) | 1.447018 / 1.468490 (-0.021472) | 0.737055 / 4.584777 (-3.847722) | 0.968285 / 3.745712 (-2.777427) | 2.880120 / 5.269862 (-2.389741) | 1.921813 / 4.565676 (-2.643864) | 0.079110 / 0.424275 (-0.345165) | 0.005826 / 0.007607 (-0.001781) | 0.336441 / 0.226044 (0.110397) | 3.326384 / 2.268929 (1.057456) | 1.929205 / 55.444624 (-53.515419) | 1.618215 / 6.876477 (-5.258261) | 1.769688 / 2.142072 (-0.372385) | 0.808009 / 4.805227 (-3.997219) | 0.136384 / 6.500664 (-6.364280) | 0.041332 / 0.075469 (-0.034137) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.010884 / 1.841788 (-0.830903) | 12.266118 / 8.074308 (4.191810) | 10.287424 / 10.191392 (0.096032) | 0.143172 / 0.680424 (-0.537251) | 0.015798 / 0.534201 (-0.518403) | 0.301604 / 0.579283 (-0.277679) | 0.131079 / 0.434364 (-0.303285) | 0.338396 / 0.540337 (-0.201941) | 0.460721 / 1.386936 (-0.926215) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1e1d31387aa594b2e745c8ed8964962c134d203d \"CML watermark\")\n" ]
2024-06-25T16:10:04
2024-06-25T16:16:11
2024-06-25T16:10:10
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7003", "html_url": "https://github.com/huggingface/datasets/pull/7003", "diff_url": "https://github.com/huggingface/datasets/pull/7003.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7003.patch", "merged_at": "2024-06-25T16:10:10" }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7003/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7003/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7002
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7002/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7002/comments
https://api.github.com/repos/huggingface/datasets/issues/7002/events
https://github.com/huggingface/datasets/pull/7002
2,373,010,351
PR_kwDODunzps5zhBld
7,002
Fix dump of bfloat16 torch tensor
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7002). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005321 / 0.011353 (-0.006032) | 0.003495 / 0.011008 (-0.007514) | 0.065577 / 0.038508 (0.027069) | 0.030876 / 0.023109 (0.007767) | 0.255216 / 0.275898 (-0.020682) | 0.265111 / 0.323480 (-0.058368) | 0.003149 / 0.007986 (-0.004837) | 0.004062 / 0.004328 (-0.000267) | 0.051142 / 0.004250 (0.046891) | 0.042460 / 0.037052 (0.005408) | 0.270692 / 0.258489 (0.012203) | 0.284957 / 0.293841 (-0.008884) | 0.030143 / 0.128546 (-0.098403) | 0.012148 / 0.075646 (-0.063498) | 0.203706 / 0.419271 (-0.215565) | 0.035948 / 0.043533 (-0.007584) | 0.251391 / 0.255139 (-0.003748) | 0.270908 / 0.283200 (-0.012292) | 0.018496 / 0.141683 (-0.123187) | 1.118567 / 1.452155 (-0.333587) | 1.157695 / 1.492716 (-0.335021) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.135649 / 0.018006 (0.117643) | 0.281489 / 0.000490 (0.281000) | 0.000244 / 0.000200 (0.000044) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018700 / 0.037411 (-0.018711) | 0.062305 / 0.014526 (0.047779) | 0.074968 / 0.176557 (-0.101589) | 0.121490 / 0.737135 (-0.615645) | 0.075585 / 0.296338 (-0.220754) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.276929 / 0.215209 (0.061720) | 2.733543 / 2.077655 (0.655888) | 1.414585 / 1.504120 (-0.089535) | 1.301975 / 1.541195 (-0.239220) | 1.336698 / 1.468490 (-0.131792) | 0.720650 / 4.584777 (-3.864127) | 2.374796 / 3.745712 (-1.370917) | 2.866534 / 5.269862 (-2.403327) | 1.819607 / 4.565676 (-2.746069) | 0.077914 / 0.424275 (-0.346361) | 0.005146 / 0.007607 (-0.002461) | 0.331722 / 0.226044 (0.105678) | 3.290875 / 2.268929 (1.021946) | 1.799806 / 55.444624 (-53.644818) | 1.476816 / 6.876477 (-5.399660) | 1.511441 / 2.142072 (-0.630631) | 0.798043 / 4.805227 (-4.007185) | 0.134577 / 6.500664 (-6.366087) | 0.042055 / 0.075469 (-0.033415) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.967908 / 1.841788 (-0.873880) | 11.215688 / 8.074308 (3.141380) | 9.486403 / 10.191392 (-0.704989) | 0.141864 / 0.680424 (-0.538560) | 0.013462 / 0.534201 (-0.520739) | 0.302601 / 0.579283 (-0.276682) | 0.266870 / 0.434364 (-0.167494) | 0.336963 / 0.540337 (-0.203375) | 0.425374 / 1.386936 (-0.961562) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005549 / 0.011353 (-0.005803) | 0.003464 / 0.011008 (-0.007544) | 0.051421 / 0.038508 (0.012913) | 0.032320 / 0.023109 (0.009211) | 0.269591 / 0.275898 (-0.006307) | 0.292015 / 0.323480 (-0.031465) | 0.004351 / 0.007986 (-0.003634) | 0.002772 / 0.004328 (-0.001556) | 0.048836 / 0.004250 (0.044586) | 0.039501 / 0.037052 (0.002449) | 0.282419 / 0.258489 (0.023930) | 0.312289 / 0.293841 (0.018448) | 0.031788 / 0.128546 (-0.096759) | 0.012074 / 0.075646 (-0.063572) | 0.060457 / 0.419271 (-0.358814) | 0.033106 / 0.043533 (-0.010427) | 0.270323 / 0.255139 (0.015184) | 0.287855 / 0.283200 (0.004655) | 0.017865 / 0.141683 (-0.123818) | 1.130406 / 1.452155 (-0.321749) | 1.178679 / 1.492716 (-0.314038) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093606 / 0.018006 (0.075600) | 0.297328 / 0.000490 (0.296838) | 0.000211 / 0.000200 (0.000011) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022498 / 0.037411 (-0.014913) | 0.076927 / 0.014526 (0.062401) | 0.088013 / 0.176557 (-0.088544) | 0.127279 / 0.737135 (-0.609857) | 0.089424 / 0.296338 (-0.206914) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296441 / 0.215209 (0.081232) | 2.913051 / 2.077655 (0.835396) | 1.581816 / 1.504120 (0.077696) | 1.451575 / 1.541195 (-0.089620) | 1.458968 / 1.468490 (-0.009522) | 0.727191 / 4.584777 (-3.857586) | 0.954607 / 3.745712 (-2.791106) | 2.824357 / 5.269862 (-2.445505) | 1.886779 / 4.565676 (-2.678898) | 0.079397 / 0.424275 (-0.344878) | 0.005566 / 0.007607 (-0.002041) | 0.351655 / 0.226044 (0.125611) | 3.395790 / 2.268929 (1.126862) | 1.886238 / 55.444624 (-53.558387) | 1.615413 / 6.876477 (-5.261064) | 1.723922 / 2.142072 (-0.418150) | 0.807858 / 4.805227 (-3.997369) | 0.132998 / 6.500664 (-6.367667) | 0.040396 / 0.075469 (-0.035073) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.008527 / 1.841788 (-0.833261) | 11.736104 / 8.074308 (3.661796) | 10.283367 / 10.191392 (0.091975) | 0.141386 / 0.680424 (-0.539038) | 0.015722 / 0.534201 (-0.518479) | 0.301785 / 0.579283 (-0.277498) | 0.123073 / 0.434364 (-0.311291) | 0.340478 / 0.540337 (-0.199859) | 0.462936 / 1.386936 (-0.924000) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bfb0a414d68e945addf95a9419a8314c372e19ba \"CML watermark\")\n" ]
2024-06-25T15:38:09
2024-06-25T16:10:16
2024-06-25T15:51:52
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/7002", "html_url": "https://github.com/huggingface/datasets/pull/7002", "diff_url": "https://github.com/huggingface/datasets/pull/7002.diff", "patch_url": "https://github.com/huggingface/datasets/pull/7002.patch", "merged_at": "2024-06-25T15:51:52" }
close https://github.com/huggingface/datasets/issues/7000
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7002/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7002/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7001
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7001/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7001/comments
https://api.github.com/repos/huggingface/datasets/issues/7001/events
https://github.com/huggingface/datasets/issues/7001
2,372,930,879
I_kwDODunzps6NcA0_
7,001
Datasetbuilder Local Download FileNotFoundError
{ "login": "purefall", "id": 12601271, "node_id": "MDQ6VXNlcjEyNjAxMjcx", "avatar_url": "https://avatars.githubusercontent.com/u/12601271?v=4", "gravatar_id": "", "url": "https://api.github.com/users/purefall", "html_url": "https://github.com/purefall", "followers_url": "https://api.github.com/users/purefall/followers", "following_url": "https://api.github.com/users/purefall/following{/other_user}", "gists_url": "https://api.github.com/users/purefall/gists{/gist_id}", "starred_url": "https://api.github.com/users/purefall/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/purefall/subscriptions", "organizations_url": "https://api.github.com/users/purefall/orgs", "repos_url": "https://api.github.com/users/purefall/repos", "events_url": "https://api.github.com/users/purefall/events{/privacy}", "received_events_url": "https://api.github.com/users/purefall/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Ok it seems the solution is to use the directory string without the trailing \"/\" which in my case as: \r\n\r\n`parquet_dir = \"~/data/Parquet\" `\r\n\r\nStill i think this is a weird behavior... " ]
2024-06-25T15:02:34
2024-06-25T15:21:19
null
NONE
null
null
null
### Describe the bug So I was trying to download a dataset and save it as parquet and I follow the [tutorial](https://huggingface.co/docs/datasets/filesystems#download-and-prepare-a-dataset-into-a-cloud-storage) of Huggingface. However, during the excution I face a FileNotFoundError. I debug the code and it seems there is a bug there: So first it creates a .incomplete folder and before moving its contents the following code deletes the directory [Code](https://github.com/huggingface/datasets/blob/98fdc9e78e6d057ca66e58a37f49d6618aab8130/src/datasets/builder.py#L984) hence as a result I face with: ``` FileNotFoundError: [Errno 2] No such file or directory: '~/data/Parquet/.incomplete '``` ### Steps to reproduce the bug ``` from datasets import load_dataset_builder from pathlib import Path parquet_dir = "~/data/Parquet/" Path(parquet_dir).mkdir(parents=True, exist_ok=True) builder = load_dataset_builder( "rotten_tomatoes", ) builder.download_and_prepare(parquet_dir, file_format="parquet") ``` ### Expected behavior Downloads the files and saves as parquet ### Environment info Ubuntu, Python 3.10 ``` datasets 2.19.1 ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7001/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7001/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7000
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7000/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7000/comments
https://api.github.com/repos/huggingface/datasets/issues/7000/events
https://github.com/huggingface/datasets/issues/7000
2,372,887,585
I_kwDODunzps6Nb2Qh
7,000
IterableDataset: Unsupported ScalarType BFloat16
{ "login": "stoical07", "id": 170015089, "node_id": "U_kgDOCiI5cQ", "avatar_url": "https://avatars.githubusercontent.com/u/170015089?v=4", "gravatar_id": "", "url": "https://api.github.com/users/stoical07", "html_url": "https://github.com/stoical07", "followers_url": "https://api.github.com/users/stoical07/followers", "following_url": "https://api.github.com/users/stoical07/following{/other_user}", "gists_url": "https://api.github.com/users/stoical07/gists{/gist_id}", "starred_url": "https://api.github.com/users/stoical07/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stoical07/subscriptions", "organizations_url": "https://api.github.com/users/stoical07/orgs", "repos_url": "https://api.github.com/users/stoical07/repos", "events_url": "https://api.github.com/users/stoical07/events{/privacy}", "received_events_url": "https://api.github.com/users/stoical07/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "@lhoestq Thank you for merging #6607, but unfortunately the issue persists for `IterableDataset` :pensive: ", "Hi ! I opened https://github.com/huggingface/datasets/pull/7002 to fix this bug", "Amazing, thank you so much @lhoestq! :pray:" ]
2024-06-25T14:43:26
2024-06-25T16:04:00
2024-06-25T15:51:53
NONE
null
null
null
### Describe the bug `IterableDataset.from_generator` crashes when using BFloat16: ``` File "/usr/local/lib/python3.11/site-packages/datasets/utils/_dill.py", line 169, in _save_torchTensor args = (obj.detach().cpu().numpy(),) ^^^^^^^^^^^^^^^^^^^^^^^^^^ TypeError: Got unsupported ScalarType BFloat16 ``` ### Steps to reproduce the bug ```python import torch from datasets import IterableDataset def demo(x): yield {"x": x} x = torch.tensor([1.], dtype=torch.bfloat16) dataset = IterableDataset.from_generator( demo, gen_kwargs=dict(x=x), ) example = next(iter(dataset)) print(example) ``` ### Expected behavior Code sample should print: ```python {'x': tensor([1.], dtype=torch.bfloat16)} ``` ### Environment info ``` datasets==2.20.0 torch==2.2.2 ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/7000/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/7000/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6999
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6999/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6999/comments
https://api.github.com/repos/huggingface/datasets/issues/6999/events
https://github.com/huggingface/datasets/pull/6999
2,372,124,589
PR_kwDODunzps5zd-ak
6,999
Remove tasks
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
{ "url": "https://api.github.com/repos/huggingface/datasets/milestones/10", "html_url": "https://github.com/huggingface/datasets/milestone/10", "labels_url": "https://api.github.com/repos/huggingface/datasets/milestones/10/labels", "id": 9038583, "node_id": "MI_kwDODunzps4Aier3", "number": 10, "title": "3.0", "description": "Next major release", "creator": { "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }, "open_issues": 5, "closed_issues": 3, "state": "open", "created_at": "2023-02-13T16:22:42", "updated_at": "2024-06-28T06:51:30", "due_on": null, "closed_at": null }
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6999). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-06-25T09:06:16
2024-07-03T12:01:42
null
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6999", "html_url": "https://github.com/huggingface/datasets/pull/6999", "diff_url": "https://github.com/huggingface/datasets/pull/6999.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6999.patch", "merged_at": null }
Remove tasks, as part of the 3.0 release.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6999/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6999/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6998
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6998/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6998/comments
https://api.github.com/repos/huggingface/datasets/issues/6998/events
https://github.com/huggingface/datasets/pull/6998
2,371,973,926
PR_kwDODunzps5zddYG
6,998
Fix tests using hf-internal-testing/librispeech_asr_dummy
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6998). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005396 / 0.011353 (-0.005957) | 0.003974 / 0.011008 (-0.007034) | 0.063490 / 0.038508 (0.024982) | 0.030299 / 0.023109 (0.007189) | 0.244489 / 0.275898 (-0.031409) | 0.274116 / 0.323480 (-0.049364) | 0.003187 / 0.007986 (-0.004798) | 0.003433 / 0.004328 (-0.000896) | 0.049313 / 0.004250 (0.045062) | 0.043677 / 0.037052 (0.006624) | 0.260198 / 0.258489 (0.001709) | 0.283558 / 0.293841 (-0.010283) | 0.029728 / 0.128546 (-0.098819) | 0.011950 / 0.075646 (-0.063696) | 0.204371 / 0.419271 (-0.214901) | 0.035712 / 0.043533 (-0.007821) | 0.252715 / 0.255139 (-0.002424) | 0.268906 / 0.283200 (-0.014293) | 0.021153 / 0.141683 (-0.120529) | 1.125599 / 1.452155 (-0.326556) | 1.163122 / 1.492716 (-0.329594) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095089 / 0.018006 (0.077083) | 0.298576 / 0.000490 (0.298086) | 0.000214 / 0.000200 (0.000014) | 0.000051 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018567 / 0.037411 (-0.018844) | 0.062337 / 0.014526 (0.047811) | 0.074231 / 0.176557 (-0.102326) | 0.120960 / 0.737135 (-0.616175) | 0.076124 / 0.296338 (-0.220215) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286936 / 0.215209 (0.071727) | 2.816656 / 2.077655 (0.739001) | 1.486772 / 1.504120 (-0.017348) | 1.373289 / 1.541195 (-0.167905) | 1.392739 / 1.468490 (-0.075752) | 0.708091 / 4.584777 (-3.876686) | 2.410034 / 3.745712 (-1.335678) | 2.912701 / 5.269862 (-2.357161) | 1.850924 / 4.565676 (-2.714752) | 0.078896 / 0.424275 (-0.345380) | 0.005116 / 0.007607 (-0.002491) | 0.332275 / 0.226044 (0.106231) | 3.306562 / 2.268929 (1.037633) | 1.853051 / 55.444624 (-53.591573) | 1.556210 / 6.876477 (-5.320267) | 1.558892 / 2.142072 (-0.583181) | 0.789917 / 4.805227 (-4.015310) | 0.133683 / 6.500664 (-6.366981) | 0.042566 / 0.075469 (-0.032904) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.957050 / 1.841788 (-0.884738) | 11.401462 / 8.074308 (3.327154) | 9.782988 / 10.191392 (-0.408404) | 0.142127 / 0.680424 (-0.538296) | 0.014730 / 0.534201 (-0.519471) | 0.302647 / 0.579283 (-0.276636) | 0.264654 / 0.434364 (-0.169710) | 0.341340 / 0.540337 (-0.198998) | 0.425808 / 1.386936 (-0.961128) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005679 / 0.011353 (-0.005674) | 0.003513 / 0.011008 (-0.007495) | 0.050135 / 0.038508 (0.011627) | 0.031614 / 0.023109 (0.008505) | 0.260064 / 0.275898 (-0.015834) | 0.285816 / 0.323480 (-0.037664) | 0.004428 / 0.007986 (-0.003558) | 0.002816 / 0.004328 (-0.001512) | 0.048441 / 0.004250 (0.044191) | 0.039622 / 0.037052 (0.002570) | 0.274940 / 0.258489 (0.016451) | 0.311837 / 0.293841 (0.017996) | 0.031439 / 0.128546 (-0.097107) | 0.012056 / 0.075646 (-0.063590) | 0.060109 / 0.419271 (-0.359163) | 0.033123 / 0.043533 (-0.010409) | 0.261563 / 0.255139 (0.006424) | 0.282640 / 0.283200 (-0.000560) | 0.017168 / 0.141683 (-0.124515) | 1.127859 / 1.452155 (-0.324295) | 1.182414 / 1.492716 (-0.310303) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095517 / 0.018006 (0.077510) | 0.300578 / 0.000490 (0.300088) | 0.000212 / 0.000200 (0.000012) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022192 / 0.037411 (-0.015220) | 0.076617 / 0.014526 (0.062091) | 0.087405 / 0.176557 (-0.089151) | 0.127011 / 0.737135 (-0.610124) | 0.088706 / 0.296338 (-0.207632) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294260 / 0.215209 (0.079051) | 2.872879 / 2.077655 (0.795224) | 1.531374 / 1.504120 (0.027254) | 1.399232 / 1.541195 (-0.141962) | 1.400708 / 1.468490 (-0.067782) | 0.714003 / 4.584777 (-3.870773) | 0.943144 / 3.745712 (-2.802568) | 2.833396 / 5.269862 (-2.436466) | 1.890570 / 4.565676 (-2.675106) | 0.077664 / 0.424275 (-0.346611) | 0.005651 / 0.007607 (-0.001956) | 0.349476 / 0.226044 (0.123431) | 3.405768 / 2.268929 (1.136840) | 1.869739 / 55.444624 (-53.574885) | 1.575293 / 6.876477 (-5.301184) | 1.692981 / 2.142072 (-0.449092) | 0.795363 / 4.805227 (-4.009865) | 0.131532 / 6.500664 (-6.369132) | 0.041183 / 0.075469 (-0.034286) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.000821 / 1.841788 (-0.840967) | 11.987795 / 8.074308 (3.913487) | 10.147652 / 10.191392 (-0.043740) | 0.141314 / 0.680424 (-0.539110) | 0.015506 / 0.534201 (-0.518695) | 0.305090 / 0.579283 (-0.274193) | 0.123403 / 0.434364 (-0.310960) | 0.346507 / 0.540337 (-0.193831) | 0.471318 / 1.386936 (-0.915618) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#186b560eb2393c7d1913f4b3e76e9e04a081e09b \"CML watermark\")\n" ]
2024-06-25T07:59:44
2024-06-25T08:22:38
2024-06-25T08:13:42
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6998", "html_url": "https://github.com/huggingface/datasets/pull/6998", "diff_url": "https://github.com/huggingface/datasets/pull/6998.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6998.patch", "merged_at": "2024-06-25T08:13:42" }
Fix tests using hf-internal-testing/librispeech_asr_dummy once that dataset has been converted to Parquet. Fix #6997.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6998/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6998/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6997
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6997/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6997/comments
https://api.github.com/repos/huggingface/datasets/issues/6997/events
https://github.com/huggingface/datasets/issues/6997
2,371,966,127
I_kwDODunzps6NYVSv
6,997
CI is broken for tests using hf-internal-testing/librispeech_asr_dummy
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "id": 4296013012, "node_id": "LA_kwDODunzps8AAAABAA_01A", "url": "https://api.github.com/repos/huggingface/datasets/labels/maintenance", "name": "maintenance", "color": "d4c5f9", "default": false, "description": "Maintenance tasks" } ]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[]
2024-06-25T07:55:44
2024-06-25T08:13:43
2024-06-25T08:13:43
MEMBER
null
null
null
CI is broken: https://github.com/huggingface/datasets/actions/runs/9657882317/job/26637998686?pr=6996 ``` FAILED tests/test_inspect.py::test_get_dataset_config_names[hf-internal-testing/librispeech_asr_dummy-expected4] - AssertionError: assert ['clean'] == ['clean', 'other'] Right contains one more item: 'other' Full diff: [ 'clean', - 'other', ] FAILED tests/test_inspect.py::test_get_dataset_default_config_name[hf-internal-testing/librispeech_asr_dummy-None] - AssertionError: assert 'clean' is None ``` Note that repository was recently converted to Parquet: https://huggingface.co/datasets/hf-internal-testing/librispeech_asr_dummy/commit/5be91486e11a2d616f4ec5db8d3fd248585ac07a
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6997/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6997/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6996
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6996/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6996/comments
https://api.github.com/repos/huggingface/datasets/issues/6996/events
https://github.com/huggingface/datasets/pull/6996
2,371,841,671
PR_kwDODunzps5zdAg0
6,996
Remove deprecated code
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
{ "url": "https://api.github.com/repos/huggingface/datasets/milestones/10", "html_url": "https://github.com/huggingface/datasets/milestone/10", "labels_url": "https://api.github.com/repos/huggingface/datasets/milestones/10/labels", "id": 9038583, "node_id": "MI_kwDODunzps4Aier3", "number": 10, "title": "3.0", "description": "Next major release", "creator": { "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }, "open_issues": 5, "closed_issues": 3, "state": "open", "created_at": "2023-02-13T16:22:42", "updated_at": "2024-06-28T06:51:30", "due_on": null, "closed_at": null }
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6996). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-06-25T06:54:40
2024-07-01T12:36:59
null
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6996", "html_url": "https://github.com/huggingface/datasets/pull/6996", "diff_url": "https://github.com/huggingface/datasets/pull/6996.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6996.patch", "merged_at": null }
Remove deprecated code, as part of the 3.0 release. First merge: - [x] #6983 - [x] #6987 - [ ] #6999
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6996/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6996/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6995
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6995/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6995/comments
https://api.github.com/repos/huggingface/datasets/issues/6995/events
https://github.com/huggingface/datasets/issues/6995
2,370,713,475
I_kwDODunzps6NTjeD
6,995
ImportError when importing datasets.load_dataset
{ "login": "Leo-Lsc", "id": 124846947, "node_id": "U_kgDOB3EDYw", "avatar_url": "https://avatars.githubusercontent.com/u/124846947?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Leo-Lsc", "html_url": "https://github.com/Leo-Lsc", "followers_url": "https://api.github.com/users/Leo-Lsc/followers", "following_url": "https://api.github.com/users/Leo-Lsc/following{/other_user}", "gists_url": "https://api.github.com/users/Leo-Lsc/gists{/gist_id}", "starred_url": "https://api.github.com/users/Leo-Lsc/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Leo-Lsc/subscriptions", "organizations_url": "https://api.github.com/users/Leo-Lsc/orgs", "repos_url": "https://api.github.com/users/Leo-Lsc/repos", "events_url": "https://api.github.com/users/Leo-Lsc/events{/privacy}", "received_events_url": "https://api.github.com/users/Leo-Lsc/received_events", "type": "User", "site_admin": false }
[]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[ "What is the version of your installed `huggingface-hub`:\r\n```python\r\nimport huggingface_hub\r\nprint(huggingface_hub.__version__)\r\n```\r\n\r\nIt seems you have a very old version of `huggingface-hub`, where `CommitInfo` was not still implemented. You need to update it:\r\n```\r\npip install -U huggingface-hub\r\n```\r\n\r\nNote that `CommitInfo` was implemented in huggingface-hub 0.10.0 and datasets requires \"huggingface-hub>=0.21.2\"", "The version of my huggingface-hub is 0.23.4.", "The error message says there is no CommitInfo in your installed huggingface-hub library:\r\n```\r\nImportError: cannot import name 'CommitInfo' from 'huggingface_hub' (D:\\Anaconda3\\envs\\CS224S\\Lib\\site-packages\\huggingface_hub_init_.py)\r\n```\r\n\r\nAnd this is implemented since version 0.10.0:\r\n- https://github.com/huggingface/huggingface_hub/pull/1066", "I am getting the exact same issue when I `import datasets`. The version of my huggingface-hub is also 0.23.4. I dont see a solution in the comments. Not sure why is this issue closed?", "I closed the issue because the problem is not related to the `datasets` library.\r\n\r\nThe problem is with your local Python environment: it seems corrupted. You could try to remove it and regenerate it again.", "I have recreated my conda environment but still run into the same issue. Here is my environment:\r\n```\r\nconda create --name esm python=3.10\r\n conda activate esm\r\n conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia\r\n pip3 install -r requirements.txt\r\n```\r\nRequirements.txt\r\n```\r\naccelerate\r\ndatasets==2.20.0\r\npyfastx\r\ntransformers\r\nboto3\r\nhuggingface_hub==0.23.4\r\n```\r\n\r\nAnd then I get:\r\n```\r\n>>> import datasets\r\nTraceback (most recent call last):\r\n File \"<stdin>\", line 1, in <module>\r\n File \"/fsx/ubuntu/miniconda3/envs/esm2/lib/python3.10/site-packages/datasets/__init__.py\", line 17, in <module>\r\n from .arrow_dataset import Dataset\r\n File \"/fsx/ubuntu/miniconda3/envs/esm2/lib/python3.10/site-packages/datasets/arrow_dataset.py\", line 63, in <module>\r\n from huggingface_hub import (\r\nImportError: cannot import name 'CommitInfo' from 'huggingface_hub' (/fsx/ubuntu/miniconda3/envs/esm2/lib/python3.10/site-packages/huggingface_hub/__init__.py)\r\n>>>\r\n```\r\n\r\n", "You can check:\r\n```\r\n>>> import huggingface_hub\r\n>>> print(huggingface_hub.__version__)\r\n```", "This is what I see:\r\n```\r\n>>> import huggingface_hub\r\n>>> print(huggingface_hub.__version__)\r\n0.23.4\r\n```", "Installing `chardet` makes it work for some reason" ]
2024-06-24T17:07:22
2024-07-16T17:51:06
2024-06-25T06:11:37
NONE
null
null
null
### Describe the bug I encountered an ImportError while trying to import `load_dataset` from the `datasets` module in Hugging Face. The error message indicates a problem with importing 'CommitInfo' from 'huggingface_hub'. ### Steps to reproduce the bug 1. pip install git+https://github.com/huggingface/datasets 2. from datasets import load_dataset ### Expected behavior ImportError Traceback (most recent call last) Cell In[7], [line 1](vscode-notebook-cell:?execution_count=7&line=1) ----> [1](vscode-notebook-cell:?execution_count=7&line=1) from datasets import load_dataset [3](vscode-notebook-cell:?execution_count=7&line=3) train_set = load_dataset("mispeech/speechocean762", split="train") [4](vscode-notebook-cell:?execution_count=7&line=4) test_set = load_dataset("mispeech/speechocean762", split="test") File d:\Anaconda3\envs\CS224S\Lib\site-packages\datasets\__init__.py:[1](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/__init__.py:1)7 1 # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. [2](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/__init__.py:2) # [3](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/__init__.py:3) # Licensed under the Apache License, Version 2.0 (the "License"); (...) [12](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/__init__.py:12) # See the License for the specific language governing permissions and [13](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/__init__.py:13) # limitations under the License. [15](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/__init__.py:15) __version__ = "2.20.1.dev0" ---> [17](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/__init__.py:17) from .arrow_dataset import Dataset [18](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/__init__.py:18) from .arrow_reader import ReadInstruction [19](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/__init__.py:19) from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder File d:\Anaconda3\envs\CS224S\Lib\site-packages\datasets\arrow_dataset.py:63 [61](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/arrow_dataset.py:61) import pyarrow.compute as pc [62](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/arrow_dataset.py:62) from fsspec.core import url_to_fs ---> [63](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/arrow_dataset.py:63) from huggingface_hub import ( [64](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/arrow_dataset.py:64) CommitInfo, [65](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/arrow_dataset.py:65) CommitOperationAdd, ... [70](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/arrow_dataset.py:70) ) [71](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/arrow_dataset.py:71) from huggingface_hub.hf_api import RepoFile [72](file:///D:/Anaconda3/envs/CS224S/Lib/site-packages/datasets/arrow_dataset.py:72) from multiprocess import Pool ImportError: cannot import name 'CommitInfo' from 'huggingface_hub' (d:\Anaconda3\envs\CS224S\Lib\site-packages\huggingface_hub\__init__.py) Output is truncated. View as a [scrollable element](command:cellOutput.enableScrolling?580889ab-0f61-4f37-9214-eaa2b3807f85) or open in a [text editor](command:workbench.action.openLargeOutput?580889ab-0f61-4f37-9214-eaa2b3807f85). Adjust cell output [settings](command:workbench.action.openSettings?%5B%22%40tag%3AnotebookOutputLayout%22%5D)... ### Environment info Leo@DESKTOP-9NHUAMI MSYS /d/Anaconda3/envs/CS224S/Lib/site-packages/huggingface_hub $ datasets-cli env Traceback (most recent call last): File "<frozen runpy>", line 198, in _run_module_as_main File "<frozen runpy>", line 88, in _run_code File "D:\Anaconda3\envs\CS224S\Scripts\datasets-cli.exe\__main__.py", line 4, in <module> File "D:\Anaconda3\envs\CS224S\Lib\site-packages\datasets\__init__.py", line 17, in <module> from .arrow_dataset import Dataset File "D:\Anaconda3\envs\CS224S\Lib\site-packages\datasets\arrow_dataset.py", line 63, in <module> from huggingface_hub import ( ImportError: cannot import name 'CommitInfo' from 'huggingface_hub' (D:\Anaconda3\envs\CS224S\Lib\site-packages\huggingface_hub\__init__.py) (CS224S)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6995/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6995/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6994
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6994/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6994/comments
https://api.github.com/repos/huggingface/datasets/issues/6994/events
https://github.com/huggingface/datasets/pull/6994
2,370,491,689
PR_kwDODunzps5zYYXr
6,994
Fix incorrect rank value in data splitting
{ "login": "yzhangcs", "id": 18402347, "node_id": "MDQ6VXNlcjE4NDAyMzQ3", "avatar_url": "https://avatars.githubusercontent.com/u/18402347?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yzhangcs", "html_url": "https://github.com/yzhangcs", "followers_url": "https://api.github.com/users/yzhangcs/followers", "following_url": "https://api.github.com/users/yzhangcs/following{/other_user}", "gists_url": "https://api.github.com/users/yzhangcs/gists{/gist_id}", "starred_url": "https://api.github.com/users/yzhangcs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yzhangcs/subscriptions", "organizations_url": "https://api.github.com/users/yzhangcs/orgs", "repos_url": "https://api.github.com/users/yzhangcs/repos", "events_url": "https://api.github.com/users/yzhangcs/events{/privacy}", "received_events_url": "https://api.github.com/users/yzhangcs/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Sure~", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6994). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005538 / 0.011353 (-0.005815) | 0.003997 / 0.011008 (-0.007011) | 0.063444 / 0.038508 (0.024935) | 0.032552 / 0.023109 (0.009442) | 0.266574 / 0.275898 (-0.009324) | 0.282841 / 0.323480 (-0.040639) | 0.004279 / 0.007986 (-0.003706) | 0.002788 / 0.004328 (-0.001540) | 0.049226 / 0.004250 (0.044976) | 0.044688 / 0.037052 (0.007636) | 0.275464 / 0.258489 (0.016975) | 0.305278 / 0.293841 (0.011437) | 0.030097 / 0.128546 (-0.098450) | 0.012237 / 0.075646 (-0.063410) | 0.205526 / 0.419271 (-0.213745) | 0.036145 / 0.043533 (-0.007388) | 0.267395 / 0.255139 (0.012256) | 0.289149 / 0.283200 (0.005949) | 0.019044 / 0.141683 (-0.122639) | 1.162294 / 1.452155 (-0.289861) | 1.183642 / 1.492716 (-0.309074) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.139125 / 0.018006 (0.121119) | 0.301743 / 0.000490 (0.301253) | 0.000260 / 0.000200 (0.000061) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019494 / 0.037411 (-0.017917) | 0.063078 / 0.014526 (0.048552) | 0.076989 / 0.176557 (-0.099567) | 0.121363 / 0.737135 (-0.615773) | 0.080040 / 0.296338 (-0.216298) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284401 / 0.215209 (0.069192) | 2.805397 / 2.077655 (0.727742) | 1.555609 / 1.504120 (0.051489) | 1.405662 / 1.541195 (-0.135533) | 1.459492 / 1.468490 (-0.008999) | 0.718376 / 4.584777 (-3.866401) | 2.395918 / 3.745712 (-1.349794) | 2.976753 / 5.269862 (-2.293108) | 1.883938 / 4.565676 (-2.681738) | 0.078867 / 0.424275 (-0.345408) | 0.005207 / 0.007607 (-0.002400) | 0.335178 / 0.226044 (0.109133) | 3.313414 / 2.268929 (1.044485) | 1.856929 / 55.444624 (-53.587696) | 1.565319 / 6.876477 (-5.311158) | 1.592723 / 2.142072 (-0.549350) | 0.793621 / 4.805227 (-4.011606) | 0.134208 / 6.500664 (-6.366456) | 0.042853 / 0.075469 (-0.032616) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.981553 / 1.841788 (-0.860235) | 11.810438 / 8.074308 (3.736130) | 9.529874 / 10.191392 (-0.661518) | 0.142216 / 0.680424 (-0.538207) | 0.014303 / 0.534201 (-0.519898) | 0.304600 / 0.579283 (-0.274684) | 0.261869 / 0.434364 (-0.172495) | 0.347301 / 0.540337 (-0.193036) | 0.437395 / 1.386936 (-0.949541) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005881 / 0.011353 (-0.005472) | 0.004039 / 0.011008 (-0.006969) | 0.050241 / 0.038508 (0.011733) | 0.032670 / 0.023109 (0.009561) | 0.264940 / 0.275898 (-0.010959) | 0.287105 / 0.323480 (-0.036374) | 0.004844 / 0.007986 (-0.003142) | 0.002867 / 0.004328 (-0.001462) | 0.048083 / 0.004250 (0.043833) | 0.040965 / 0.037052 (0.003913) | 0.274390 / 0.258489 (0.015901) | 0.312107 / 0.293841 (0.018266) | 0.031714 / 0.128546 (-0.096832) | 0.012603 / 0.075646 (-0.063043) | 0.060698 / 0.419271 (-0.358573) | 0.033130 / 0.043533 (-0.010402) | 0.264444 / 0.255139 (0.009305) | 0.282797 / 0.283200 (-0.000403) | 0.027872 / 0.141683 (-0.113811) | 1.139026 / 1.452155 (-0.313129) | 1.181431 / 1.492716 (-0.311285) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097314 / 0.018006 (0.079308) | 0.301326 / 0.000490 (0.300836) | 0.000215 / 0.000200 (0.000015) | 0.000049 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023394 / 0.037411 (-0.014018) | 0.076270 / 0.014526 (0.061744) | 0.089065 / 0.176557 (-0.087491) | 0.129996 / 0.737135 (-0.607139) | 0.089642 / 0.296338 (-0.206697) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.295390 / 0.215209 (0.080181) | 2.877849 / 2.077655 (0.800194) | 1.537129 / 1.504120 (0.033009) | 1.409441 / 1.541195 (-0.131754) | 1.432468 / 1.468490 (-0.036023) | 0.718054 / 4.584777 (-3.866722) | 0.930872 / 3.745712 (-2.814841) | 2.841028 / 5.269862 (-2.428834) | 1.921990 / 4.565676 (-2.643686) | 0.077638 / 0.424275 (-0.346637) | 0.005494 / 0.007607 (-0.002113) | 0.336331 / 0.226044 (0.110287) | 3.330490 / 2.268929 (1.061561) | 1.887994 / 55.444624 (-53.556630) | 1.593332 / 6.876477 (-5.283144) | 1.726956 / 2.142072 (-0.415116) | 0.783612 / 4.805227 (-4.021615) | 0.129926 / 6.500664 (-6.370738) | 0.040792 / 0.075469 (-0.034677) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.980274 / 1.841788 (-0.861514) | 12.193871 / 8.074308 (4.119563) | 10.348934 / 10.191392 (0.157542) | 0.141584 / 0.680424 (-0.538840) | 0.015737 / 0.534201 (-0.518464) | 0.300725 / 0.579283 (-0.278558) | 0.127190 / 0.434364 (-0.307174) | 0.341142 / 0.540337 (-0.199196) | 0.459523 / 1.386936 (-0.927413) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#637246baf96f07b19b193ed101f34b65cb35cffb \"CML watermark\")\n" ]
2024-06-24T15:07:47
2024-06-26T04:37:35
2024-06-25T16:19:17
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6994", "html_url": "https://github.com/huggingface/datasets/pull/6994", "diff_url": "https://github.com/huggingface/datasets/pull/6994.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6994.patch", "merged_at": "2024-06-25T16:19:17" }
Fix #6990.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6994/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6994/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6993
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6993/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6993/comments
https://api.github.com/repos/huggingface/datasets/issues/6993/events
https://github.com/huggingface/datasets/pull/6993
2,370,444,104
PR_kwDODunzps5zYN7P
6,993
less script docs
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6993). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005810 / 0.011353 (-0.005543) | 0.003984 / 0.011008 (-0.007024) | 0.064347 / 0.038508 (0.025839) | 0.031943 / 0.023109 (0.008834) | 0.252596 / 0.275898 (-0.023302) | 0.274032 / 0.323480 (-0.049448) | 0.003494 / 0.007986 (-0.004492) | 0.002817 / 0.004328 (-0.001511) | 0.050132 / 0.004250 (0.045881) | 0.048008 / 0.037052 (0.010955) | 0.249037 / 0.258489 (-0.009452) | 0.288526 / 0.293841 (-0.005315) | 0.031038 / 0.128546 (-0.097509) | 0.012542 / 0.075646 (-0.063104) | 0.205682 / 0.419271 (-0.213590) | 0.038022 / 0.043533 (-0.005511) | 0.259001 / 0.255139 (0.003862) | 0.267455 / 0.283200 (-0.015744) | 0.021980 / 0.141683 (-0.119703) | 1.123996 / 1.452155 (-0.328159) | 1.173801 / 1.492716 (-0.318915) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.102827 / 0.018006 (0.084821) | 0.317210 / 0.000490 (0.316720) | 0.000222 / 0.000200 (0.000022) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019483 / 0.037411 (-0.017928) | 0.064098 / 0.014526 (0.049572) | 0.076219 / 0.176557 (-0.100337) | 0.122898 / 0.737135 (-0.614237) | 0.080657 / 0.296338 (-0.215681) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.278378 / 0.215209 (0.063169) | 2.792314 / 2.077655 (0.714659) | 1.516439 / 1.504120 (0.012319) | 1.374052 / 1.541195 (-0.167143) | 1.370848 / 1.468490 (-0.097642) | 0.756002 / 4.584777 (-3.828775) | 2.349581 / 3.745712 (-1.396131) | 2.994094 / 5.269862 (-2.275768) | 1.904242 / 4.565676 (-2.661435) | 0.078769 / 0.424275 (-0.345506) | 0.005103 / 0.007607 (-0.002505) | 0.336331 / 0.226044 (0.110287) | 3.329502 / 2.268929 (1.060574) | 1.863545 / 55.444624 (-53.581079) | 1.554690 / 6.876477 (-5.321787) | 1.588448 / 2.142072 (-0.553624) | 0.787322 / 4.805227 (-4.017905) | 0.138345 / 6.500664 (-6.362320) | 0.042228 / 0.075469 (-0.033241) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.968607 / 1.841788 (-0.873181) | 11.972076 / 8.074308 (3.897768) | 9.927608 / 10.191392 (-0.263784) | 0.141666 / 0.680424 (-0.538758) | 0.014591 / 0.534201 (-0.519610) | 0.301995 / 0.579283 (-0.277288) | 0.274360 / 0.434364 (-0.160004) | 0.338396 / 0.540337 (-0.201941) | 0.431081 / 1.386936 (-0.955855) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006122 / 0.011353 (-0.005231) | 0.004201 / 0.011008 (-0.006807) | 0.050204 / 0.038508 (0.011695) | 0.033222 / 0.023109 (0.010113) | 0.274357 / 0.275898 (-0.001542) | 0.296238 / 0.323480 (-0.027242) | 0.004542 / 0.007986 (-0.003444) | 0.002880 / 0.004328 (-0.001449) | 0.049103 / 0.004250 (0.044852) | 0.042294 / 0.037052 (0.005242) | 0.286459 / 0.258489 (0.027970) | 0.324988 / 0.293841 (0.031147) | 0.032084 / 0.128546 (-0.096462) | 0.012329 / 0.075646 (-0.063318) | 0.060261 / 0.419271 (-0.359010) | 0.034130 / 0.043533 (-0.009403) | 0.271432 / 0.255139 (0.016293) | 0.306251 / 0.283200 (0.023051) | 0.019744 / 0.141683 (-0.121939) | 1.153483 / 1.452155 (-0.298672) | 1.209126 / 1.492716 (-0.283591) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004737 / 0.018006 (-0.013270) | 0.313458 / 0.000490 (0.312968) | 0.000216 / 0.000200 (0.000017) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022472 / 0.037411 (-0.014939) | 0.076725 / 0.014526 (0.062199) | 0.091356 / 0.176557 (-0.085201) | 0.132427 / 0.737135 (-0.604708) | 0.091072 / 0.296338 (-0.205266) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294414 / 0.215209 (0.079205) | 2.913695 / 2.077655 (0.836040) | 1.567309 / 1.504120 (0.063189) | 1.448664 / 1.541195 (-0.092531) | 1.466386 / 1.468490 (-0.002105) | 0.718605 / 4.584777 (-3.866172) | 0.951963 / 3.745712 (-2.793749) | 2.812565 / 5.269862 (-2.457297) | 1.886483 / 4.565676 (-2.679193) | 0.077912 / 0.424275 (-0.346363) | 0.005371 / 0.007607 (-0.002236) | 0.349528 / 0.226044 (0.123484) | 3.431049 / 2.268929 (1.162121) | 1.920210 / 55.444624 (-53.524414) | 1.637927 / 6.876477 (-5.238549) | 1.767502 / 2.142072 (-0.374570) | 0.808672 / 4.805227 (-3.996555) | 0.134261 / 6.500664 (-6.366403) | 0.041295 / 0.075469 (-0.034174) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.023454 / 1.841788 (-0.818334) | 12.433731 / 8.074308 (4.359423) | 10.413191 / 10.191392 (0.221799) | 0.156813 / 0.680424 (-0.523611) | 0.015446 / 0.534201 (-0.518755) | 0.301935 / 0.579283 (-0.277348) | 0.133655 / 0.434364 (-0.300709) | 0.340296 / 0.540337 (-0.200041) | 0.466314 / 1.386936 (-0.920622) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6cf563fd57807e923a29ebbe327fecb4ef969877 \"CML watermark\")\n", "Hi @lhoestq,\r\n\r\nI was confused by `legacy` prefix added to the [image data loading](https://huggingface.co/docs/datasets/main/en/image_dataset#legacy-loading-script) script section. I have a custom image dataset and have looked through the documentation to find something similar but can't find a good alternative What is now the recommend way to create a custom image dataset then? I want the HF format but will not host it on the hub.\r\n\r\nApologies in advance if this is the wrong place to ask such questions...", "We stopped making new features for datasets with scripts for obvious security reasons, that's why they are marked as \"legacy\". What is blocking you from hosting on HF ?", "Hi, thanks for the prompt answer :) I am working on proprietary datasets for the company where I am employed. We want to keep the data in-house but would like to investigate the use of the HF ecosystem.", "I see ! Note that it's possible to have private repos on HF (+ dataset viewer) and you can even choose the storage region, if it can help" ]
2024-06-24T14:45:28
2024-07-08T13:10:53
2024-06-27T09:31:21
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6993", "html_url": "https://github.com/huggingface/datasets/pull/6993", "diff_url": "https://github.com/huggingface/datasets/pull/6993.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6993.patch", "merged_at": "2024-06-27T09:31:21" }
+ mark as legacy in some parts of the docs since we'll not build new features for script datasets
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6993/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6993/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6992
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6992/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6992/comments
https://api.github.com/repos/huggingface/datasets/issues/6992/events
https://github.com/huggingface/datasets/issues/6992
2,367,890,622
I_kwDODunzps6NIyS-
6,992
Dataset with streaming doesn't work with proxy
{ "login": "YHL04", "id": 57779173, "node_id": "MDQ6VXNlcjU3Nzc5MTcz", "avatar_url": "https://avatars.githubusercontent.com/u/57779173?v=4", "gravatar_id": "", "url": "https://api.github.com/users/YHL04", "html_url": "https://github.com/YHL04", "followers_url": "https://api.github.com/users/YHL04/followers", "following_url": "https://api.github.com/users/YHL04/following{/other_user}", "gists_url": "https://api.github.com/users/YHL04/gists{/gist_id}", "starred_url": "https://api.github.com/users/YHL04/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/YHL04/subscriptions", "organizations_url": "https://api.github.com/users/YHL04/orgs", "repos_url": "https://api.github.com/users/YHL04/repos", "events_url": "https://api.github.com/users/YHL04/events{/privacy}", "received_events_url": "https://api.github.com/users/YHL04/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "Hi ! can you try updating `datasets` and `huggingface_hub` ?\r\n\r\n```\r\npip install -U datasets huggingface_hub\r\n```" ]
2024-06-22T16:12:08
2024-06-25T15:43:05
null
NONE
null
null
null
### Describe the bug I'm currently trying to stream data using dataset since the dataset is too big but it hangs indefinitely without loading the first batch. I use AIMOS which is a supercomputer that uses proxy to connect to the internet. I assume it has to do with the network configurations. I've already set up both HTTP_PROXY and HTTPS_PROXY. streaming = False works fine. ### Steps to reproduce the bug use load_dataset with streaming = True in AIMOS ### Expected behavior does not hang indefinitely and loads batches to start training run ### Environment info _libgcc_mutex 0.1 conda_forge conda-forge _openmp_mutex 4.5 2_gnu conda-forge _pytorch_select 2.0 cuda_2 https://ftp.osuosl.org/pub/open-ce/1.10.0 abseil-cpp 20220623.0 h9888cd1_6 conda-forge absl-py 1.0.0 py311h399429b_0 https://ftp.osuosl.org/pub/open-ce/1.10.0 aiofiles 23.2.1 pyhd8ed1ab_0 conda-forge aiohttp 3.8.6 py311hf118e41_0 aiosignal 1.2.0 pyhd3eb1b0_0 archspec 0.2.3 pyhd8ed1ab_0 conda-forge arrow-cpp 11.0.0 ha3edaa6_5_cpu conda-forge async-timeout 4.0.2 py311h6ffa863_0 attrs 23.1.0 py311h6ffa863_0 av 10.0.0 py311he6153ed_2 https://ftp.osuosl.org/pub/open-ce/1.10.0 aws-c-auth 0.6.24 hb81f6d7_5 conda-forge aws-c-cal 0.5.20 h3c2b4d9_6 conda-forge aws-c-common 0.8.11 h4194056_0 conda-forge aws-c-compression 0.2.16 ha19333d_3 conda-forge aws-c-event-stream 0.2.18 h12a9399_6 conda-forge aws-c-http 0.7.4 ha2cde00_2 conda-forge aws-c-io 0.13.17 h9189062_2 conda-forge aws-c-mqtt 0.8.6 h40d1a04_6 conda-forge aws-c-s3 0.2.4 hbdbe4f0_3 conda-forge aws-c-sdkutils 0.1.7 ha19333d_3 conda-forge aws-checksums 0.1.14 ha19333d_3 conda-forge aws-crt-cpp 0.19.7 hd018011_7 conda-forge aws-sdk-cpp 1.10.57 hb9575ba_4 conda-forge blas 1.0 openblas blinker 1.8.2 pyhd8ed1ab_0 conda-forge boltons 23.0.0 py311h6ffa863_0 boost-cpp 1.82.0 h25e6d66_2 bottleneck 1.3.5 py311h34f6284_0 brotli 1.0.9 hf118e41_7 brotli-bin 1.0.9 hf118e41_7 brotli-python 1.0.9 py311h4a02239_7 bzip2 1.0.8 h7b6447c_0 c-ares 1.19.1 hf118e41_0 ca-certificates 2024.6.2 h0f6029e_0 conda-forge cachetools 5.3.3 pyhd8ed1ab_0 conda-forge certifi 2024.6.2 pyhd8ed1ab_0 conda-forge cffi 1.15.1 py311hf118e41_3 charset-normalizer 2.0.4 pyhd3eb1b0_0 click 8.1.7 unix_pyh707e725_0 conda-forge conda 24.5.0 py311h1af927a_0 conda-forge conda-content-trust 0.2.0 py311h6ffa863_0 conda-libmamba-solver 23.11.1 py311h6ffa863_0 conda-package-handling 2.2.0 py311h6ffa863_0 conda-package-streaming 0.9.0 py311h6ffa863_0 contourpy 1.0.5 py311h25e6d66_0 cryptography 41.0.3 py311hb0e80e7_0 cudatoolkit 11.8.0 hedcfb66_13 conda-forge cudnn 8.9.2_11.8 h9ceb136_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 cycler 0.11.0 pyhd3eb1b0_0 datasets 2.12.0 py311h6ffa863_0 dill 0.3.6 py311h6ffa863_0 distro 1.9.0 pyhd8ed1ab_0 conda-forge ffmpeg 4.2.2 opence_0 https://ftp.osuosl.org/pub/open-ce/1.10.0 filelock 3.9.0 py311h6ffa863_0 fmt 9.1.0 h25e6d66_0 fonttools 4.25.0 pyhd3eb1b0_0 freetype 2.12.1 hd23a775_0 frozendict 2.4.4 py311hb02d432_0 conda-forge frozenlist 1.4.0 py311hf118e41_0 fsspec 2023.9.2 py311h6ffa863_0 gflags 2.2.2 he6710b0_0 giflib 5.2.1 hf118e41_3 glog 0.6.0 hbe088e0_0 conda-forge gmp 6.3.0 h46f38da_0 conda-forge gmpy2 2.1.5 py311h2758da7_1 conda-forge google-auth 2.30.0 pyhff2d567_0 conda-forge google-auth-oauthlib 0.5.3 pyhd8ed1ab_0 conda-forge grpc-cpp 1.51.1 h8ba971d_1 conda-forge grpcio 1.54.3 py311h414e0d3_0 https://ftp.osuosl.org/pub/open-ce/1.10.0 huggingface_hub 0.17.3 py311h6ffa863_0 icu 73.1 h4a02239_0 idna 3.4 py311h6ffa863_0 importlib-metadata 6.0.0 py311h6ffa863_0 jinja2 3.1.4 pyhd8ed1ab_0 conda-forge jpeg 9e hf118e41_1 jsonpatch 1.32 pyhd3eb1b0_0 jsonpointer 2.1 pyhd3eb1b0_0 kiwisolver 1.4.4 py311h4a02239_0 krb5 1.20.1 hc019ccd_1 lame 3.100 hb283c62_1003 conda-forge lcms2 2.12 h2045e0b_0 ld_impl_linux-ppc64le 2.38 hec883e6_1 lerc 3.0 h29c3540_0 leveldb 1.23 h24532b4_1 conda-forge libabseil 20220623.0 cxx17_h9235812_6 conda-forge libarchive 3.6.2 hd8ab008_2 libarrow 11.0.0 h837770b_5_cpu conda-forge libboost 1.82.0 haf51a6a_2 libbrotlicommon 1.0.9 hf118e41_7 libbrotlidec 1.0.9 hf118e41_7 libbrotlienc 1.0.9 hf118e41_7 libcrc32c 1.1.2 h3b9df90_0 conda-forge libcurl 8.4.0 h4d62439_0 libdeflate 1.17 hf118e41_1 libedit 3.1.20221030 hf118e41_0 libev 4.33 h140841e_1 libevent 2.1.10 h19c23f1_4 conda-forge libexpat 2.6.2 h46f38da_0 conda-forge libffi 3.4.4 h4a02239_0 libgcc-ng 13.2.0 h31e42bb_10 conda-forge libgfortran-ng 11.2.0 hb3889a9_1 libgfortran5 11.2.0 h1234567_1 libgomp 13.2.0 h31e42bb_10 conda-forge libgoogle-cloud 2.7.0 h11140b6_1 conda-forge libgrpc 1.51.1 h4d29a31_1 conda-forge libmamba 1.5.3 h7c6fafd_0 libmambapy 1.5.3 py311h828bf7b_0 libnghttp2 1.57.0 h44e5816_0 libnsl 2.0.1 ha17a0cc_0 conda-forge libopenblas 0.3.23 hc5a31fb_2 https://ftp.osuosl.org/pub/open-ce/1.10.0 libopus 1.3.1 h4e0d66e_1 conda-forge libpng 1.6.39 hf118e41_0 libprotobuf 3.21.12 h1776448_0 https://ftp.osuosl.org/pub/open-ce/1.10.0 libsolv 0.7.24 h0f529ac_0 libsqlite 3.45.3 hd4bbf49_0 conda-forge libssh2 1.10.0 h50fa78f_2 libstdcxx-ng 13.2.0 h262982c_10 conda-forge libthrift 0.18.0 h82f1162_0 conda-forge libtiff 4.5.1 h4a02239_0 libutf8proc 2.8.0 hb283c62_0 conda-forge libuuid 2.38.1 h4194056_0 conda-forge libvpx 1.13.1 h46f38da_0 conda-forge libwebp 1.3.2 h0f96ee2_0 libwebp-base 1.3.2 hf118e41_0 libxcrypt 4.4.36 ha17a0cc_1 conda-forge libxml2 2.10.4 h18e3229_1 libzlib 1.2.13 h1f2b957_6 conda-forge llvm-openmp 14.0.6 hc028133_0 https://ftp.osuosl.org/pub/open-ce/1.10.0 lmdb 0.9.31 ha17a0cc_1 conda-forge lz4-c 1.9.4 h4a02239_0 markdown 3.4.4 pyhd8ed1ab_0 conda-forge markupsafe 2.1.5 py311h32d8acf_0 conda-forge matplotlib 3.8.0 py311h6ffa863_0 matplotlib-base 3.8.0 py311h52e1fcc_0 menuinst 2.1.1 py311h1af927a_0 conda-forge mpc 1.3.1 heaf1863_0 conda-forge mpfr 4.2.1 haad2271_1 conda-forge mpmath 1.3.0 pyhd8ed1ab_0 conda-forge multidict 6.0.2 py311hf118e41_0 multiprocess 0.70.14 py311h6ffa863_0 munkres 1.1.4 py_0 mypy_extensions 1.0.0 pyha770c72_0 conda-forge nccl 2.18.3 cuda11.8_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 ncurses 6.4 h4a02239_0 nest-asyncio 1.6.0 pyhd8ed1ab_0 conda-forge networkx 2.8.8 pyhd8ed1ab_0 conda-forge nomkl 3.0 0 https://ftp.osuosl.org/pub/open-ce/1.10.0 numactl 2.0.16 hba61f60_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 numexpr 2.8.7 py311hc46fc55_0 numpy 1.24.3 py311h148a09e_0 numpy-base 1.24.3 py311h06b82f6_0 oauthlib 3.2.2 pyhd8ed1ab_0 conda-forge openjpeg 2.4.0 hfe35807_0 openssl 3.3.1 h1f2b957_0 conda-forge orc 1.8.2 h341c9a4_2 conda-forge packaging 23.1 py311h6ffa863_0 pandas 2.1.1 py311h52e1fcc_0 pcre2 10.42 h280155c_0 pillow 10.0.1 py311he33076b_0 pip 23.3 py311h6ffa863_0 platformdirs 4.2.2 pyhd8ed1ab_0 conda-forge pluggy 1.0.0 py311h6ffa863_1 pooch 1.8.2 pyhd8ed1ab_0 conda-forge protobuf 4.21.12 py311ha7baec7_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 psutil 5.9.8 py311hd26027c_0 conda-forge pyarrow 11.0.0 py311h04a18d5_1 pyasn1 0.6.0 pyhd8ed1ab_0 conda-forge pyasn1-modules 0.4.0 pyhd8ed1ab_0 conda-forge pybind11-abi 4 hd3eb1b0_1 pycosat 0.6.6 py311hf118e41_0 pycparser 2.21 pyhd3eb1b0_0 pyjwt 2.8.0 pyhd8ed1ab_1 conda-forge pyopenssl 23.2.0 py311h6ffa863_0 pyparsing 3.0.9 py311h6ffa863_0 pyre-extensions 0.0.30 pyhd8ed1ab_0 conda-forge pysocks 1.7.1 py311h6ffa863_0 python 3.11.8 h3332dee_0_cpython conda-forge python-dateutil 2.8.2 pyhd3eb1b0_0 python-tzdata 2023.3 pyhd3eb1b0_0 python-xxhash 2.0.2 py311hf118e41_1 python_abi 3.11 4_cp311 conda-forge pytorch 2.0.1 cuda11.8_py311_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 pytorch-base 2.0.1 cuda11.8_py311_pb4.21.12_4 https://ftp.osuosl.org/pub/open-ce/1.10.0 pytz 2023.3.post1 py311h6ffa863_0 pyu2f 0.1.5 pyhd8ed1ab_0 conda-forge pyyaml 6.0.1 py311hf118e41_0 re2 2023.02.01 h883269e_0 conda-forge readline 8.2 hf118e41_0 regex 2023.10.3 py311hf118e41_0 reproc 14.2.4 h29c3540_1 reproc-cpp 14.2.4 h29c3540_1 requests 2.31.0 py311h6ffa863_0 requests-oauthlib 2.0.0 pyhd8ed1ab_0 conda-forge responses 0.13.3 pyhd3eb1b0_0 rsa 4.9 pyhd8ed1ab_0 conda-forge ruamel.yaml 0.17.21 py311hf118e41_0 s2n 1.3.37 h5e47323_0 conda-forge safetensors 0.4.0 py311hda16d9e_0 scipy 1.11.1 py311hd69e9bb_0 https://ftp.osuosl.org/pub/open-ce/1.10.0 sentencepiece 0.1.97 h1e74c73_py311_pb4.21.12_2 https://ftp.osuosl.org/pub/open-ce/1.10.0 setuptools 68.0.0 py311h6ffa863_0 six 1.16.0 pyhd3eb1b0_1 snappy 1.1.9 h29c3540_0 sqlite 3.41.2 hf118e41_0 sympy 1.12.1 pypyh2585a3b_103 conda-forge tabulate 0.8.10 pyhd8ed1ab_0 conda-forge tensorboard 2.13.0 pyhab0730d_pb4.21.12_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 tensorboard-data-server 0.7.0 pyh6f84499_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 tensorboard-plugin-wit 1.6.0 pyh9f0ad1d_0 conda-forge tk 8.6.13 hd4bbf49_0 conda-forge tokenizers 0.13.3 py311h3d4f45a_0 torchdata 0.6.0 py311_2 https://ftp.osuosl.org/pub/open-ce/1.10.0 torchsnapshot 0.1.0 pyhd8ed1ab_0 conda-forge torchtext-base 0.15.2 cuda11.8_py311_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 torchtnt 0.2.4 pyhd8ed1ab_0 conda-forge torchvision-base 0.15.2 cuda11.8_py311_1 https://ftp.osuosl.org/pub/open-ce/1.10.0 tornado 6.3.3 py311hf118e41_0 tqdm 4.65.0 py311h7837921_0 transformers 4.32.1 py311h6ffa863_0 truststore 0.8.0 py311h6ffa863_0 typing-extensions 4.7.1 py311h6ffa863_0 typing_extensions 4.7.1 py311h6ffa863_0 typing_inspect 0.9.0 pyhd8ed1ab_0 conda-forge tzdata 2023c h04d1e81_0 urllib3 1.26.18 py311h6ffa863_0 utf8proc 2.6.1 h140841e_0 werkzeug 2.3.8 pyhd8ed1ab_0 conda-forge wheel 0.41.2 py311h6ffa863_0 xxhash 0.8.0 h140841e_3 xz 5.4.2 hf118e41_0 yaml 0.2.5 h7b6447c_0 yaml-cpp 0.8.0 h4a02239_0 yarl 1.8.1 py311hf118e41_0 zipp 3.11.0 py311h6ffa863_0 zlib 1.2.13 h1f2b957_6 conda-forge zstandard 0.19.0 py311hf118e41_0 zstd 1.5.5 h57e4825_0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6992/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6992/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6991
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6991/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6991/comments
https://api.github.com/repos/huggingface/datasets/issues/6991/events
https://github.com/huggingface/datasets/pull/6991
2,367,711,094
PR_kwDODunzps5zPoQs
6,991
Unblock NumPy 2.0
{ "login": "NeilGirdhar", "id": 730137, "node_id": "MDQ6VXNlcjczMDEzNw==", "avatar_url": "https://avatars.githubusercontent.com/u/730137?v=4", "gravatar_id": "", "url": "https://api.github.com/users/NeilGirdhar", "html_url": "https://github.com/NeilGirdhar", "followers_url": "https://api.github.com/users/NeilGirdhar/followers", "following_url": "https://api.github.com/users/NeilGirdhar/following{/other_user}", "gists_url": "https://api.github.com/users/NeilGirdhar/gists{/gist_id}", "starred_url": "https://api.github.com/users/NeilGirdhar/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/NeilGirdhar/subscriptions", "organizations_url": "https://api.github.com/users/NeilGirdhar/orgs", "repos_url": "https://api.github.com/users/NeilGirdhar/repos", "events_url": "https://api.github.com/users/NeilGirdhar/events{/privacy}", "received_events_url": "https://api.github.com/users/NeilGirdhar/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6991). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "@albertvillanova Any chance we could get this in before the next release? Everything depending on HuggingFace has their NumPy upgrade blocked.", "The incompatible libraries are:\r\n- faiss-cpu 1.8.0.post1 requires numpy<2.0,>=1.0, but you have numpy 2.0.0 which is incompatible.\r\n- tensorflow 2.16.2 requires numpy<2.0.0,>=1.23.5; python_version <= \"3.11\", but you have numpy 2.0.0 which is incompatible.\r\n- transformers 4.42.3 requires numpy<2.0,>=1.17, but you have numpy 2.0.0 which is incompatible.", "Why is it installing numpy 2 if the dependencies don't support it?", "For me, I'm getting:\r\n```\r\n❯ uv pip install --system \"datasets[tests] @ .\"\r\nFound existing alias for \"uv pip install\". You should use: \"pipi\"\r\nResolved 119 packages in 934ms\r\n Built datasets @ file:///Users/neil/src/datasets\r\nPrepared 1 package in 1.28s\r\nUninstalled 1 package in 10ms\r\nInstalled 2 packages in 17ms\r\n - datasets==2.20.1.dev0 (from file:///Users/neil/src/datasets)\r\n + datasets==2.20.1.dev0 (from file:///Users/neil/src/datasets)\r\n + numpy==1.26.4\r\n```", "Which version on Python do you have?", "3.12.4 I'll try on 3.10 now.", "Please, note that I obtained the previous incompatible libraries in my local environment, by forcing the update of numpy.", "In the Python 3.10 CI, the situation is different:\r\n- for example, they install an older version of tensorflow (2.14.0), where probably the constraint on numpy was not yet implemented. See the details: https://github.com/huggingface/datasets/actions/runs/9879100332/job/27306903343?pr=6991\r\n```\r\n> uv pip install --system \"datasets[tests] @ .\"\r\n...\r\n + faiss-cpu==1.8.0\r\n...\r\n + numpy==2.0.0\r\n...\r\n + tensorflow==2.14.0\r\n```\r\n\r\nSee, CI installs:\r\n- faiss-cpu 1.8.0 instead of 1.8.0.post1\r\n- tensorflow 2.14.0 instead of 2.16.2\r\n- transformers 4.41.2 instead of 4.42.3", "~~The main point is that we cannot support numpy 2.0 until tensorflow and faiss do.~~\r\n\r\nAlternatively, we should ignore/select tests depending on the installed versions.", "> Alternatively, we should ignore/select tests depending on the installed versions.\r\n\r\nThat works.\r\n\r\nAlternatively, you could depend on tensorflow >= 2.16.2 (etc.) for the tests?", "Yes, I was thinking of a workaround solution.\r\n\r\nThe issue I see is that our CI will not test numpy 2.0 indeed.", "> The issue I see is that our CI will not test numpy 2.0 indeed.\r\n\r\nRight, that's the advantage of the test skipping you wanted, I see your point.\r\n\r\nThing is, it won't be long before tensorflow supports numpy 2.0, and then the situation is resolved and your tests test numpy 2.0. Do you really want to invest a lot of effort into testing numpy 2.0 for a few months benefit?", "Without testing Numpy 2.0, we do not know if there are some other parts in the code broken.", "> Without testing Numpy 2.0, we do not know if there are some other parts in the code broken.\r\n\r\nYes, you're right. I understand you're point, but you could say this for anything that your test dependencies don't support.\r\n\r\nI guess the solution is to write tests that don't depend on tensorflow, etc., but still use numpy. You could write some Jax tests for example.\r\n\r\nThat said, blocking numpy 2 isn't a good solution in my opinion. These dependencies are extremely late in supporting Numpy 2. They were supposed to be testing against preview releases over three months ago. I don't think the world should have to wait for them.", "> I guess the solution is to write tests that don't depend on tensorflow, etc., but still use numpy.\r\nThat is my point. What we cannot do is just blindly support Numpy 2.0 without knowing its consequences. We need to test it:\r\n- to know if our core code works with it\r\n- to know what optional libraries are incompatible\r\n\r\nFor example, while testing locally, I have discovered that librosa is also incompatible with numpy-2.0, due to its dependency on soxr:\r\n- https://github.com/dofuuz/python-soxr/issues/28", "While testing locally, I have also discovered that pytorch does not support Numpy 2.0 on Windows platforms:\r\n- https://github.com/pytorch/pytorch/issues/128860", "I am adding Numpy 2.0 tests to your PR if you don't mind, before merging this PR.", "Awesome, thank you! Please let me know if I need to do anything.", "Now we test numpy 2.0 in the `test_py310_numpy2` CI tests: https://github.com/huggingface/datasets/actions/runs/9907254874/job/27370545495?pr=6991\r\n```\r\n + numpy==2.0.0\r\n```", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005709 / 0.011353 (-0.005643) | 0.003947 / 0.011008 (-0.007061) | 0.064407 / 0.038508 (0.025899) | 0.029903 / 0.023109 (0.006794) | 0.244838 / 0.275898 (-0.031060) | 0.268894 / 0.323480 (-0.054586) | 0.003200 / 0.007986 (-0.004786) | 0.002867 / 0.004328 (-0.001461) | 0.050016 / 0.004250 (0.045765) | 0.047682 / 0.037052 (0.010629) | 0.252186 / 0.258489 (-0.006303) | 0.292050 / 0.293841 (-0.001791) | 0.030277 / 0.128546 (-0.098270) | 0.012283 / 0.075646 (-0.063364) | 0.205875 / 0.419271 (-0.213397) | 0.037202 / 0.043533 (-0.006331) | 0.246045 / 0.255139 (-0.009094) | 0.272422 / 0.283200 (-0.010777) | 0.020572 / 0.141683 (-0.121111) | 1.114343 / 1.452155 (-0.337812) | 1.169909 / 1.492716 (-0.322808) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096612 / 0.018006 (0.078605) | 0.303025 / 0.000490 (0.302535) | 0.000210 / 0.000200 (0.000010) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019292 / 0.037411 (-0.018119) | 0.062548 / 0.014526 (0.048023) | 0.076027 / 0.176557 (-0.100530) | 0.121752 / 0.737135 (-0.615383) | 0.076608 / 0.296338 (-0.219730) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283900 / 0.215209 (0.068691) | 2.829829 / 2.077655 (0.752174) | 1.428934 / 1.504120 (-0.075186) | 1.316796 / 1.541195 (-0.224399) | 1.330012 / 1.468490 (-0.138478) | 0.702245 / 4.584777 (-3.882532) | 2.380454 / 3.745712 (-1.365259) | 2.882881 / 5.269862 (-2.386980) | 1.920345 / 4.565676 (-2.645332) | 0.077860 / 0.424275 (-0.346415) | 0.005295 / 0.007607 (-0.002312) | 0.336968 / 0.226044 (0.110924) | 3.327808 / 2.268929 (1.058879) | 1.781958 / 55.444624 (-53.662666) | 1.489412 / 6.876477 (-5.387065) | 1.634829 / 2.142072 (-0.507243) | 0.787985 / 4.805227 (-4.017243) | 0.134397 / 6.500664 (-6.366267) | 0.042906 / 0.075469 (-0.032563) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.967647 / 1.841788 (-0.874141) | 11.714541 / 8.074308 (3.640233) | 9.350228 / 10.191392 (-0.841164) | 0.142675 / 0.680424 (-0.537749) | 0.014609 / 0.534201 (-0.519592) | 0.301970 / 0.579283 (-0.277314) | 0.262350 / 0.434364 (-0.172014) | 0.342933 / 0.540337 (-0.197404) | 0.437321 / 1.386936 (-0.949615) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005622 / 0.011353 (-0.005731) | 0.003958 / 0.011008 (-0.007050) | 0.050667 / 0.038508 (0.012159) | 0.032842 / 0.023109 (0.009733) | 0.252292 / 0.275898 (-0.023606) | 0.280602 / 0.323480 (-0.042878) | 0.004313 / 0.007986 (-0.003673) | 0.002870 / 0.004328 (-0.001458) | 0.049549 / 0.004250 (0.045299) | 0.040448 / 0.037052 (0.003396) | 0.270264 / 0.258489 (0.011775) | 0.302988 / 0.293841 (0.009147) | 0.030840 / 0.128546 (-0.097707) | 0.012131 / 0.075646 (-0.063515) | 0.060061 / 0.419271 (-0.359211) | 0.033025 / 0.043533 (-0.010507) | 0.251909 / 0.255139 (-0.003230) | 0.275511 / 0.283200 (-0.007689) | 0.018399 / 0.141683 (-0.123284) | 1.160744 / 1.452155 (-0.291411) | 1.188265 / 1.492716 (-0.304452) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097719 / 0.018006 (0.079712) | 0.304389 / 0.000490 (0.303899) | 0.000217 / 0.000200 (0.000017) | 0.000045 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022964 / 0.037411 (-0.014447) | 0.076897 / 0.014526 (0.062372) | 0.088930 / 0.176557 (-0.087626) | 0.128926 / 0.737135 (-0.608209) | 0.091049 / 0.296338 (-0.205290) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285670 / 0.215209 (0.070461) | 2.806071 / 2.077655 (0.728416) | 1.527161 / 1.504120 (0.023041) | 1.410291 / 1.541195 (-0.130903) | 1.427071 / 1.468490 (-0.041419) | 0.705527 / 4.584777 (-3.879250) | 0.926915 / 3.745712 (-2.818797) | 2.893078 / 5.269862 (-2.376784) | 1.907113 / 4.565676 (-2.658564) | 0.077326 / 0.424275 (-0.346949) | 0.005182 / 0.007607 (-0.002425) | 0.332282 / 0.226044 (0.106237) | 3.312889 / 2.268929 (1.043960) | 1.853839 / 55.444624 (-53.590785) | 1.592013 / 6.876477 (-5.284464) | 1.620234 / 2.142072 (-0.521838) | 0.776894 / 4.805227 (-4.028333) | 0.132411 / 6.500664 (-6.368253) | 0.041430 / 0.075469 (-0.034039) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.003468 / 1.841788 (-0.838320) | 12.472251 / 8.074308 (4.397943) | 10.603243 / 10.191392 (0.411851) | 0.132561 / 0.680424 (-0.547863) | 0.015790 / 0.534201 (-0.518411) | 0.306724 / 0.579283 (-0.272559) | 0.125812 / 0.434364 (-0.308552) | 0.343782 / 0.540337 (-0.196555) | 0.445915 / 1.386936 (-0.941021) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#dfc2b1b14ab8f32730d2bc36c8016ecefbcbabd1 \"CML watermark\")\n" ]
2024-06-22T09:19:53
2024-07-12T12:11:18
2024-07-12T12:04:53
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6991", "html_url": "https://github.com/huggingface/datasets/pull/6991", "diff_url": "https://github.com/huggingface/datasets/pull/6991.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6991.patch", "merged_at": "2024-07-12T12:04:53" }
Fixes https://github.com/huggingface/datasets/issues/6980
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6991/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6991/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6990
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6990/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6990/comments
https://api.github.com/repos/huggingface/datasets/issues/6990/events
https://github.com/huggingface/datasets/issues/6990
2,366,660,785
I_kwDODunzps6NEGCx
6,990
Problematic rank after calling `split_dataset_by_node` twice
{ "login": "yzhangcs", "id": 18402347, "node_id": "MDQ6VXNlcjE4NDAyMzQ3", "avatar_url": "https://avatars.githubusercontent.com/u/18402347?v=4", "gravatar_id": "", "url": "https://api.github.com/users/yzhangcs", "html_url": "https://github.com/yzhangcs", "followers_url": "https://api.github.com/users/yzhangcs/followers", "following_url": "https://api.github.com/users/yzhangcs/following{/other_user}", "gists_url": "https://api.github.com/users/yzhangcs/gists{/gist_id}", "starred_url": "https://api.github.com/users/yzhangcs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yzhangcs/subscriptions", "organizations_url": "https://api.github.com/users/yzhangcs/orgs", "repos_url": "https://api.github.com/users/yzhangcs/repos", "events_url": "https://api.github.com/users/yzhangcs/events{/privacy}", "received_events_url": "https://api.github.com/users/yzhangcs/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "ah yes good catch ! feel free to open a PR with your suggested fix" ]
2024-06-21T14:25:26
2024-06-25T16:19:19
2024-06-25T16:19:19
CONTRIBUTOR
null
null
null
### Describe the bug I'm trying to split `IterableDataset` by `split_dataset_by_node`. But when doing split on a already split dataset, the resulting `rank` is greater than `world_size`. ### Steps to reproduce the bug Here is the minimal code for reproduction: ```py >>> from datasets import load_dataset >>> from datasets.distributed import split_dataset_by_node >>> dataset = load_dataset('fla-hub/slimpajama-test', split='train', streaming=True) >>> dataset = split_dataset_by_node(dataset, 1, 32) >>> dataset._distributed DistributedConfig(rank=1, world_size=32) >>> dataset = split_dataset_by_node(dataset, 1, 15) >>> dataset._distributed DistributedConfig(rank=481, world_size=480) ``` As you can see, the second rank 481 > 480, which is problematic. ### Expected behavior I think this error comes from this line @lhoestq https://github.com/huggingface/datasets/blob/a6ccf944e42c1a84de81bf326accab9999b86c90/src/datasets/iterable_dataset.py#L2943-L2944 We may need to obtain the rank first. Then the above code gives ```py >>> dataset._distributed DistributedConfig(rank=16, world_size=480) ``` ### Environment info datasets==2.20.0
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6990/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6990/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6989
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6989/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6989/comments
https://api.github.com/repos/huggingface/datasets/issues/6989/events
https://github.com/huggingface/datasets/issues/6989
2,365,556,449
I_kwDODunzps6M_4bh
6,989
cache in nfs error
{ "login": "simplew2011", "id": 66729924, "node_id": "MDQ6VXNlcjY2NzI5OTI0", "avatar_url": "https://avatars.githubusercontent.com/u/66729924?v=4", "gravatar_id": "", "url": "https://api.github.com/users/simplew2011", "html_url": "https://github.com/simplew2011", "followers_url": "https://api.github.com/users/simplew2011/followers", "following_url": "https://api.github.com/users/simplew2011/following{/other_user}", "gists_url": "https://api.github.com/users/simplew2011/gists{/gist_id}", "starred_url": "https://api.github.com/users/simplew2011/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/simplew2011/subscriptions", "organizations_url": "https://api.github.com/users/simplew2011/orgs", "repos_url": "https://api.github.com/users/simplew2011/repos", "events_url": "https://api.github.com/users/simplew2011/events{/privacy}", "received_events_url": "https://api.github.com/users/simplew2011/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[]
2024-06-21T02:09:22
2024-06-21T02:12:55
null
NONE
null
null
null
### Describe the bug - When reading dataset, a cache will be generated to the ~/. cache/huggingface/datasets directory - When using .map and .filter operations, runtime cache will be generated to the /tmp/hf_datasets-* directory - The default is to use the path of tempfile.tempdir - If I modify this path to the NFS disk, an error will be reported, but the program will continue to run - https://github.com/huggingface/datasets/blob/main/src/datasets/config.py#L257 ``` Traceback (most recent call last): File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/process.py", line 315, in _bootstrap self.run() File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/managers.py", line 616, in _run_server server.serve_forever() File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/managers.py", line 182, in serve_forever sys.exit(0) SystemExit: 0 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/util.py", line 300, in _run_finalizers finalizer() File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/util.py", line 224, in __call__ res = self._callback(*self._args, **self._kwargs) File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/util.py", line 133, in _remove_temp_dir rmtree(tempdir) File "/home/wzp/miniconda3/envs/dask/lib/python3.8/shutil.py", line 718, in rmtree _rmtree_safe_fd(fd, path, onerror) File "/home/wzp/miniconda3/envs/dask/lib/python3.8/shutil.py", line 675, in _rmtree_safe_fd onerror(os.unlink, fullname, sys.exc_info()) File "/home/wzp/miniconda3/envs/dask/lib/python3.8/shutil.py", line 673, in _rmtree_safe_fd os.unlink(entry.name, dir_fd=topfd) OSError: [Errno 16] Device or resource busy: '.nfs000000038330a012000030b4' Traceback (most recent call last): File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/process.py", line 315, in _bootstrap self.run() File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/process.py", line 108, in run self._target(*self._args, **self._kwargs) File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/managers.py", line 616, in _run_server server.serve_forever() File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/managers.py", line 182, in serve_forever sys.exit(0) SystemExit: 0 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/util.py", line 300, in _run_finalizers finalizer() File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/util.py", line 224, in __call__ res = self._callback(*self._args, **self._kwargs) File "/home/wzp/miniconda3/envs/dask/lib/python3.8/site-packages/multiprocess/util.py", line 133, in _remove_temp_dir rmtree(tempdir) File "/home/wzp/miniconda3/envs/dask/lib/python3.8/shutil.py", line 718, in rmtree _rmtree_safe_fd(fd, path, onerror) File "/home/wzp/miniconda3/envs/dask/lib/python3.8/shutil.py", line 675, in _rmtree_safe_fd onerror(os.unlink, fullname, sys.exc_info()) File "/home/wzp/miniconda3/envs/dask/lib/python3.8/shutil.py", line 673, in _rmtree_safe_fd os.unlink(entry.name, dir_fd=topfd) OSError: [Errno 16] Device or resource busy: '.nfs0000000400064d4a000030e5' ``` ### Steps to reproduce the bug ``` import os import time import tempfile from datasets import load_dataset def add_column(sample): # print(type(sample)) # time.sleep(0.1) sample['__ds__stats__'] = {'data': 123} return sample def filt_column(sample): # print(type(sample)) if len(sample['content']) > 10: return True else: return False if __name__ == '__main__': input_dir = '/mnt/temp/CN/small' # some json dataset dataset = load_dataset('json', data_dir=input_dir) temp_dir = '/media/release/release/temp/temp' # a nfs folder os.makedirs(temp_dir, exist_ok=True) # change huggingface-datasets runtime cache in nfs(default in /tmp) tempfile.tempdir = temp_dir aa = dataset.map(add_column, num_proc=64) aa = aa.filter(filt_column, num_proc=64) print(aa) ``` ### Expected behavior no error occur ### Environment info datasets==2.18.0 ubuntu 20.04
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6989/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6989/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6988
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6988/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6988/comments
https://api.github.com/repos/huggingface/datasets/issues/6988/events
https://github.com/huggingface/datasets/pull/6988
2,364,129,918
PR_kwDODunzps5zDpXX
6,988
[`feat`] Move dataset card creation to method for easier overriding
{ "login": "tomaarsen", "id": 37621491, "node_id": "MDQ6VXNlcjM3NjIxNDkx", "avatar_url": "https://avatars.githubusercontent.com/u/37621491?v=4", "gravatar_id": "", "url": "https://api.github.com/users/tomaarsen", "html_url": "https://github.com/tomaarsen", "followers_url": "https://api.github.com/users/tomaarsen/followers", "following_url": "https://api.github.com/users/tomaarsen/following{/other_user}", "gists_url": "https://api.github.com/users/tomaarsen/gists{/gist_id}", "starred_url": "https://api.github.com/users/tomaarsen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tomaarsen/subscriptions", "organizations_url": "https://api.github.com/users/tomaarsen/orgs", "repos_url": "https://api.github.com/users/tomaarsen/repos", "events_url": "https://api.github.com/users/tomaarsen/events{/privacy}", "received_events_url": "https://api.github.com/users/tomaarsen/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6988). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "`Dataset` objects are not made to be subclassed, so I don't think going in that direction is a good idea. In particular there is absolutely no test to make sure it works well, and nothing in the internal has been made to anticipate this use case.\r\n\r\nI'd suggest to use a separate function to push changes to the Dataset card, and call it after `push_to_hub()`. This way people can also use a similar logic with other tools that `datasets`. You can also use composition instead of subclassing.", "Would you consider an alternative where a Dataset instance carries a dataset card template which can be updated?\n\nI don't want to burden my users with having to call another method after `push_to_hub` themselves. If you're not a fan of the template approach above either, then I'll likely subclass `push_to_hub` to once again download the just-uploaded-but-empty dataset card, update it, and reupload it. It'll just be a bit more requests than necessary, but not a big deal overall.\n\n- Tom Aarsen ", "Actually I find the idea of overriding `_create_dataset_card` better than implementing a templating logic. My main concern is that if we go in that direction we better make sure that subclasses of `Dataset` are working well. \r\n\r\nWell if it's been working fine on your side why not, but make sure you test correctly features that could not work because of subclassing (e.g. I'm pretty sure `map()` won't return your subclass of `Dataset`). Or at least the ones that matter for your lib.\r\n\r\nIf it sounds good to you I'm fine with merging your addition to let you override the dataset card.", "> e.g. I'm pretty sure map() won't return your subclass of Dataset\r\n\r\nI understand that there's limitations such as this one. The subclass doesn't have to be robust - I'd just like some simple automatic dataset card generation options directly after generating the dataset. This can be removed if the user does additional steps before pushing the model, e.g. mapping, filtering, saving to disk and uploading the loaded dataset, etc.\r\n\r\n> If it sounds good to you I'm fine with merging your addition to let you override the dataset card.\r\n\r\nThat would be quite useful for me! I appreciate it.\r\n\r\nI'm not very sure what the test failures are caused by, I believe the only change in behaviour is that\r\n```python\r\n DatasetInfosDict({config_name: info_to_dump}).to_dataset_card_data(dataset_card_data)\r\n MetadataConfigs({config_name: metadata_config_to_dump}).to_dataset_card_data(dataset_card_data)\r\n```\r\nare not called when `dataset_card` was already defined. Unless these have side-effects other than updating `dataset_card_data`, it shouldn't be any different than `main`.\r\n\r\n- Tom Aarsen", "Let's try to have this PR merged then !\r\n\r\nIMO your current implementation can be improved since you path both the dataset card data and the dataset card itself, which is redundant. Also I anticipate the failures in the CI to come from your default implementation which doesn't correspond to what it was doing before\r\n\r\n> Unless these have side-effects other than updating dataset_card_data, it shouldn't be any different than main.\r\n\r\nIndeed the dataset_card_data is the value from attribute of the dataset_card from a few lines before your changes, so yes it modifies the dataset_card object too." ]
2024-06-20T10:47:57
2024-06-21T16:04:58
null
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6988", "html_url": "https://github.com/huggingface/datasets/pull/6988", "diff_url": "https://github.com/huggingface/datasets/pull/6988.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6988.patch", "merged_at": null }
Hello! ## Pull Request overview * Move dataset card creation to method for easier overriding ## Details It's common for me to fully automatically download, reformat, and upload a dataset (e.g. see https://huggingface.co/datasets?other=sentence-transformers), but one aspect that I cannot easily automate is the dataset card generation. This is because during `push_to_hub`, the dataset card is created in 3 lines of code in a much larger method. To automatically generate a dataset card, I need to either: 1. Subclass `Dataset`/`DatasetDict`, copy the entire `push_to_hub` method to override the ~3 lines used to generate the dataset card. This is not viable as the method is likely to change over time. 2. Use `push_to_hub` normally, then separately download the pushed (but empty) dataset card, update it, and reupload the modified dataset. This works fine, but prevents me from being able to return a `Dataset` to my users which will automatically use a nice dataset card. So, in this PR I'm proposing to move the dataset generation into another method so that it can be overridden more easily. For example, imagine the following use case: ````python import json from typing import Any, Dict, Optional from datasets import Dataset, load_dataset from datasets.info import DatasetInfosDict, DatasetInfo from datasets.utils.metadata import MetadataConfigs from huggingface_hub import DatasetCardData, DatasetCard TEMPLATE = r"""--- {dataset_card_data} --- # Dataset Card for {source_dataset_name} with mined hard negatives This dataset is a collection of {column_one}-{column_two}-negative triplets from the {source_dataset_name} dataset. See [{source_dataset_name}](https://huggingface.co/datasets/{source_dataset_id}) for additional information. This dataset can be used directly with Sentence Transformers to train embedding models. ## Mining Parameters The negative samples have been mined using the following parameters: - `range_min`: {range_min}, i.e. we skip the {range_min} most similar samples - `range_max`: {range_max}, i.e. we only look at the top {range_max} most similar samples - `margin`: {margin}, i.e. we require negative similarity + margin < positive similarity, so negative samples can't be more similar than the known true answer - `sampling_strategy`: {sampling_strategy}, i.e. whether to randomly sample from the candidate negatives or take the "top" negatives - `num_negatives`: {num_negatives}, i.e. we mine {num_negatives} negatives per question-answer pair ## Dataset Format - Columns: {column_one}, {column_two}, negative - Column types: str, str, str - Example: ```python {example} ``` """ class HNMDataset(Dataset): @classmethod def from_dict(cls, *args, mining_kwargs: Dict[str, Any], **kwargs) -> "HNMDataset": dataset = super().from_dict(*args, **kwargs) dataset.mining_kwargs = mining_kwargs return dataset def _create_dataset_card( self, dataset_card_data: DatasetCardData, dataset_card: Optional[DatasetCard], config_name: str, info_to_dump: DatasetInfo, metadata_config_to_dump: MetadataConfigs, ) -> DatasetCard: if dataset_card: return dataset_card DatasetInfosDict({config_name: info_to_dump}).to_dataset_card_data(dataset_card_data) MetadataConfigs({config_name: metadata_config_to_dump}).to_dataset_card_data(dataset_card_data) dataset_card_data.tags = ["sentence-transformers"] dataset_name = self.mining_kwargs["source_dataset"].info.dataset_name # Very messy, just as an example: dataset_id = list(self.mining_kwargs["source_dataset"].info.download_checksums.keys())[0].removeprefix("hf://datasets/").split("@")[0] content = TEMPLATE.format(**{ "dataset_card_data": str(dataset_card_data), "source_dataset_name": dataset_name, "source_dataset_id": dataset_id, "range_min": self.mining_kwargs["range_min"], "range_max": self.mining_kwargs["range_max"], "margin": self.mining_kwargs["margin"], "sampling_strategy": self.mining_kwargs["sampling_strategy"], "num_negatives": self.mining_kwargs["num_negatives"], "column_one": self.column_names[0], "column_two": self.column_names[1], "example": json.dumps(self[0], indent=4), }) return DatasetCard(content) source_dataset = load_dataset("sentence-transformers/gooaq", split="train[:100]") dataset = HNMDataset.from_dict({ "query": source_dataset["question"], "answer": source_dataset["answer"], # "negative": ... <- In my case, this column would be 'mined' automatically with these parameters }, mining_kwargs={ "range_min": 10, "range_max": 20, "max_score": 0.9, "margin": 0.1, "sampling_strategy": "random", "num_negatives": 3, "source_dataset": source_dataset, }) dataset.push_to_hub("tomaarsen/mining_demo", private=True) ```` In this script, I've created a subclass which stores some additional information about how the dataset was generated. It's a bit hacky (e.g. setting a `mining_kwargs` parameter in `from_dict` that wasn't created in `__init__`, but that's just a consequence of how the `from_...` methods don't accept kwargs), but it allows me to create a "hard negatives mining" function that returns a dataset which people can use locally like normal, but if they choose to upload it, then it'll automatically include some information, e.g.: https://huggingface.co/datasets/tomaarsen/mining_demo This allows others to actually find this dataset (e.g. via the `sentence-transformers` tag) and get an idea of the quality, source, etc. by looking at the model card. ## Note I'm not fixed on this solution whatsoever: I am also completely fine with other solutions, e.g. a `dataset.set_dataset_card_creator` method that allows me to provide a function without even having to subclass anything. I'm open to all ideas :) cc @albertvillanova @lhoestq cc @LysandreJik - Tom Aarsen
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6988/reactions", "total_count": 1, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 1 }
https://api.github.com/repos/huggingface/datasets/issues/6988/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6987
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6987/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6987/comments
https://api.github.com/repos/huggingface/datasets/issues/6987/events
https://github.com/huggingface/datasets/pull/6987
2,363,728,190
PR_kwDODunzps5zCRH6
6,987
Remove beam
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
{ "url": "https://api.github.com/repos/huggingface/datasets/milestones/10", "html_url": "https://github.com/huggingface/datasets/milestone/10", "labels_url": "https://api.github.com/repos/huggingface/datasets/milestones/10/labels", "id": 9038583, "node_id": "MI_kwDODunzps4Aier3", "number": 10, "title": "3.0", "description": "Next major release", "creator": { "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }, "open_issues": 5, "closed_issues": 3, "state": "open", "created_at": "2023-02-13T16:22:42", "updated_at": "2024-06-28T06:51:30", "due_on": null, "closed_at": null }
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6987). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005931 / 0.011353 (-0.005422) | 0.004127 / 0.011008 (-0.006881) | 0.063854 / 0.038508 (0.025346) | 0.034687 / 0.023109 (0.011577) | 0.251397 / 0.275898 (-0.024501) | 0.280348 / 0.323480 (-0.043132) | 0.005008 / 0.007986 (-0.002977) | 0.002930 / 0.004328 (-0.001398) | 0.050703 / 0.004250 (0.046452) | 0.047109 / 0.037052 (0.010057) | 0.258525 / 0.258489 (0.000035) | 0.288759 / 0.293841 (-0.005081) | 0.030547 / 0.128546 (-0.097999) | 0.102184 / 0.075646 (0.026537) | 0.207934 / 0.419271 (-0.211338) | 0.036477 / 0.043533 (-0.007056) | 0.338160 / 0.255139 (0.083021) | 0.310735 / 0.283200 (0.027535) | 0.018637 / 0.141683 (-0.123045) | 1.228539 / 1.452155 (-0.223616) | 1.168004 / 1.492716 (-0.324713) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098355 / 0.018006 (0.080348) | 0.302310 / 0.000490 (0.301820) | 0.000215 / 0.000200 (0.000015) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019607 / 0.037411 (-0.017804) | 0.063795 / 0.014526 (0.049269) | 0.075029 / 0.176557 (-0.101528) | 0.121293 / 0.737135 (-0.615842) | 0.076480 / 0.296338 (-0.219858) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285285 / 0.215209 (0.070076) | 2.747455 / 2.077655 (0.669801) | 1.454190 / 1.504120 (-0.049929) | 1.330777 / 1.541195 (-0.210418) | 1.358292 / 1.468490 (-0.110198) | 0.724991 / 4.584777 (-3.859786) | 2.374889 / 3.745712 (-1.370823) | 2.985868 / 5.269862 (-2.283994) | 1.921521 / 4.565676 (-2.644156) | 0.078589 / 0.424275 (-0.345686) | 0.005104 / 0.007607 (-0.002503) | 0.333898 / 0.226044 (0.107853) | 3.317702 / 2.268929 (1.048773) | 1.887161 / 55.444624 (-53.557463) | 1.510700 / 6.876477 (-5.365777) | 1.544175 / 2.142072 (-0.597898) | 0.804262 / 4.805227 (-4.000965) | 0.134015 / 6.500664 (-6.366649) | 0.042819 / 0.075469 (-0.032650) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.012142 / 1.841788 (-0.829645) | 11.861780 / 8.074308 (3.787472) | 9.797285 / 10.191392 (-0.394107) | 0.142114 / 0.680424 (-0.538310) | 0.013984 / 0.534201 (-0.520217) | 0.302412 / 0.579283 (-0.276871) | 0.265060 / 0.434364 (-0.169304) | 0.337510 / 0.540337 (-0.202828) | 0.432197 / 1.386936 (-0.954739) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005920 / 0.011353 (-0.005433) | 0.003991 / 0.011008 (-0.007017) | 0.049874 / 0.038508 (0.011366) | 0.033771 / 0.023109 (0.010662) | 0.264789 / 0.275898 (-0.011109) | 0.287554 / 0.323480 (-0.035926) | 0.004341 / 0.007986 (-0.003644) | 0.002888 / 0.004328 (-0.001441) | 0.049383 / 0.004250 (0.045133) | 0.040757 / 0.037052 (0.003704) | 0.286067 / 0.258489 (0.027578) | 0.311105 / 0.293841 (0.017264) | 0.031482 / 0.128546 (-0.097064) | 0.012358 / 0.075646 (-0.063288) | 0.060298 / 0.419271 (-0.358973) | 0.033237 / 0.043533 (-0.010296) | 0.265804 / 0.255139 (0.010665) | 0.281273 / 0.283200 (-0.001927) | 0.017879 / 0.141683 (-0.123804) | 1.154059 / 1.452155 (-0.298096) | 1.156758 / 1.492716 (-0.335958) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004677 / 0.018006 (-0.013329) | 0.300768 / 0.000490 (0.300278) | 0.000212 / 0.000200 (0.000013) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023032 / 0.037411 (-0.014379) | 0.077498 / 0.014526 (0.062973) | 0.089134 / 0.176557 (-0.087422) | 0.129691 / 0.737135 (-0.607444) | 0.091372 / 0.296338 (-0.204967) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.290823 / 0.215209 (0.075613) | 2.873159 / 2.077655 (0.795504) | 1.563361 / 1.504120 (0.059241) | 1.447048 / 1.541195 (-0.094147) | 1.490473 / 1.468490 (0.021983) | 0.715642 / 4.584777 (-3.869135) | 0.996223 / 3.745712 (-2.749489) | 2.861466 / 5.269862 (-2.408396) | 1.915581 / 4.565676 (-2.650096) | 0.077892 / 0.424275 (-0.346383) | 0.005463 / 0.007607 (-0.002144) | 0.339670 / 0.226044 (0.113626) | 3.412830 / 2.268929 (1.143902) | 1.908676 / 55.444624 (-53.535949) | 1.625358 / 6.876477 (-5.251119) | 1.769437 / 2.142072 (-0.372635) | 0.792505 / 4.805227 (-4.012722) | 0.133007 / 6.500664 (-6.367657) | 0.041305 / 0.075469 (-0.034164) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.986882 / 1.841788 (-0.854905) | 12.368101 / 8.074308 (4.293793) | 10.367439 / 10.191392 (0.176047) | 0.141248 / 0.680424 (-0.539176) | 0.016144 / 0.534201 (-0.518057) | 0.300962 / 0.579283 (-0.278321) | 0.126863 / 0.434364 (-0.307501) | 0.341107 / 0.540337 (-0.199230) | 0.439819 / 1.386936 (-0.947117) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b2754625d45e153bd9758af40e65e7545321fc2a \"CML watermark\")\n" ]
2024-06-20T07:27:14
2024-06-26T19:41:55
2024-06-26T19:35:42
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6987", "html_url": "https://github.com/huggingface/datasets/pull/6987", "diff_url": "https://github.com/huggingface/datasets/pull/6987.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6987.patch", "merged_at": "2024-06-26T19:35:42" }
Remove beam, as part of the 3.0 release.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6987/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6987/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6986
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6986/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6986/comments
https://api.github.com/repos/huggingface/datasets/issues/6986/events
https://github.com/huggingface/datasets/pull/6986
2,362,584,179
PR_kwDODunzps5y-Zi0
6,986
Add large_list type support in string_to_arrow
{ "login": "arthasking123", "id": 16257131, "node_id": "MDQ6VXNlcjE2MjU3MTMx", "avatar_url": "https://avatars.githubusercontent.com/u/16257131?v=4", "gravatar_id": "", "url": "https://api.github.com/users/arthasking123", "html_url": "https://github.com/arthasking123", "followers_url": "https://api.github.com/users/arthasking123/followers", "following_url": "https://api.github.com/users/arthasking123/following{/other_user}", "gists_url": "https://api.github.com/users/arthasking123/gists{/gist_id}", "starred_url": "https://api.github.com/users/arthasking123/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/arthasking123/subscriptions", "organizations_url": "https://api.github.com/users/arthasking123/orgs", "repos_url": "https://api.github.com/users/arthasking123/repos", "events_url": "https://api.github.com/users/arthasking123/events{/privacy}", "received_events_url": "https://api.github.com/users/arthasking123/received_events", "type": "User", "site_admin": false }
[]
open
false
null
[]
null
[ "@albertvillanova @KennethEnevoldsen" ]
2024-06-19T14:54:25
2024-07-18T08:29:17
null
NONE
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6986", "html_url": "https://github.com/huggingface/datasets/pull/6986", "diff_url": "https://github.com/huggingface/datasets/pull/6986.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6986.patch", "merged_at": null }
add large_list type support in string_to_arrow() and _arrow_to_datasets_dtype() in features.py Fix #6984
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6986/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6986/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6985
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6985/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6985/comments
https://api.github.com/repos/huggingface/datasets/issues/6985/events
https://github.com/huggingface/datasets/issues/6985
2,362,378,276
I_kwDODunzps6Mzwgk
6,985
AttributeError: module 'pyarrow.lib' has no attribute 'ListViewType'
{ "login": "firmai", "id": 26666267, "node_id": "MDQ6VXNlcjI2NjY2MjY3", "avatar_url": "https://avatars.githubusercontent.com/u/26666267?v=4", "gravatar_id": "", "url": "https://api.github.com/users/firmai", "html_url": "https://github.com/firmai", "followers_url": "https://api.github.com/users/firmai/followers", "following_url": "https://api.github.com/users/firmai/following{/other_user}", "gists_url": "https://api.github.com/users/firmai/gists{/gist_id}", "starred_url": "https://api.github.com/users/firmai/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/firmai/subscriptions", "organizations_url": "https://api.github.com/users/firmai/orgs", "repos_url": "https://api.github.com/users/firmai/repos", "events_url": "https://api.github.com/users/firmai/events{/privacy}", "received_events_url": "https://api.github.com/users/firmai/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Please note that the error is raised just at import:\r\n```python\r\nimport pyarrow.parquet as pq\r\n```\r\n\r\nTherefore it must be caused by some problem with your pyarrow installation. I would recommend you uninstall and install pyarrow again.\r\n\r\nI also see that it seems you use conda to install pyarrow. Please note that pyarrow offers 3 different packages in conda-forge: https://arrow.apache.org/docs/python/install.html#using-conda\r\n```\r\nconda install -c conda-forge pyarrow\r\n```\r\n> While the pyarrow [conda-forge](https://conda-forge.org/) package is the right choice for most users, both a minimal and maximal variant of the package exist, either of which may be better for your use case. See [Differences between conda-forge packages](https://arrow.apache.org/docs/python/install.html#python-conda-differences).\r\n\r\nPlease, make sure you install the right one: I guess it is either `pyarrow` (or `pyarrow-all`).", "I have same issue, please downgrade pyarrow==15.0.2, it seem datasets library need to be fix", "It is not a problem with the `datasets` library: we support latest version of `pyarrow` and our Continuous Integration tests are using pyarrow 16.1.0 without any problem.\r\n\r\nThe error reported here is raised when importing pyarrow.parquet:\r\n```\r\n---> 29 import pyarrow.parquet as pq\r\n```\r\n```\r\nFile /opt/conda/lib/python3.10/site-packages/pyarrow/parquet/__init__.py:20\r\n 1 # Licensed to the Apache Software Foundation (ASF) under one\r\n 2 # or more contributor license agreements. See the NOTICE file\r\n 3 # distributed with this work for additional information\r\n (...)\r\n 17 \r\n 18 # flake8: noqa\r\n---> 20 from .core import *\r\n\r\nFile /opt/conda/lib/python3.10/site-packages/pyarrow/parquet/core.py:33\r\n 30 import pyarrow as pa\r\n 32 try:\r\n---> 33 import pyarrow._parquet as _parquet\r\n 34 except ImportError as exc:\r\n 35 raise ImportError(\r\n 36 \"The pyarrow installation is not built with support \"\r\n 37 f\"for the Parquet file format ({str(exc)})\"\r\n 38 ) from None\r\n\r\nFile /opt/conda/lib/python3.10/site-packages/pyarrow/_parquet.pyx:1, in init pyarrow._parquet()\r\n\r\nAttributeError: module 'pyarrow.lib' has no attribute 'ListViewType'\r\n```\r\n\r\nThis can only be explained if pyarrow was not properly installed. \r\n\r\nIf the user just installed `pyarrow-core` from conda-forge, then its parquet subpackage is not installed and cannot be imported. You can check pyarrow docs:\r\n- Differences between conda-forge packages: https://arrow.apache.org/docs/python/install.html#python-conda-differences\r\n> The `pyarrow-core` package includes the following functionality:\r\n> ...\r\n> The `pyarrow` package adds the following:\r\n> ...\r\n> Parquet (i.e., `pyarrow.parquet`)" ]
2024-06-19T13:22:28
2024-06-25T11:28:38
2024-06-25T05:40:51
NONE
null
null
null
### Describe the bug I have been struggling with this for two days, any help would be appreciated. Python 3.10 ``` from setfit import SetFitModel from huggingface_hub import login access_token_read = "cccxxxccc" # Authenticate with the Hugging Face Hub login(token=access_token_read) # Load the models from the Hugging Face Hub trainer_relv = SetFitModel.from_pretrained("snowdere/trainer_relevance") trainer_trust = SetFitModel.from_pretrained("snowdere/trainer_trust") trainer_sent = SetFitModel.from_pretrained("snowdere/trainer_sent") trainer_topic = SetFitModel.from_pretrained("snowdere/trainer_topic") ``` ``` --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) Cell In[6], line 1 ----> 1 from setfit import SetFitModel 2 from huggingface_hub import login 4 access_token_read = "ccsddsds" File /opt/conda/lib/python3.10/site-packages/setfit/__init__.py:7 4 import os 5 import warnings ----> 7 from .data import get_templated_dataset, sample_dataset 8 from .model_card import SetFitModelCardData 9 from .modeling import SetFitHead, SetFitModel File /opt/conda/lib/python3.10/site-packages/setfit/data.py:5 3 import pandas as pd 4 import torch ----> 5 from datasets import Dataset, DatasetDict, load_dataset 6 from torch.utils.data import Dataset as TorchDataset 8 from . import logging File /opt/conda/lib/python3.10/site-packages/datasets/__init__.py:18 1 # ruff: noqa 2 # Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors. 3 # (...) 13 # See the License for the specific language governing permissions and 14 # limitations under the License. 16 __version__ = "2.19.0" ---> 18 from .arrow_dataset import Dataset 19 from .arrow_reader import ReadInstruction 20 from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder File /opt/conda/lib/python3.10/site-packages/datasets/arrow_dataset.py:76 73 from tqdm.contrib.concurrent import thread_map 75 from . import config ---> 76 from .arrow_reader import ArrowReader 77 from .arrow_writer import ArrowWriter, OptimizedTypedSequence 78 from .data_files import sanitize_patterns File /opt/conda/lib/python3.10/site-packages/datasets/arrow_reader.py:29 26 from typing import TYPE_CHECKING, List, Optional, Union 28 import pyarrow as pa ---> 29 import pyarrow.parquet as pq 30 from tqdm.contrib.concurrent import thread_map 32 from .download.download_config import DownloadConfig File /opt/conda/lib/python3.10/site-packages/pyarrow/parquet/__init__.py:20 1 # Licensed to the Apache Software Foundation (ASF) under one 2 # or more contributor license agreements. See the NOTICE file 3 # distributed with this work for additional information (...) 17 18 # flake8: noqa ---> 20 from .core import * File /opt/conda/lib/python3.10/site-packages/pyarrow/parquet/core.py:33 30 import pyarrow as pa 32 try: ---> 33 import pyarrow._parquet as _parquet 34 except ImportError as exc: 35 raise ImportError( 36 "The pyarrow installation is not built with support " 37 f"for the Parquet file format ({str(exc)})" 38 ) from None File /opt/conda/lib/python3.10/site-packages/pyarrow/_parquet.pyx:1, in init pyarrow._parquet() AttributeError: module 'pyarrow.lib' has no attribute 'ListViewType' ``` setfit: 1.0.3 transformers: 4.41.2 lingua-language-detector: 2.0.2 polars: 0.20.31 lightning: None google-cloud-bigquery: 3.24.0 shapely: 2.0.4 pyarrow: 16.0.0 ### Steps to reproduce the bug I have tried all version combinations for Dataset and Pyarrow, the all have the same error since a few days ago. This is accross multiple scripts I have. ### Expected behavior Just ron normally. ### Environment info 3.10
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6985/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6985/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6984
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6984/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6984/comments
https://api.github.com/repos/huggingface/datasets/issues/6984/events
https://github.com/huggingface/datasets/issues/6984
2,362,143,554
I_kwDODunzps6My3NC
6,984
Convert polars DataFrame back to datasets
{ "login": "ljw20180420", "id": 38550511, "node_id": "MDQ6VXNlcjM4NTUwNTEx", "avatar_url": "https://avatars.githubusercontent.com/u/38550511?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ljw20180420", "html_url": "https://github.com/ljw20180420", "followers_url": "https://api.github.com/users/ljw20180420/followers", "following_url": "https://api.github.com/users/ljw20180420/following{/other_user}", "gists_url": "https://api.github.com/users/ljw20180420/gists{/gist_id}", "starred_url": "https://api.github.com/users/ljw20180420/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ljw20180420/subscriptions", "organizations_url": "https://api.github.com/users/ljw20180420/orgs", "repos_url": "https://api.github.com/users/ljw20180420/repos", "events_url": "https://api.github.com/users/ljw20180420/events{/privacy}", "received_events_url": "https://api.github.com/users/ljw20180420/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
open
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[ "Hi ! Thanks for reporting :)\r\n\r\nWe don't support `large_list` yet, though it should be added to `Sequence` IMO (maybe with a parameter `large=True` ?)" ]
2024-06-19T11:38:48
2024-07-01T12:48:18
null
NONE
null
null
null
### Feature request This returns error. ```python from datasets import Dataset dsdf = Dataset.from_dict({"x": [[1, 2], [3, 4, 5]], "y": ["a", "b"]}) Dataset.from_polars(dsdf.to_polars()) ``` ValueError: Arrow type large_list<item: int64> does not have a datasets dtype equivalent. ### Motivation When datasets contain Sequence data type, it will be converted to Arrow type large_list. However, the reverse (from large_list to Sequence) does not work. ### Your contribution No
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6984/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6984/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6983
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6983/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6983/comments
https://api.github.com/repos/huggingface/datasets/issues/6983/events
https://github.com/huggingface/datasets/pull/6983
2,361,806,201
PR_kwDODunzps5y7tK7
6,983
Remove metrics
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
{ "url": "https://api.github.com/repos/huggingface/datasets/milestones/10", "html_url": "https://github.com/huggingface/datasets/milestone/10", "labels_url": "https://api.github.com/repos/huggingface/datasets/milestones/10/labels", "id": 9038583, "node_id": "MI_kwDODunzps4Aier3", "number": 10, "title": "3.0", "description": "Next major release", "creator": { "login": "mariosasko", "id": 47462742, "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "gravatar_id": "", "url": "https://api.github.com/users/mariosasko", "html_url": "https://github.com/mariosasko", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "repos_url": "https://api.github.com/users/mariosasko/repos", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "type": "User", "site_admin": false }, "open_issues": 5, "closed_issues": 3, "state": "open", "created_at": "2023-02-13T16:22:42", "updated_at": "2024-06-28T06:51:30", "due_on": null, "closed_at": null }
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6983). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005566 / 0.011353 (-0.005787) | 0.003977 / 0.011008 (-0.007031) | 0.063250 / 0.038508 (0.024742) | 0.030907 / 0.023109 (0.007798) | 0.244989 / 0.275898 (-0.030909) | 0.272139 / 0.323480 (-0.051341) | 0.004332 / 0.007986 (-0.003653) | 0.002960 / 0.004328 (-0.001368) | 0.050147 / 0.004250 (0.045896) | 0.044740 / 0.037052 (0.007688) | 0.256947 / 0.258489 (-0.001542) | 0.290372 / 0.293841 (-0.003469) | 0.030444 / 0.128546 (-0.098102) | 0.012675 / 0.075646 (-0.062971) | 0.203852 / 0.419271 (-0.215420) | 0.036977 / 0.043533 (-0.006556) | 0.244401 / 0.255139 (-0.010738) | 0.270020 / 0.283200 (-0.013179) | 0.018177 / 0.141683 (-0.123506) | 1.122189 / 1.452155 (-0.329966) | 1.176688 / 1.492716 (-0.316028) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.100721 / 0.018006 (0.082715) | 0.311824 / 0.000490 (0.311335) | 0.000222 / 0.000200 (0.000022) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020039 / 0.037411 (-0.017373) | 0.062084 / 0.014526 (0.047558) | 0.074317 / 0.176557 (-0.102240) | 0.123935 / 0.737135 (-0.613200) | 0.076186 / 0.296338 (-0.220153) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284827 / 0.215209 (0.069618) | 2.782727 / 2.077655 (0.705072) | 1.417624 / 1.504120 (-0.086496) | 1.294476 / 1.541195 (-0.246718) | 1.332658 / 1.468490 (-0.135832) | 0.724820 / 4.584777 (-3.859957) | 2.384546 / 3.745712 (-1.361166) | 2.866759 / 5.269862 (-2.403103) | 1.930756 / 4.565676 (-2.634921) | 0.083090 / 0.424275 (-0.341185) | 0.005566 / 0.007607 (-0.002041) | 0.340117 / 0.226044 (0.114072) | 3.342417 / 2.268929 (1.073488) | 1.807842 / 55.444624 (-53.636782) | 1.511647 / 6.876477 (-5.364830) | 1.653893 / 2.142072 (-0.488179) | 0.803983 / 4.805227 (-4.001244) | 0.136205 / 6.500664 (-6.364459) | 0.042815 / 0.075469 (-0.032654) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.962346 / 1.841788 (-0.879442) | 11.792239 / 8.074308 (3.717931) | 9.236256 / 10.191392 (-0.955136) | 0.143200 / 0.680424 (-0.537224) | 0.015050 / 0.534201 (-0.519151) | 0.304623 / 0.579283 (-0.274660) | 0.266417 / 0.434364 (-0.167947) | 0.341213 / 0.540337 (-0.199124) | 0.454258 / 1.386936 (-0.932678) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005917 / 0.011353 (-0.005436) | 0.004005 / 0.011008 (-0.007003) | 0.049781 / 0.038508 (0.011273) | 0.033310 / 0.023109 (0.010200) | 0.271881 / 0.275898 (-0.004017) | 0.296855 / 0.323480 (-0.026625) | 0.004479 / 0.007986 (-0.003507) | 0.002818 / 0.004328 (-0.001510) | 0.048213 / 0.004250 (0.043962) | 0.043480 / 0.037052 (0.006428) | 0.285963 / 0.258489 (0.027473) | 0.317304 / 0.293841 (0.023463) | 0.031619 / 0.128546 (-0.096928) | 0.012312 / 0.075646 (-0.063335) | 0.059904 / 0.419271 (-0.359368) | 0.033152 / 0.043533 (-0.010381) | 0.274198 / 0.255139 (0.019059) | 0.290469 / 0.283200 (0.007269) | 0.019424 / 0.141683 (-0.122258) | 1.133669 / 1.452155 (-0.318485) | 1.194427 / 1.492716 (-0.298290) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.101561 / 0.018006 (0.083555) | 0.312617 / 0.000490 (0.312127) | 0.000216 / 0.000200 (0.000016) | 0.000045 / 0.000054 (-0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023705 / 0.037411 (-0.013706) | 0.076781 / 0.014526 (0.062255) | 0.089922 / 0.176557 (-0.086634) | 0.129182 / 0.737135 (-0.607953) | 0.092022 / 0.296338 (-0.204317) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.300977 / 0.215209 (0.085768) | 2.909088 / 2.077655 (0.831433) | 1.592821 / 1.504120 (0.088701) | 1.466627 / 1.541195 (-0.074568) | 1.497558 / 1.468490 (0.029068) | 0.720986 / 4.584777 (-3.863791) | 0.958039 / 3.745712 (-2.787673) | 3.023413 / 5.269862 (-2.246448) | 1.933245 / 4.565676 (-2.632432) | 0.080500 / 0.424275 (-0.343775) | 0.005243 / 0.007607 (-0.002364) | 0.361259 / 0.226044 (0.135215) | 3.447317 / 2.268929 (1.178389) | 1.938234 / 55.444624 (-53.506390) | 1.671563 / 6.876477 (-5.204913) | 1.674647 / 2.142072 (-0.467425) | 0.790606 / 4.805227 (-4.014621) | 0.133312 / 6.500664 (-6.367352) | 0.041241 / 0.075469 (-0.034228) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.996167 / 1.841788 (-0.845621) | 12.460877 / 8.074308 (4.386569) | 10.608415 / 10.191392 (0.417023) | 0.134076 / 0.680424 (-0.546348) | 0.016166 / 0.534201 (-0.518035) | 0.301218 / 0.579283 (-0.278065) | 0.128979 / 0.434364 (-0.305385) | 0.336453 / 0.540337 (-0.203884) | 0.435561 / 1.386936 (-0.951375) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#70e7355b7125fb792107ef5128ee3ad15cbec26c \"CML watermark\")\n" ]
2024-06-19T09:08:55
2024-06-28T06:57:38
2024-06-28T06:51:30
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6983", "html_url": "https://github.com/huggingface/datasets/pull/6983", "diff_url": "https://github.com/huggingface/datasets/pull/6983.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6983.patch", "merged_at": "2024-06-28T06:51:30" }
Remove all metrics, as part of the 3.0 release. Note they are deprecated since 2.5.0 version.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6983/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6983/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6982
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6982/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6982/comments
https://api.github.com/repos/huggingface/datasets/issues/6982/events
https://github.com/huggingface/datasets/issues/6982
2,361,661,469
I_kwDODunzps6MxBgd
6,982
cannot split dataset when using load_dataset
{ "login": "cybest0608", "id": 17721894, "node_id": "MDQ6VXNlcjE3NzIxODk0", "avatar_url": "https://avatars.githubusercontent.com/u/17721894?v=4", "gravatar_id": "", "url": "https://api.github.com/users/cybest0608", "html_url": "https://github.com/cybest0608", "followers_url": "https://api.github.com/users/cybest0608/followers", "following_url": "https://api.github.com/users/cybest0608/following{/other_user}", "gists_url": "https://api.github.com/users/cybest0608/gists{/gist_id}", "starred_url": "https://api.github.com/users/cybest0608/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cybest0608/subscriptions", "organizations_url": "https://api.github.com/users/cybest0608/orgs", "repos_url": "https://api.github.com/users/cybest0608/repos", "events_url": "https://api.github.com/users/cybest0608/events{/privacy}", "received_events_url": "https://api.github.com/users/cybest0608/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "it seems the bug will happened in all windows system, I tried it in windows8.1, 10, 11 and all of them failed. But it won't happened in the Linux(Ubuntu and Centos7) and Mac (both my virtual and physical machine). I still don't know what the problem is. May be related to the path? I cannot run the split file in my windows server which created in Linux (even I replace the path in the arrow document)....work for it for a week but still cannot fix it .....upset", "Have you properly logged in? Are you using the a valid token?\r\n\r\nNote that this dataset is gated and you must follow the right procedure to be able to access it. You can find more info in the docs: https://huggingface.co/docs/hub/datasets-gated#access-gated-datasets-as-a-user", "> Have you properly logged in? Are you using the a valid token?\r\n> \r\n> Note that this dataset is gated and you must follow the right procedure to be able to access it. You can find more info in the docs: https://huggingface.co/docs/hub/datasets-gated#access-gated-datasets-as-a-user\r\n\r\nI finally found it what happened. It is not about the logging. When I copy the dataset from its original path (C:/Users/cybes/.cache/huggingface/datasets/downloads/extracted/XXX/cv-corpus-7.0-2021-07-21) to the desktop and load each tsv in it one by one , when I load the test spilt, the following warning occurs:\r\n\"ArrowInvalid: Failed to parse string: 'Benchmark' as a scalar of type double\"\r\n\r\nThen I manually deleted them in the \"segment\", the error won't happen anymore, even I replace the original path with these revised tsv and use the previous loading method (common_voice_train = load_dataset(\"mozilla-foundation/common_voice_7_0\", \"ja\", split=\"train\", trust_remote_code=True)). It can work properly." ]
2024-06-19T08:07:16
2024-07-08T06:20:16
2024-07-08T06:20:16
NONE
null
null
null
### Describe the bug when I use load_dataset methods to load mozilla-foundation/common_voice_7_0, it can successfully download and extracted the dataset but It cannot generating the arrow document, This bug happened in my server, my laptop, so as #6906 , but it won't happen in the google colab. I work for it for days, even I load the datasets from local path, it can Generating train split and validation split but bug happen again in test split. ### Steps to reproduce the bug from datasets import load_dataset, load_metric, Audio common_voice_train = load_dataset("mozilla-foundation/common_voice_7_0", "ja", split="train", token=selftoken, trust_remote_code=True) ### Expected behavior ``` { "name": "ValueError", "message": "Instruction \"train\" corresponds to no data!", "stack": "--------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[2], line 3 1 from datasets import load_dataset, load_metric, Audio ----> 3 common_voice_train = load_dataset(\"mozilla-foundation/common_voice_7_0\", \"ja\", split=\"train\",token='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')#,trust_remote_code=True)#,streaming=True) 4 common_voice_test = load_dataset(\"mozilla-foundation/common_voice_7_0\", \"ja\", split=\"test\",token='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')#,trust_remote_code=True)#,streaming=True) File c:\\Users\\cybes\\.conda\\envs\\ECoG\\lib\\site-packages\\datasets\\load.py:2626, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs) 2622 # Build dataset for splits 2623 keep_in_memory = ( 2624 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size) 2625 ) -> 2626 ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory) 2627 # Rename and cast features to match task schema 2628 if task is not None: 2629 # To avoid issuing the same warning twice File c:\\Users\\cybes\\.conda\\envs\\ECoG\\lib\\site-packages\\datasets\\builder.py:1266, in DatasetBuilder.as_dataset(self, split, run_post_process, verification_mode, ignore_verifications, in_memory) 1263 verification_mode = VerificationMode(verification_mode or VerificationMode.BASIC_CHECKS) 1265 # Create a dataset for each of the given splits -> 1266 datasets = map_nested( 1267 partial( 1268 self._build_single_dataset, 1269 run_post_process=run_post_process, 1270 verification_mode=verification_mode, 1271 in_memory=in_memory, 1272 ), 1273 split, 1274 map_tuple=True, 1275 disable_tqdm=True, 1276 ) 1277 if isinstance(datasets, dict): 1278 datasets = DatasetDict(datasets) File c:\\Users\\cybes\\.conda\\envs\\ECoG\\lib\\site-packages\\datasets\\utils\\py_utils.py:484, in map_nested(function, data_struct, dict_only, map_list, map_tuple, map_numpy, num_proc, parallel_min_length, batched, batch_size, types, disable_tqdm, desc) 482 if batched: 483 data_struct = [data_struct] --> 484 mapped = function(data_struct) 485 if batched: 486 mapped = mapped[0] File c:\\Users\\cybes\\.conda\\envs\\ECoG\\lib\\site-packages\\datasets\\builder.py:1296, in DatasetBuilder._build_single_dataset(self, split, run_post_process, verification_mode, in_memory) 1293 split = Split(split) 1295 # Build base dataset -> 1296 ds = self._as_dataset( 1297 split=split, 1298 in_memory=in_memory, 1299 ) 1300 if run_post_process: 1301 for resource_file_name in self._post_processing_resources(split).values(): File c:\\Users\\cybes\\.conda\\envs\\ECoG\\lib\\site-packages\\datasets\\builder.py:1370, in DatasetBuilder._as_dataset(self, split, in_memory) 1368 if self._check_legacy_cache(): 1369 dataset_name = self.name -> 1370 dataset_kwargs = ArrowReader(cache_dir, self.info).read( 1371 name=dataset_name, 1372 instructions=split, 1373 split_infos=self.info.splits.values(), 1374 in_memory=in_memory, 1375 ) 1376 fingerprint = self._get_dataset_fingerprint(split) 1377 return Dataset(fingerprint=fingerprint, **dataset_kwargs) File c:\\Users\\cybes\\.conda\\envs\\ECoG\\lib\\site-packages\\datasets\\arrow_reader.py:256, in BaseReader.read(self, name, instructions, split_infos, in_memory) 254 msg = f'Instruction \"{instructions}\" corresponds to no data!' 255 #msg = f'Instruction \"{self._path}\",\"{name}\",\"{instructions}\",\"{split_infos}\" corresponds to no data!' --> 256 raise ValueError(msg) 257 return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory) ValueError: Instruction \"train\" corresponds to no data!" } ``` ### Environment info Environment: python 3.9 windows 11 pro VScode+jupyter
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6982/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6982/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6981
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6981/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6981/comments
https://api.github.com/repos/huggingface/datasets/issues/6981/events
https://github.com/huggingface/datasets/pull/6981
2,361,520,022
PR_kwDODunzps5y6tnN
6,981
Update docs on trust_remote_code defaults to False
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6981). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005578 / 0.011353 (-0.005775) | 0.003946 / 0.011008 (-0.007062) | 0.063317 / 0.038508 (0.024808) | 0.031878 / 0.023109 (0.008769) | 0.312571 / 0.275898 (0.036673) | 0.281415 / 0.323480 (-0.042065) | 0.004139 / 0.007986 (-0.003846) | 0.002730 / 0.004328 (-0.001598) | 0.049539 / 0.004250 (0.045289) | 0.045056 / 0.037052 (0.008003) | 0.263820 / 0.258489 (0.005330) | 0.297817 / 0.293841 (0.003976) | 0.029490 / 0.128546 (-0.099056) | 0.012467 / 0.075646 (-0.063179) | 0.204607 / 0.419271 (-0.214664) | 0.036305 / 0.043533 (-0.007228) | 0.244102 / 0.255139 (-0.011037) | 0.267855 / 0.283200 (-0.015345) | 0.019794 / 0.141683 (-0.121889) | 1.130784 / 1.452155 (-0.321371) | 1.172507 / 1.492716 (-0.320209) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092430 / 0.018006 (0.074424) | 0.296460 / 0.000490 (0.295970) | 0.000210 / 0.000200 (0.000010) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019467 / 0.037411 (-0.017944) | 0.062850 / 0.014526 (0.048324) | 0.074067 / 0.176557 (-0.102490) | 0.123280 / 0.737135 (-0.613856) | 0.077036 / 0.296338 (-0.219302) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282687 / 0.215209 (0.067478) | 2.786715 / 2.077655 (0.709060) | 1.492028 / 1.504120 (-0.012092) | 1.373603 / 1.541195 (-0.167592) | 1.405004 / 1.468490 (-0.063486) | 0.714408 / 4.584777 (-3.870369) | 2.376785 / 3.745712 (-1.368927) | 2.916150 / 5.269862 (-2.353712) | 1.921184 / 4.565676 (-2.644493) | 0.078354 / 0.424275 (-0.345921) | 0.005236 / 0.007607 (-0.002371) | 0.334647 / 0.226044 (0.108603) | 3.262069 / 2.268929 (0.993140) | 1.858300 / 55.444624 (-53.586324) | 1.572968 / 6.876477 (-5.303509) | 1.659145 / 2.142072 (-0.482927) | 0.779546 / 4.805227 (-4.025681) | 0.132623 / 6.500664 (-6.368041) | 0.042423 / 0.075469 (-0.033046) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.985516 / 1.841788 (-0.856271) | 12.001321 / 8.074308 (3.927013) | 9.927011 / 10.191392 (-0.264381) | 0.142645 / 0.680424 (-0.537779) | 0.013808 / 0.534201 (-0.520393) | 0.303422 / 0.579283 (-0.275861) | 0.262666 / 0.434364 (-0.171698) | 0.339369 / 0.540337 (-0.200969) | 0.431028 / 1.386936 (-0.955908) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005848 / 0.011353 (-0.005505) | 0.003971 / 0.011008 (-0.007037) | 0.050746 / 0.038508 (0.012238) | 0.031554 / 0.023109 (0.008445) | 0.277678 / 0.275898 (0.001780) | 0.300776 / 0.323480 (-0.022704) | 0.004428 / 0.007986 (-0.003558) | 0.002773 / 0.004328 (-0.001555) | 0.049882 / 0.004250 (0.045632) | 0.039833 / 0.037052 (0.002780) | 0.289143 / 0.258489 (0.030654) | 0.321425 / 0.293841 (0.027584) | 0.031701 / 0.128546 (-0.096845) | 0.012687 / 0.075646 (-0.062960) | 0.060650 / 0.419271 (-0.358621) | 0.033318 / 0.043533 (-0.010215) | 0.277019 / 0.255139 (0.021880) | 0.292345 / 0.283200 (0.009145) | 0.018520 / 0.141683 (-0.123163) | 1.143933 / 1.452155 (-0.308222) | 1.183913 / 1.492716 (-0.308803) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094467 / 0.018006 (0.076461) | 0.298822 / 0.000490 (0.298332) | 0.000201 / 0.000200 (0.000001) | 0.000045 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022811 / 0.037411 (-0.014601) | 0.078084 / 0.014526 (0.063558) | 0.089079 / 0.176557 (-0.087477) | 0.130229 / 0.737135 (-0.606906) | 0.090851 / 0.296338 (-0.205487) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294981 / 0.215209 (0.079772) | 2.908294 / 2.077655 (0.830639) | 1.591281 / 1.504120 (0.087161) | 1.446032 / 1.541195 (-0.095162) | 1.469441 / 1.468490 (0.000951) | 0.726477 / 4.584777 (-3.858300) | 0.983086 / 3.745712 (-2.762626) | 2.892715 / 5.269862 (-2.377147) | 1.974092 / 4.565676 (-2.591584) | 0.079500 / 0.424275 (-0.344775) | 0.005497 / 0.007607 (-0.002110) | 0.342220 / 0.226044 (0.116176) | 3.414508 / 2.268929 (1.145579) | 1.941550 / 55.444624 (-53.503074) | 1.645268 / 6.876477 (-5.231209) | 1.805909 / 2.142072 (-0.336163) | 0.814483 / 4.805227 (-3.990744) | 0.135867 / 6.500664 (-6.364797) | 0.041718 / 0.075469 (-0.033751) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.999751 / 1.841788 (-0.842036) | 12.488263 / 8.074308 (4.413954) | 10.867040 / 10.191392 (0.675648) | 0.143999 / 0.680424 (-0.536425) | 0.015496 / 0.534201 (-0.518705) | 0.302170 / 0.579283 (-0.277113) | 0.123753 / 0.434364 (-0.310611) | 0.340424 / 0.540337 (-0.199913) | 0.458339 / 1.386936 (-0.928597) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#a6ccf944e42c1a84de81bf326accab9999b86c90 \"CML watermark\")\n" ]
2024-06-19T07:12:21
2024-06-19T14:32:59
2024-06-19T14:26:37
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6981", "html_url": "https://github.com/huggingface/datasets/pull/6981", "diff_url": "https://github.com/huggingface/datasets/pull/6981.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6981.patch", "merged_at": "2024-06-19T14:26:37" }
Update docs on trust_remote_code defaults to False. The docs needed to be updated due to this PR: - #6954
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6981/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6981/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6980
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6980/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6980/comments
https://api.github.com/repos/huggingface/datasets/issues/6980/events
https://github.com/huggingface/datasets/issues/6980
2,360,909,930
I_kwDODunzps6MuKBq
6,980
Support NumPy 2.0
{ "login": "NeilGirdhar", "id": 730137, "node_id": "MDQ6VXNlcjczMDEzNw==", "avatar_url": "https://avatars.githubusercontent.com/u/730137?v=4", "gravatar_id": "", "url": "https://api.github.com/users/NeilGirdhar", "html_url": "https://github.com/NeilGirdhar", "followers_url": "https://api.github.com/users/NeilGirdhar/followers", "following_url": "https://api.github.com/users/NeilGirdhar/following{/other_user}", "gists_url": "https://api.github.com/users/NeilGirdhar/gists{/gist_id}", "starred_url": "https://api.github.com/users/NeilGirdhar/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/NeilGirdhar/subscriptions", "organizations_url": "https://api.github.com/users/NeilGirdhar/orgs", "repos_url": "https://api.github.com/users/NeilGirdhar/repos", "events_url": "https://api.github.com/users/NeilGirdhar/events{/privacy}", "received_events_url": "https://api.github.com/users/NeilGirdhar/received_events", "type": "User", "site_admin": false }
[ { "id": 1935892871, "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement", "name": "enhancement", "color": "a2eeef", "default": true, "description": "New feature or request" } ]
closed
false
null
[]
null
[]
2024-06-18T23:30:22
2024-07-12T12:04:54
2024-07-12T12:04:53
CONTRIBUTOR
null
null
null
### Feature request Support NumPy 2.0. ### Motivation NumPy introduces the Array API, which bridges the gap between machine learning libraries. Many clients of HuggingFace are eager to start using the Array API. Besides that, NumPy 2 provides a cleaner interface than NumPy 1. ### Tasks NumPy 2.0 was released for testing so that libraries could ensure compatibility [since mid-March](https://github.com/numpy/numpy/issues/24300#issuecomment-1986815755). What needs to be done for HuggingFace to support Numpy 2? - [x] Fix use of `array`: https://github.com/huggingface/datasets/pull/6976 - [ ] Remove [NumPy version limit](https://github.com/huggingface/datasets/pull/6975): https://github.com/huggingface/datasets/pull/6991
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6980/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6980/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6979
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6979/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6979/comments
https://api.github.com/repos/huggingface/datasets/issues/6979/events
https://github.com/huggingface/datasets/issues/6979
2,360,175,363
I_kwDODunzps6MrWsD
6,979
How can I load partial parquet files only?
{ "login": "lucasjinreal", "id": 21303438, "node_id": "MDQ6VXNlcjIxMzAzNDM4", "avatar_url": "https://avatars.githubusercontent.com/u/21303438?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lucasjinreal", "html_url": "https://github.com/lucasjinreal", "followers_url": "https://api.github.com/users/lucasjinreal/followers", "following_url": "https://api.github.com/users/lucasjinreal/following{/other_user}", "gists_url": "https://api.github.com/users/lucasjinreal/gists{/gist_id}", "starred_url": "https://api.github.com/users/lucasjinreal/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lucasjinreal/subscriptions", "organizations_url": "https://api.github.com/users/lucasjinreal/orgs", "repos_url": "https://api.github.com/users/lucasjinreal/repos", "events_url": "https://api.github.com/users/lucasjinreal/events{/privacy}", "received_events_url": "https://api.github.com/users/lucasjinreal/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "Hello,\r\n\r\nHave you tried loading the dataset in streaming mode? [Documentation](https://huggingface.co/docs/datasets/v2.20.0/stream)\r\n\r\nThis way you wouldn't have to load it all. Also, let's be nice to Parquet, it's a really nice technology and we don't need to be mean :)", "I have downloaded part of it, just want to know how to load part of it, stream mode is not work for me since my network (in china) not stable, I don't want do it all again and again.\r\n\r\nJust curious, doesn't there a way to load part of it?", "Could you convert the IterableDataset to a Dataset after taking the first 100 rows with `.take`? This way, you would have a local copy of the first 100 rows on your system and thus won't need to download. Would that work?\r\n\r\nHere is a [SO question](https://stackoverflow.com/questions/76227219/can-i-convert-an-iterabledataset-to-dataset) detailing how to do the conversion.", "I mean, the parquet is like:\r\n\r\n00000-0143554\r\n00001-0143554\r\n00002-0143554\r\n...\r\n00100-0143554\r\n...\r\n09100-0143554\r\n\r\nI just downloaded the first 9900 part of it. \r\n\r\nI can not load with load_dataset, it throw an error says my file is not same as parquet all amount.\r\n\r\nHow could I load the only I have? \r\n\r\n( I really don't want downlaod them all, cause, I don't need all, and pulus, its huge.... )\r\n\r\nAs I said, I have donwloaded about 9999... It's not about stream... I just wnat to konw how to load offline... part....", "Hi, @lucasjinreal.\r\n\r\nI am not sure of understanding your issue. What is the error message and stack trace you get? What version of `datasets` are you using? Could you provide a reproducible example?\r\n\r\nWithout knowing all those details, I would naively say that you can load whatever number of Parquet files by using the \"parquet\" loader: https://huggingface.co/docs/datasets/loading#parquet\r\n```python\r\nds = load_dataset(\"parquet\", data_files=\"data/train-001*-of-00314.parquet\", split=\"train\")\r\n```", "@albertvillanova Not sure you have tested with this or not, but I have tried,\r\n\r\nthe only error I got is it still laodding all parquet with a progress bar maxium to the whole number 014354, and it loads my 0 - 000999 part, then throws an error.\r\n\r\nSays Numinfo is not same.\r\n\r\nI am so confused,", "Yes, my code snippet works.\n\nCould you copy-paste your code and the output? Otherwise we are not able to know what the issue is.", "@albertvillanova Hi, thanks for the tracing of the issue.\r\n\r\nThis is the output:\r\n\r\n```\r\nython get_llava_recap_cc3m.py\r\nGenerating train split: 3%|███▋ | 101910/3199866 [00:16<08:30, 6065.67 examples/s]\r\nTraceback (most recent call last):\r\n File \"get_llava_recap_cc3m.py\", line 31, in <module>\r\n dataset = load_dataset(\"llava-recap-cc3m/\", data_files=\"data/train-0000*-of-00314.parquet\")\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/load.py\", line 2582, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/builder.py\", line 1005, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/builder.py\", line 1118, in _download_and_prepare\r\n verify_splits(self.info.splits, split_dict)\r\n File \"/usr/local/lib/python3.8/dist-packages/datasets/utils/info_utils.py\", line 101, in verify_splits\r\n raise NonMatchingSplitsSizesError(str(bad_splits))\r\ndatasets.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=156885281898.75, num_examples=3199866, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='train', num_bytes=4994080770, num_examples=101910, shard_lengths=[10191, 10291, 10291, 10291, 10291, 10191, 10191, 10291, 10291, 9591], dataset_name='llava-recap-cc3m')}]\r\n```\r\n\r\nthis is my code:\r\n\r\n```\r\ndataset = load_dataset(\"llava-recap-cc3m/\", data_files=\"data/train-0000*-of-00314.parquet\")\r\n```\r\n\r\nMy situation and requirements:\r\n\r\n00314 is all, but I downlaode about 150, half of it, as you can see, i used `0000*-of-00314.` which should be at most 99 file being loaded.\r\n\r\nBut it just fail.\r\n\r\nCan u understand my issue now?\r\n\r\nIf so, then **do not** suggest me with stream, Just want to know, is there a way to load part if it...... **and please don't say you can not replicate my issue when you have downloaded them all**, my english is not good, but I think all situations and all prerequists I have addressed already.\r\n\r\n", "I see you did not use the \"parquet\" loader as I suggested in my code snippet above: https://github.com/huggingface/datasets/issues/6979#issuecomment-2182031415\r\nPlease try passing \"parquet\" instead of \"llava-recap-cc3m/\" to `load_dataset`, and the complete path to data files in `data_files`:\r\n```python\r\nload_dataset(\"parquet\", data_files=\"llava-recap-cc3m/data/train-001*-of-00314.parquet\")\r\n```", "Let me explain that you get the error because of this content within the `dataset_info` YAML tag in the `llava-recap-cc3m/README.md`:\r\n```\r\n - name: train\r\n num_bytes: 156885281898.75\r\n num_examples: 3199866\r\n```\r\n\r\nBy default, if there is that content in the README file, `load_dataset` performs a basic check to verify it the generated number of examples matches the expected one and raises a `NonMatchingSplitsSizesError` if that is not the case. \r\n\r\nYou can avoid this basic check by passing `verification_mode=\"no_checks\"`:\r\n```python\r\nload_dataset(\"llava-recap-cc3m/\", data_files=\"data/train-0000*-of-00314.parquet\", verification_mode=\"no_checks\")\r\n```", "And please, next time you have an issue, please fill the Bug template issue with all the necessary information: https://github.com/huggingface/datasets/issues/new?assignees=&labels=&projects=&template=bug-report.yml\r\n\r\nOtherwise it is very difficult for us to understand the underlying problem and to propose a pertinent solution.", "thank u albert!\r\n\r\nIt solved my issue!" ]
2024-06-18T15:44:16
2024-06-21T17:09:32
2024-06-21T13:32:50
NONE
null
null
null
I have a HUGE dataset about 14TB, I unable to download all parquet all. I just take about 100 from it. dataset = load_dataset("xx/", data_files="data/train-001*-of-00314.parquet") How can I just using 000 - 100 from a 00314 from all partially? I search whole net didn't found a solution, **this is stupid if they didn't support it, and I swear I wont using stupid parquet any more**
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6979/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6979/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6978
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6978/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6978/comments
https://api.github.com/repos/huggingface/datasets/issues/6978/events
https://github.com/huggingface/datasets/pull/6978
2,359,511,469
PR_kwDODunzps5yz0h6
6,978
Fix regression for pandas < 2.0.0 in JSON loader
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6978). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005144 / 0.011353 (-0.006209) | 0.003500 / 0.011008 (-0.007509) | 0.063670 / 0.038508 (0.025162) | 0.031793 / 0.023109 (0.008683) | 0.239611 / 0.275898 (-0.036287) | 0.276681 / 0.323480 (-0.046799) | 0.004148 / 0.007986 (-0.003838) | 0.002713 / 0.004328 (-0.001615) | 0.048832 / 0.004250 (0.044582) | 0.043066 / 0.037052 (0.006014) | 0.256835 / 0.258489 (-0.001655) | 0.292224 / 0.293841 (-0.001617) | 0.027530 / 0.128546 (-0.101017) | 0.010509 / 0.075646 (-0.065137) | 0.203370 / 0.419271 (-0.215901) | 0.035643 / 0.043533 (-0.007890) | 0.252161 / 0.255139 (-0.002978) | 0.271883 / 0.283200 (-0.011316) | 0.018658 / 0.141683 (-0.123024) | 1.081676 / 1.452155 (-0.370479) | 1.142146 / 1.492716 (-0.350571) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093484 / 0.018006 (0.075477) | 0.298607 / 0.000490 (0.298117) | 0.000220 / 0.000200 (0.000020) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019021 / 0.037411 (-0.018390) | 0.062471 / 0.014526 (0.047946) | 0.075393 / 0.176557 (-0.101163) | 0.121040 / 0.737135 (-0.616095) | 0.077613 / 0.296338 (-0.218726) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294857 / 0.215209 (0.079648) | 2.931143 / 2.077655 (0.853489) | 1.510866 / 1.504120 (0.006746) | 1.379574 / 1.541195 (-0.161621) | 1.352358 / 1.468490 (-0.116133) | 0.561670 / 4.584777 (-4.023107) | 2.378434 / 3.745712 (-1.367278) | 2.713203 / 5.269862 (-2.556658) | 1.706416 / 4.565676 (-2.859260) | 0.062355 / 0.424275 (-0.361920) | 0.004971 / 0.007607 (-0.002636) | 0.336498 / 0.226044 (0.110453) | 3.316464 / 2.268929 (1.047535) | 1.833035 / 55.444624 (-53.611589) | 1.532808 / 6.876477 (-5.343668) | 1.537323 / 2.142072 (-0.604749) | 0.639430 / 4.805227 (-4.165798) | 0.115808 / 6.500664 (-6.384856) | 0.043545 / 0.075469 (-0.031924) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.974428 / 1.841788 (-0.867360) | 11.368914 / 8.074308 (3.294606) | 9.754488 / 10.191392 (-0.436904) | 0.146277 / 0.680424 (-0.534146) | 0.013917 / 0.534201 (-0.520284) | 0.286809 / 0.579283 (-0.292474) | 0.267144 / 0.434364 (-0.167219) | 0.326161 / 0.540337 (-0.214177) | 0.418059 / 1.386936 (-0.968877) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005341 / 0.011353 (-0.006012) | 0.003460 / 0.011008 (-0.007548) | 0.050135 / 0.038508 (0.011627) | 0.032014 / 0.023109 (0.008905) | 0.259835 / 0.275898 (-0.016063) | 0.286275 / 0.323480 (-0.037205) | 0.004350 / 0.007986 (-0.003636) | 0.002800 / 0.004328 (-0.001529) | 0.049358 / 0.004250 (0.045107) | 0.040182 / 0.037052 (0.003130) | 0.278352 / 0.258489 (0.019863) | 0.307869 / 0.293841 (0.014028) | 0.029151 / 0.128546 (-0.099395) | 0.010091 / 0.075646 (-0.065555) | 0.058814 / 0.419271 (-0.360458) | 0.033150 / 0.043533 (-0.010383) | 0.263594 / 0.255139 (0.008455) | 0.284065 / 0.283200 (0.000866) | 0.017968 / 0.141683 (-0.123714) | 1.145605 / 1.452155 (-0.306550) | 1.196884 / 1.492716 (-0.295832) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094045 / 0.018006 (0.076039) | 0.299031 / 0.000490 (0.298541) | 0.000210 / 0.000200 (0.000011) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022510 / 0.037411 (-0.014901) | 0.077478 / 0.014526 (0.062953) | 0.087746 / 0.176557 (-0.088811) | 0.129311 / 0.737135 (-0.607825) | 0.089921 / 0.296338 (-0.206418) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.290279 / 0.215209 (0.075070) | 2.880725 / 2.077655 (0.803070) | 1.541262 / 1.504120 (0.037142) | 1.424475 / 1.541195 (-0.116719) | 1.436397 / 1.468490 (-0.032093) | 0.578237 / 4.584777 (-4.006540) | 0.965249 / 3.745712 (-2.780463) | 2.682534 / 5.269862 (-2.587327) | 1.732859 / 4.565676 (-2.832817) | 0.065523 / 0.424275 (-0.358752) | 0.005466 / 0.007607 (-0.002141) | 0.343985 / 0.226044 (0.117940) | 3.397463 / 2.268929 (1.128534) | 1.929370 / 55.444624 (-53.515255) | 1.605135 / 6.876477 (-5.271342) | 1.753926 / 2.142072 (-0.388146) | 0.659929 / 4.805227 (-4.145298) | 0.118093 / 6.500664 (-6.382571) | 0.041252 / 0.075469 (-0.034217) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.009177 / 1.841788 (-0.832610) | 11.959624 / 8.074308 (3.885316) | 10.484672 / 10.191392 (0.293280) | 0.142085 / 0.680424 (-0.538339) | 0.015955 / 0.534201 (-0.518245) | 0.283649 / 0.579283 (-0.295634) | 0.125681 / 0.434364 (-0.308683) | 0.320490 / 0.540337 (-0.219847) | 0.440353 / 1.386936 (-0.946583) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e47a746bcda4b97db2467542b76d3215b3569ff0 \"CML watermark\")\n", "Maybe a patch release will be needed with this fix." ]
2024-06-18T10:26:34
2024-06-19T06:23:24
2024-06-19T05:50:18
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6978", "html_url": "https://github.com/huggingface/datasets/pull/6978", "diff_url": "https://github.com/huggingface/datasets/pull/6978.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6978.patch", "merged_at": "2024-06-19T05:50:18" }
A regression was introduced for pandas < 2.0.0 in PR: - #6914 As described in pandas docs, the `dtype_backend` parameter was first added in pandas 2.0.0: https://pandas.pydata.org/docs/reference/api/pandas.read_json.html This PR fixes the regression by passing (or not) the `dtype_backend` parameter depending on pandas version. Maybe, in a future 3.0 `datasets` release, we could just require pandas > 2.0. Reported by: - #6977
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6978/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6978/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6977
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6977/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6977/comments
https://api.github.com/repos/huggingface/datasets/issues/6977/events
https://github.com/huggingface/datasets/issues/6977
2,359,295,045
I_kwDODunzps6Mn_xF
6,977
load json file error with v2.20.0
{ "login": "xiaoyaolangzhi", "id": 15037766, "node_id": "MDQ6VXNlcjE1MDM3NzY2", "avatar_url": "https://avatars.githubusercontent.com/u/15037766?v=4", "gravatar_id": "", "url": "https://api.github.com/users/xiaoyaolangzhi", "html_url": "https://github.com/xiaoyaolangzhi", "followers_url": "https://api.github.com/users/xiaoyaolangzhi/followers", "following_url": "https://api.github.com/users/xiaoyaolangzhi/following{/other_user}", "gists_url": "https://api.github.com/users/xiaoyaolangzhi/gists{/gist_id}", "starred_url": "https://api.github.com/users/xiaoyaolangzhi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/xiaoyaolangzhi/subscriptions", "organizations_url": "https://api.github.com/users/xiaoyaolangzhi/orgs", "repos_url": "https://api.github.com/users/xiaoyaolangzhi/repos", "events_url": "https://api.github.com/users/xiaoyaolangzhi/events{/privacy}", "received_events_url": "https://api.github.com/users/xiaoyaolangzhi/received_events", "type": "User", "site_admin": false }
[]
closed
false
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[ { "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false } ]
null
[ "Thanks for reporting, @xiaoyaolangzhi.\r\n\r\nIndeed, we are currently requiring `pandas` >= 2.0.0.\r\n\r\nYou will need to update pandas in your local environment:\r\n```\r\npip install -U pandas\r\n``` ", "Thank you very much." ]
2024-06-18T08:41:01
2024-06-18T10:06:10
2024-06-18T10:06:09
NONE
null
null
null
### Describe the bug ``` load_dataset(path="json", data_files="./test.json") ``` ``` Generating train split: 0 examples [00:00, ? examples/s] Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/datasets/packaged_modules/json/json.py", line 132, in _generate_tables pa_table = paj.read_json( File "pyarrow/_json.pyx", line 308, in pyarrow._json.read_json File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: JSON parse error: Column() changed from object to array in row 0 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1997, in _prepare_split_single for _, table in generator: File "/usr/local/lib/python3.10/dist-packages/datasets/packaged_modules/json/json.py", line 155, in _generate_tables df = pd.read_json(f, dtype_backend="pyarrow") File "/usr/local/lib/python3.10/dist-packages/pandas/util/_decorators.py", line 211, in wrapper return func(*args, **kwargs) File "/usr/local/lib/python3.10/dist-packages/pandas/util/_decorators.py", line 331, in wrapper return func(*args, **kwargs) TypeError: read_json() got an unexpected keyword argument 'dtype_backend' The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/app/t1.py", line 11, in <module> load_dataset(path=data_path, data_files="./t2.json") File "/usr/local/lib/python3.10/dist-packages/datasets/load.py", line 2616, in load_dataset builder_instance.download_and_prepare( File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1029, in download_and_prepare self._download_and_prepare( File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1124, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 1884, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/usr/local/lib/python3.10/dist-packages/datasets/builder.py", line 2040, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset ``` ``` import pandas as pd with open("./test.json", "r") as f: df = pd.read_json(f, dtype_backend="pyarrow") ``` ``` Traceback (most recent call last): File "/app/t3.py", line 3, in <module> df = pd.read_json(f, dtype_backend="pyarrow") File "/usr/local/lib/python3.10/dist-packages/pandas/util/_decorators.py", line 211, in wrapper return func(*args, **kwargs) File "/usr/local/lib/python3.10/dist-packages/pandas/util/_decorators.py", line 331, in wrapper return func(*args, **kwargs) TypeError: read_json() got an unexpected keyword argument 'dtype_backend' ``` ### Steps to reproduce the bug . ### Expected behavior . ### Environment info ``` datasets 2.20.0 pandas 1.5.3 ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6977/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6977/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6976
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6976/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6976/comments
https://api.github.com/repos/huggingface/datasets/issues/6976/events
https://github.com/huggingface/datasets/pull/6976
2,357,107,203
PR_kwDODunzps5yrmNP
6,976
Ensure compatibility with numpy 2.0.0
{ "login": "KennethEnevoldsen", "id": 23721977, "node_id": "MDQ6VXNlcjIzNzIxOTc3", "avatar_url": "https://avatars.githubusercontent.com/u/23721977?v=4", "gravatar_id": "", "url": "https://api.github.com/users/KennethEnevoldsen", "html_url": "https://github.com/KennethEnevoldsen", "followers_url": "https://api.github.com/users/KennethEnevoldsen/followers", "following_url": "https://api.github.com/users/KennethEnevoldsen/following{/other_user}", "gists_url": "https://api.github.com/users/KennethEnevoldsen/gists{/gist_id}", "starred_url": "https://api.github.com/users/KennethEnevoldsen/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/KennethEnevoldsen/subscriptions", "organizations_url": "https://api.github.com/users/KennethEnevoldsen/orgs", "repos_url": "https://api.github.com/users/KennethEnevoldsen/repos", "events_url": "https://api.github.com/users/KennethEnevoldsen/events{/privacy}", "received_events_url": "https://api.github.com/users/KennethEnevoldsen/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6976). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005361 / 0.011353 (-0.005992) | 0.003983 / 0.011008 (-0.007025) | 0.062865 / 0.038508 (0.024357) | 0.029880 / 0.023109 (0.006771) | 0.261465 / 0.275898 (-0.014433) | 0.269791 / 0.323480 (-0.053689) | 0.004198 / 0.007986 (-0.003788) | 0.002942 / 0.004328 (-0.001387) | 0.049002 / 0.004250 (0.044751) | 0.043232 / 0.037052 (0.006180) | 0.328774 / 0.258489 (0.070285) | 0.297308 / 0.293841 (0.003467) | 0.030552 / 0.128546 (-0.097994) | 0.012632 / 0.075646 (-0.063015) | 0.204156 / 0.419271 (-0.215116) | 0.036014 / 0.043533 (-0.007519) | 0.241224 / 0.255139 (-0.013915) | 0.268358 / 0.283200 (-0.014842) | 0.019227 / 0.141683 (-0.122456) | 1.114515 / 1.452155 (-0.337639) | 1.147029 / 1.492716 (-0.345688) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094925 / 0.018006 (0.076919) | 0.301548 / 0.000490 (0.301059) | 0.000211 / 0.000200 (0.000011) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018875 / 0.037411 (-0.018536) | 0.062824 / 0.014526 (0.048298) | 0.075657 / 0.176557 (-0.100900) | 0.121926 / 0.737135 (-0.615209) | 0.077102 / 0.296338 (-0.219236) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286018 / 0.215209 (0.070808) | 2.832222 / 2.077655 (0.754567) | 1.462629 / 1.504120 (-0.041491) | 1.354746 / 1.541195 (-0.186449) | 1.339504 / 1.468490 (-0.128986) | 0.718381 / 4.584777 (-3.866396) | 2.401456 / 3.745712 (-1.344256) | 3.013518 / 5.269862 (-2.256343) | 1.944892 / 4.565676 (-2.620784) | 0.078793 / 0.424275 (-0.345482) | 0.005219 / 0.007607 (-0.002388) | 0.349551 / 0.226044 (0.123507) | 3.417844 / 2.268929 (1.148916) | 1.830669 / 55.444624 (-53.613956) | 1.502134 / 6.876477 (-5.374343) | 1.529242 / 2.142072 (-0.612830) | 0.793732 / 4.805227 (-4.011495) | 0.133571 / 6.500664 (-6.367093) | 0.042588 / 0.075469 (-0.032881) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.988167 / 1.841788 (-0.853620) | 11.926728 / 8.074308 (3.852420) | 9.806971 / 10.191392 (-0.384421) | 0.173951 / 0.680424 (-0.506473) | 0.015308 / 0.534201 (-0.518893) | 0.310768 / 0.579283 (-0.268515) | 0.268261 / 0.434364 (-0.166103) | 0.342962 / 0.540337 (-0.197375) | 0.431255 / 1.386936 (-0.955681) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005680 / 0.011353 (-0.005673) | 0.004231 / 0.011008 (-0.006778) | 0.051009 / 0.038508 (0.012501) | 0.031431 / 0.023109 (0.008322) | 0.268582 / 0.275898 (-0.007316) | 0.287942 / 0.323480 (-0.035538) | 0.004442 / 0.007986 (-0.003543) | 0.002818 / 0.004328 (-0.001511) | 0.050241 / 0.004250 (0.045991) | 0.039933 / 0.037052 (0.002881) | 0.285814 / 0.258489 (0.027325) | 0.316082 / 0.293841 (0.022241) | 0.032416 / 0.128546 (-0.096130) | 0.012398 / 0.075646 (-0.063248) | 0.060779 / 0.419271 (-0.358493) | 0.033706 / 0.043533 (-0.009827) | 0.273915 / 0.255139 (0.018776) | 0.289752 / 0.283200 (0.006553) | 0.017859 / 0.141683 (-0.123824) | 1.150224 / 1.452155 (-0.301930) | 1.197467 / 1.492716 (-0.295250) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093810 / 0.018006 (0.075803) | 0.302529 / 0.000490 (0.302039) | 0.000221 / 0.000200 (0.000021) | 0.000047 / 0.000054 (-0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022903 / 0.037411 (-0.014508) | 0.077445 / 0.014526 (0.062919) | 0.089335 / 0.176557 (-0.087222) | 0.130848 / 0.737135 (-0.606287) | 0.091106 / 0.296338 (-0.205232) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.294194 / 0.215209 (0.078985) | 2.886983 / 2.077655 (0.809328) | 1.557768 / 1.504120 (0.053648) | 1.424467 / 1.541195 (-0.116727) | 1.440625 / 1.468490 (-0.027865) | 0.724793 / 4.584777 (-3.859984) | 0.985216 / 3.745712 (-2.760496) | 2.856826 / 5.269862 (-2.413036) | 1.911638 / 4.565676 (-2.654039) | 0.080350 / 0.424275 (-0.343925) | 0.005616 / 0.007607 (-0.001991) | 0.348713 / 0.226044 (0.122668) | 3.414764 / 2.268929 (1.145835) | 1.925056 / 55.444624 (-53.519568) | 1.635752 / 6.876477 (-5.240725) | 1.761117 / 2.142072 (-0.380955) | 0.808309 / 4.805227 (-3.996918) | 0.136893 / 6.500664 (-6.363771) | 0.042116 / 0.075469 (-0.033354) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.004740 / 1.841788 (-0.837048) | 12.495859 / 8.074308 (4.421550) | 10.681233 / 10.191392 (0.489841) | 0.133320 / 0.680424 (-0.547104) | 0.015943 / 0.534201 (-0.518258) | 0.304869 / 0.579283 (-0.274414) | 0.128616 / 0.434364 (-0.305748) | 0.345930 / 0.540337 (-0.194407) | 0.457434 / 1.386936 (-0.929502) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#84d9dea52098c9403efb43d5b542dd6d45000bec \"CML watermark\")\n" ]
2024-06-17T11:29:22
2024-06-19T14:30:32
2024-06-19T14:04:34
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6976", "html_url": "https://github.com/huggingface/datasets/pull/6976", "diff_url": "https://github.com/huggingface/datasets/pull/6976.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6976.patch", "merged_at": "2024-06-19T14:04:34" }
Following the conversion guide, copy=False is no longer required and will result in an error: https://numpy.org/devdocs/numpy_2_0_migration_guide.html#adapting-to-changes-in-the-copy-keyword. The following fix should resolve the issue. error found during testing on the MTEB repository e.g. [here](https://github.com/embeddings-benchmark/mteb/pull/938)
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6976/reactions", "total_count": 2, "+1": 2, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6976/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6975
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6975/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6975/comments
https://api.github.com/repos/huggingface/datasets/issues/6975/events
https://github.com/huggingface/datasets/pull/6975
2,357,003,959
PR_kwDODunzps5yrPct
6,975
Set temporary numpy upper version < 2.0.0 to fix CI
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6975). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005168 / 0.011353 (-0.006185) | 0.003720 / 0.011008 (-0.007288) | 0.063347 / 0.038508 (0.024839) | 0.031474 / 0.023109 (0.008364) | 0.243233 / 0.275898 (-0.032665) | 0.276695 / 0.323480 (-0.046785) | 0.004109 / 0.007986 (-0.003877) | 0.002689 / 0.004328 (-0.001639) | 0.049522 / 0.004250 (0.045271) | 0.043477 / 0.037052 (0.006425) | 0.258578 / 0.258489 (0.000088) | 0.288134 / 0.293841 (-0.005707) | 0.027836 / 0.128546 (-0.100710) | 0.010677 / 0.075646 (-0.064969) | 0.206412 / 0.419271 (-0.212860) | 0.036204 / 0.043533 (-0.007329) | 0.250588 / 0.255139 (-0.004551) | 0.272354 / 0.283200 (-0.010846) | 0.018359 / 0.141683 (-0.123324) | 1.118867 / 1.452155 (-0.333288) | 1.157318 / 1.492716 (-0.335399) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092927 / 0.018006 (0.074921) | 0.298252 / 0.000490 (0.297762) | 0.000228 / 0.000200 (0.000028) | 0.000042 / 0.000054 (-0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018824 / 0.037411 (-0.018588) | 0.069304 / 0.014526 (0.054778) | 0.075094 / 0.176557 (-0.101462) | 0.122546 / 0.737135 (-0.614590) | 0.076453 / 0.296338 (-0.219885) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.287131 / 0.215209 (0.071922) | 2.838945 / 2.077655 (0.761291) | 1.473578 / 1.504120 (-0.030542) | 1.351214 / 1.541195 (-0.189981) | 1.354924 / 1.468490 (-0.113566) | 0.577092 / 4.584777 (-4.007685) | 2.348072 / 3.745712 (-1.397640) | 2.762130 / 5.269862 (-2.507732) | 1.725195 / 4.565676 (-2.840482) | 0.063596 / 0.424275 (-0.360679) | 0.004921 / 0.007607 (-0.002686) | 0.335422 / 0.226044 (0.109377) | 3.340398 / 2.268929 (1.071469) | 1.789390 / 55.444624 (-53.655234) | 1.516247 / 6.876477 (-5.360229) | 1.529653 / 2.142072 (-0.612420) | 0.643547 / 4.805227 (-4.161680) | 0.116491 / 6.500664 (-6.384173) | 0.042404 / 0.075469 (-0.033065) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.959839 / 1.841788 (-0.881948) | 11.269778 / 8.074308 (3.195470) | 9.574898 / 10.191392 (-0.616494) | 0.128979 / 0.680424 (-0.551444) | 0.013901 / 0.534201 (-0.520300) | 0.280778 / 0.579283 (-0.298505) | 0.256511 / 0.434364 (-0.177853) | 0.319361 / 0.540337 (-0.220977) | 0.411803 / 1.386936 (-0.975133) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005453 / 0.011353 (-0.005899) | 0.003478 / 0.011008 (-0.007530) | 0.050055 / 0.038508 (0.011547) | 0.031415 / 0.023109 (0.008306) | 0.275057 / 0.275898 (-0.000841) | 0.296690 / 0.323480 (-0.026789) | 0.004253 / 0.007986 (-0.003732) | 0.002777 / 0.004328 (-0.001551) | 0.049553 / 0.004250 (0.045303) | 0.039843 / 0.037052 (0.002791) | 0.286938 / 0.258489 (0.028449) | 0.318579 / 0.293841 (0.024738) | 0.029773 / 0.128546 (-0.098774) | 0.010404 / 0.075646 (-0.065242) | 0.057915 / 0.419271 (-0.361356) | 0.033486 / 0.043533 (-0.010047) | 0.273293 / 0.255139 (0.018154) | 0.293155 / 0.283200 (0.009955) | 0.017843 / 0.141683 (-0.123839) | 1.131130 / 1.452155 (-0.321024) | 1.167412 / 1.492716 (-0.325304) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092553 / 0.018006 (0.074547) | 0.298888 / 0.000490 (0.298399) | 0.000201 / 0.000200 (0.000001) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022646 / 0.037411 (-0.014765) | 0.076921 / 0.014526 (0.062395) | 0.089238 / 0.176557 (-0.087318) | 0.128793 / 0.737135 (-0.608342) | 0.089190 / 0.296338 (-0.207148) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292552 / 0.215209 (0.077343) | 2.884277 / 2.077655 (0.806622) | 1.568798 / 1.504120 (0.064678) | 1.441819 / 1.541195 (-0.099375) | 1.435766 / 1.468490 (-0.032724) | 0.572435 / 4.584777 (-4.012342) | 0.957387 / 3.745712 (-2.788326) | 2.650843 / 5.269862 (-2.619019) | 1.727424 / 4.565676 (-2.838252) | 0.063470 / 0.424275 (-0.360805) | 0.005314 / 0.007607 (-0.002293) | 0.345881 / 0.226044 (0.119836) | 3.395463 / 2.268929 (1.126535) | 1.921340 / 55.444624 (-53.523285) | 1.621563 / 6.876477 (-5.254914) | 1.742561 / 2.142072 (-0.399512) | 0.639948 / 4.805227 (-4.165279) | 0.116091 / 6.500664 (-6.384573) | 0.041218 / 0.075469 (-0.034251) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.991506 / 1.841788 (-0.850281) | 11.897462 / 8.074308 (3.823154) | 10.083008 / 10.191392 (-0.108384) | 0.140626 / 0.680424 (-0.539798) | 0.015454 / 0.534201 (-0.518747) | 0.283856 / 0.579283 (-0.295427) | 0.125935 / 0.434364 (-0.308429) | 0.323884 / 0.540337 (-0.216454) | 0.438348 / 1.386936 (-0.948588) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e59582adc7fcb53a86a8ca8eda7e04a4e7b25bd2 \"CML watermark\")\n" ]
2024-06-17T10:36:54
2024-06-17T12:49:53
2024-06-17T12:43:56
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6975", "html_url": "https://github.com/huggingface/datasets/pull/6975", "diff_url": "https://github.com/huggingface/datasets/pull/6975.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6975.patch", "merged_at": "2024-06-17T12:43:56" }
Set temporary numpy upper version < 2.0.0 to fix CI. See: https://github.com/huggingface/datasets/actions/runs/9546031216/job/26308072017 ``` A module that was compiled using NumPy 1.x cannot be run in NumPy 2.0.0 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'. If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2. ```
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6975/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6975/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6973
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6973/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6973/comments
https://api.github.com/repos/huggingface/datasets/issues/6973/events
https://github.com/huggingface/datasets/issues/6973
2,355,517,362
I_kwDODunzps6MZley
6,973
IndexError during training with Squad dataset and T5-small model
{ "login": "ramtunguturi36", "id": 151521233, "node_id": "U_kgDOCQgH0Q", "avatar_url": "https://avatars.githubusercontent.com/u/151521233?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ramtunguturi36", "html_url": "https://github.com/ramtunguturi36", "followers_url": "https://api.github.com/users/ramtunguturi36/followers", "following_url": "https://api.github.com/users/ramtunguturi36/following{/other_user}", "gists_url": "https://api.github.com/users/ramtunguturi36/gists{/gist_id}", "starred_url": "https://api.github.com/users/ramtunguturi36/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ramtunguturi36/subscriptions", "organizations_url": "https://api.github.com/users/ramtunguturi36/orgs", "repos_url": "https://api.github.com/users/ramtunguturi36/repos", "events_url": "https://api.github.com/users/ramtunguturi36/events{/privacy}", "received_events_url": "https://api.github.com/users/ramtunguturi36/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "add remove_unused_columns=False to training_args\r\nhttps://github.com/huggingface/datasets/issues/6535#issuecomment-1874024704", "Closing this issue because it was a reported and fixed in transformers." ]
2024-06-16T07:53:54
2024-07-01T11:25:40
2024-07-01T11:25:40
NONE
null
null
null
### Describe the bug I am encountering an IndexError while training a T5-small model on the Squad dataset using the transformers and datasets libraries. The error occurs even with a minimal reproducible example, suggesting a potential bug or incompatibility. ### Steps to reproduce the bug 1.Install the required libraries: !pip install transformers datasets 2.Run the following code: !pip install transformers datasets import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, TrainingArguments, Trainer, DataCollatorWithPadding # Load a small, publicly available dataset from datasets import load_dataset dataset = load_dataset("squad", split="train[:100]") # Use a small subset for testing # Load a pre-trained model and tokenizer model_name = "t5-small" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) # Define a basic data collator data_collator = DataCollatorWithPadding(tokenizer=tokenizer) # Define training arguments training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=2, num_train_epochs=1, ) # Create a trainer trainer = Trainer( model=model, args=training_args, train_dataset=dataset, data_collator=data_collator, ) # Train the model trainer.train() ### Expected behavior --------------------------------------------------------------------------- IndexError Traceback (most recent call last) [<ipython-input-23-f13a4b23c001>](https://localhost:8080/#) in <cell line: 34>() 32 33 # Train the model ---> 34 trainer.train() 10 frames [/usr/local/lib/python3.10/dist-packages/datasets/formatting/formatting.py](https://localhost:8080/#) in _check_valid_index_key(key, size) 427 if isinstance(key, int): 428 if (key < 0 and key + size < 0) or (key >= size): --> 429 raise IndexError(f"Invalid key: {key} is out of bounds for size {size}") 430 return 431 elif isinstance(key, slice): IndexError: Invalid key: 42 is out of bounds for size 0 ### Environment info transformers version:4.41.2 datasets version:1.18.4 Python version:3.10.12
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6973/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6973/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/6972
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6972/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6972/comments
https://api.github.com/repos/huggingface/datasets/issues/6972/events
https://github.com/huggingface/datasets/pull/6972
2,353,531,912
PR_kwDODunzps5yfa_e
6,972
Fix webdataset pickling
{ "login": "lhoestq", "id": 42851186, "node_id": "MDQ6VXNlcjQyODUxMTg2", "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "gravatar_id": "", "url": "https://api.github.com/users/lhoestq", "html_url": "https://github.com/lhoestq", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "repos_url": "https://api.github.com/users/lhoestq/repos", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6972). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005195 / 0.011353 (-0.006157) | 0.003734 / 0.011008 (-0.007275) | 0.063087 / 0.038508 (0.024579) | 0.031467 / 0.023109 (0.008358) | 0.245183 / 0.275898 (-0.030715) | 0.280071 / 0.323480 (-0.043409) | 0.003205 / 0.007986 (-0.004780) | 0.003311 / 0.004328 (-0.001018) | 0.049967 / 0.004250 (0.045717) | 0.044927 / 0.037052 (0.007875) | 0.262244 / 0.258489 (0.003755) | 0.284549 / 0.293841 (-0.009292) | 0.027595 / 0.128546 (-0.100952) | 0.010521 / 0.075646 (-0.065126) | 0.206928 / 0.419271 (-0.212343) | 0.036179 / 0.043533 (-0.007354) | 0.254256 / 0.255139 (-0.000883) | 0.272733 / 0.283200 (-0.010467) | 0.020456 / 0.141683 (-0.121226) | 1.118527 / 1.452155 (-0.333628) | 1.152741 / 1.492716 (-0.339975) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096642 / 0.018006 (0.078636) | 0.306981 / 0.000490 (0.306491) | 0.000220 / 0.000200 (0.000020) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019031 / 0.037411 (-0.018380) | 0.063960 / 0.014526 (0.049435) | 0.074428 / 0.176557 (-0.102129) | 0.121226 / 0.737135 (-0.615909) | 0.077111 / 0.296338 (-0.219228) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.279830 / 0.215209 (0.064621) | 2.748243 / 2.077655 (0.670588) | 1.481554 / 1.504120 (-0.022566) | 1.355015 / 1.541195 (-0.186180) | 1.379655 / 1.468490 (-0.088835) | 0.560378 / 4.584777 (-4.024399) | 2.407241 / 3.745712 (-1.338471) | 2.837090 / 5.269862 (-2.432771) | 1.767084 / 4.565676 (-2.798593) | 0.063517 / 0.424275 (-0.360758) | 0.005024 / 0.007607 (-0.002584) | 0.334845 / 0.226044 (0.108800) | 3.290712 / 2.268929 (1.021783) | 1.836923 / 55.444624 (-53.607702) | 1.543671 / 6.876477 (-5.332806) | 1.582319 / 2.142072 (-0.559754) | 0.637689 / 4.805227 (-4.167538) | 0.119515 / 6.500664 (-6.381149) | 0.042191 / 0.075469 (-0.033278) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.980018 / 1.841788 (-0.861770) | 11.620211 / 8.074308 (3.545903) | 9.697799 / 10.191392 (-0.493593) | 0.131733 / 0.680424 (-0.548691) | 0.014007 / 0.534201 (-0.520193) | 0.286046 / 0.579283 (-0.293237) | 0.264776 / 0.434364 (-0.169588) | 0.325041 / 0.540337 (-0.215296) | 0.452740 / 1.386936 (-0.934196) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005603 / 0.011353 (-0.005750) | 0.003810 / 0.011008 (-0.007199) | 0.050773 / 0.038508 (0.012265) | 0.032601 / 0.023109 (0.009492) | 0.268035 / 0.275898 (-0.007863) | 0.292614 / 0.323480 (-0.030866) | 0.005076 / 0.007986 (-0.002910) | 0.004487 / 0.004328 (0.000159) | 0.049988 / 0.004250 (0.045737) | 0.040258 / 0.037052 (0.003205) | 0.284145 / 0.258489 (0.025656) | 0.318291 / 0.293841 (0.024450) | 0.029672 / 0.128546 (-0.098875) | 0.010534 / 0.075646 (-0.065113) | 0.059020 / 0.419271 (-0.360252) | 0.033451 / 0.043533 (-0.010082) | 0.270220 / 0.255139 (0.015081) | 0.290500 / 0.283200 (0.007300) | 0.017123 / 0.141683 (-0.124560) | 1.130870 / 1.452155 (-0.321285) | 1.160038 / 1.492716 (-0.332678) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097045 / 0.018006 (0.079039) | 0.314573 / 0.000490 (0.314083) | 0.000203 / 0.000200 (0.000003) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022396 / 0.037411 (-0.015015) | 0.079393 / 0.014526 (0.064867) | 0.088460 / 0.176557 (-0.088097) | 0.128050 / 0.737135 (-0.609085) | 0.093070 / 0.296338 (-0.203268) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.293858 / 0.215209 (0.078649) | 2.819956 / 2.077655 (0.742301) | 1.540181 / 1.504120 (0.036061) | 1.419671 / 1.541195 (-0.121524) | 1.441594 / 1.468490 (-0.026897) | 0.565200 / 4.584777 (-4.019577) | 0.963967 / 3.745712 (-2.781745) | 2.752137 / 5.269862 (-2.517725) | 1.779239 / 4.565676 (-2.786438) | 0.063787 / 0.424275 (-0.360488) | 0.005344 / 0.007607 (-0.002263) | 0.344283 / 0.226044 (0.118239) | 3.353263 / 2.268929 (1.084334) | 1.898678 / 55.444624 (-53.545947) | 1.607868 / 6.876477 (-5.268609) | 1.781938 / 2.142072 (-0.360134) | 0.652119 / 4.805227 (-4.153108) | 0.117883 / 6.500664 (-6.382781) | 0.048811 / 0.075469 (-0.026658) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.013154 / 1.841788 (-0.828634) | 12.421963 / 8.074308 (4.347655) | 10.352056 / 10.191392 (0.160664) | 0.143784 / 0.680424 (-0.536640) | 0.016370 / 0.534201 (-0.517831) | 0.283668 / 0.579283 (-0.295615) | 0.127070 / 0.434364 (-0.307294) | 0.326199 / 0.540337 (-0.214138) | 0.432776 / 1.386936 (-0.954160) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5e72fb13b4824dcb27aedb807e4e28c420dec244 \"CML watermark\")\n" ]
2024-06-14T14:43:02
2024-06-14T15:43:43
2024-06-14T15:37:35
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6972", "html_url": "https://github.com/huggingface/datasets/pull/6972", "diff_url": "https://github.com/huggingface/datasets/pull/6972.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6972.patch", "merged_at": "2024-06-14T15:37:35" }
...by making tracked iterables picklable. This is important to make streaming datasets compatible with multiprocessing e.g. for parallel data loading
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6972/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6972/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6971
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6971/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6971/comments
https://api.github.com/repos/huggingface/datasets/issues/6971/events
https://github.com/huggingface/datasets/pull/6971
2,351,830,856
PR_kwDODunzps5yZoc3
6,971
packaging: Remove useless dependencies
{ "login": "daskol", "id": 9336514, "node_id": "MDQ6VXNlcjkzMzY1MTQ=", "avatar_url": "https://avatars.githubusercontent.com/u/9336514?v=4", "gravatar_id": "", "url": "https://api.github.com/users/daskol", "html_url": "https://github.com/daskol", "followers_url": "https://api.github.com/users/daskol/followers", "following_url": "https://api.github.com/users/daskol/following{/other_user}", "gists_url": "https://api.github.com/users/daskol/gists{/gist_id}", "starred_url": "https://api.github.com/users/daskol/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/daskol/subscriptions", "organizations_url": "https://api.github.com/users/daskol/orgs", "repos_url": "https://api.github.com/users/daskol/repos", "events_url": "https://api.github.com/users/daskol/events{/privacy}", "received_events_url": "https://api.github.com/users/daskol/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6971). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "@HuggingFaceDocBuilderDev There is no doc for this change. Call a human.", "Haha it was me who triggered the CI for your PR", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005051 / 0.011353 (-0.006302) | 0.004831 / 0.011008 (-0.006178) | 0.063006 / 0.038508 (0.024498) | 0.031589 / 0.023109 (0.008480) | 0.296202 / 0.275898 (0.020304) | 0.274274 / 0.323480 (-0.049205) | 0.003199 / 0.007986 (-0.004786) | 0.002768 / 0.004328 (-0.001561) | 0.049422 / 0.004250 (0.045172) | 0.045174 / 0.037052 (0.008121) | 0.263814 / 0.258489 (0.005325) | 0.288125 / 0.293841 (-0.005716) | 0.027641 / 0.128546 (-0.100905) | 0.010439 / 0.075646 (-0.065207) | 0.203075 / 0.419271 (-0.216196) | 0.036259 / 0.043533 (-0.007274) | 0.245159 / 0.255139 (-0.009980) | 0.268897 / 0.283200 (-0.014303) | 0.019493 / 0.141683 (-0.122190) | 1.108330 / 1.452155 (-0.343824) | 1.155835 / 1.492716 (-0.336881) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096860 / 0.018006 (0.078854) | 0.309428 / 0.000490 (0.308938) | 0.000197 / 0.000200 (-0.000003) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019275 / 0.037411 (-0.018136) | 0.062623 / 0.014526 (0.048098) | 0.073871 / 0.176557 (-0.102686) | 0.120410 / 0.737135 (-0.616726) | 0.075766 / 0.296338 (-0.220572) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.279876 / 0.215209 (0.064667) | 2.742429 / 2.077655 (0.664774) | 1.414368 / 1.504120 (-0.089752) | 1.293194 / 1.541195 (-0.248001) | 1.318043 / 1.468490 (-0.150447) | 0.570904 / 4.584777 (-4.013873) | 2.384386 / 3.745712 (-1.361326) | 2.757953 / 5.269862 (-2.511908) | 1.728766 / 4.565676 (-2.836910) | 0.062699 / 0.424275 (-0.361576) | 0.004951 / 0.007607 (-0.002656) | 0.332222 / 0.226044 (0.106177) | 3.407429 / 2.268929 (1.138500) | 1.777136 / 55.444624 (-53.667488) | 1.521269 / 6.876477 (-5.355207) | 1.544814 / 2.142072 (-0.597258) | 0.646249 / 4.805227 (-4.158978) | 0.117032 / 6.500664 (-6.383632) | 0.042274 / 0.075469 (-0.033195) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.016249 / 1.841788 (-0.825539) | 11.794003 / 8.074308 (3.719695) | 9.871925 / 10.191392 (-0.319467) | 0.133694 / 0.680424 (-0.546730) | 0.014904 / 0.534201 (-0.519297) | 0.287453 / 0.579283 (-0.291831) | 0.271802 / 0.434364 (-0.162561) | 0.324711 / 0.540337 (-0.215626) | 0.411812 / 1.386936 (-0.975124) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005376 / 0.011353 (-0.005977) | 0.003631 / 0.011008 (-0.007377) | 0.050154 / 0.038508 (0.011646) | 0.033665 / 0.023109 (0.010556) | 0.279062 / 0.275898 (0.003164) | 0.298899 / 0.323480 (-0.024581) | 0.004388 / 0.007986 (-0.003598) | 0.002810 / 0.004328 (-0.001518) | 0.049032 / 0.004250 (0.044781) | 0.040531 / 0.037052 (0.003478) | 0.287220 / 0.258489 (0.028731) | 0.319060 / 0.293841 (0.025219) | 0.029473 / 0.128546 (-0.099073) | 0.010317 / 0.075646 (-0.065329) | 0.058483 / 0.419271 (-0.360789) | 0.033359 / 0.043533 (-0.010174) | 0.276404 / 0.255139 (0.021265) | 0.295013 / 0.283200 (0.011813) | 0.019372 / 0.141683 (-0.122311) | 1.172624 / 1.452155 (-0.279531) | 1.176815 / 1.492716 (-0.315902) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097347 / 0.018006 (0.079341) | 0.306959 / 0.000490 (0.306469) | 0.000200 / 0.000200 (-0.000000) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022776 / 0.037411 (-0.014635) | 0.077865 / 0.014526 (0.063340) | 0.088806 / 0.176557 (-0.087751) | 0.130448 / 0.737135 (-0.606687) | 0.090973 / 0.296338 (-0.205365) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.301168 / 0.215209 (0.085959) | 2.957634 / 2.077655 (0.879979) | 1.556999 / 1.504120 (0.052879) | 1.413940 / 1.541195 (-0.127255) | 1.427970 / 1.468490 (-0.040520) | 0.587653 / 4.584777 (-3.997124) | 0.951295 / 3.745712 (-2.794417) | 2.691004 / 5.269862 (-2.578858) | 1.755826 / 4.565676 (-2.809851) | 0.064883 / 0.424275 (-0.359392) | 0.005379 / 0.007607 (-0.002228) | 0.353790 / 0.226044 (0.127745) | 3.457747 / 2.268929 (1.188818) | 1.891884 / 55.444624 (-53.552740) | 1.616619 / 6.876477 (-5.259858) | 1.736167 / 2.142072 (-0.405906) | 0.669257 / 4.805227 (-4.135970) | 0.119620 / 6.500664 (-6.381044) | 0.041390 / 0.075469 (-0.034080) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.008851 / 1.841788 (-0.832937) | 13.151216 / 8.074308 (5.076908) | 10.398371 / 10.191392 (0.206979) | 0.143420 / 0.680424 (-0.537004) | 0.015759 / 0.534201 (-0.518442) | 0.293068 / 0.579283 (-0.286215) | 0.131449 / 0.434364 (-0.302914) | 0.334715 / 0.540337 (-0.205623) | 0.445824 / 1.386936 (-0.941112) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#087671dcaf817c906a8649404c07b0440e2732ea \"CML watermark\")\n" ]
2024-06-13T18:43:43
2024-06-14T14:03:34
2024-06-14T13:57:24
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6971", "html_url": "https://github.com/huggingface/datasets/pull/6971", "diff_url": "https://github.com/huggingface/datasets/pull/6971.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6971.patch", "merged_at": "2024-06-14T13:57:24" }
Revert changes in #6396 and #6404. CVE-2023-47248 has been fixed since PyArrow v14.0.1. Meanwhile Python requirements requires `pyarrow>=15.0.0`.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6971/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6971/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6970
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6970/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6970/comments
https://api.github.com/repos/huggingface/datasets/issues/6970/events
https://github.com/huggingface/datasets/pull/6970
2,351,380,029
PR_kwDODunzps5yYF37
6,970
Set dev version
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6970). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005450 / 0.011353 (-0.005902) | 0.003911 / 0.011008 (-0.007098) | 0.063467 / 0.038508 (0.024959) | 0.031029 / 0.023109 (0.007920) | 0.247916 / 0.275898 (-0.027982) | 0.274737 / 0.323480 (-0.048743) | 0.003255 / 0.007986 (-0.004731) | 0.002842 / 0.004328 (-0.001487) | 0.049617 / 0.004250 (0.045366) | 0.046689 / 0.037052 (0.009637) | 0.255152 / 0.258489 (-0.003337) | 0.288630 / 0.293841 (-0.005211) | 0.028174 / 0.128546 (-0.100372) | 0.010773 / 0.075646 (-0.064873) | 0.202119 / 0.419271 (-0.217153) | 0.035914 / 0.043533 (-0.007619) | 0.248197 / 0.255139 (-0.006942) | 0.273508 / 0.283200 (-0.009691) | 0.020626 / 0.141683 (-0.121057) | 1.125668 / 1.452155 (-0.326487) | 1.156678 / 1.492716 (-0.336038) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098294 / 0.018006 (0.080288) | 0.306661 / 0.000490 (0.306172) | 0.000227 / 0.000200 (0.000027) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019118 / 0.037411 (-0.018293) | 0.063086 / 0.014526 (0.048560) | 0.077735 / 0.176557 (-0.098822) | 0.123159 / 0.737135 (-0.613976) | 0.077228 / 0.296338 (-0.219111) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.280031 / 0.215209 (0.064822) | 2.762524 / 2.077655 (0.684870) | 1.444571 / 1.504120 (-0.059549) | 1.330590 / 1.541195 (-0.210604) | 1.371937 / 1.468490 (-0.096553) | 0.563847 / 4.584777 (-4.020930) | 2.369908 / 3.745712 (-1.375804) | 2.827441 / 5.269862 (-2.442420) | 1.749864 / 4.565676 (-2.815812) | 0.063996 / 0.424275 (-0.360279) | 0.005060 / 0.007607 (-0.002547) | 0.326067 / 0.226044 (0.100023) | 3.270170 / 2.268929 (1.001242) | 1.785164 / 55.444624 (-53.659460) | 1.560432 / 6.876477 (-5.316045) | 1.587005 / 2.142072 (-0.555068) | 0.645714 / 4.805227 (-4.159513) | 0.119975 / 6.500664 (-6.380689) | 0.043962 / 0.075469 (-0.031507) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.979003 / 1.841788 (-0.862785) | 11.988701 / 8.074308 (3.914393) | 9.788564 / 10.191392 (-0.402828) | 0.142644 / 0.680424 (-0.537780) | 0.014924 / 0.534201 (-0.519277) | 0.285942 / 0.579283 (-0.293341) | 0.264086 / 0.434364 (-0.170278) | 0.343360 / 0.540337 (-0.196977) | 0.413467 / 1.386936 (-0.973469) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005818 / 0.011353 (-0.005535) | 0.003726 / 0.011008 (-0.007283) | 0.050936 / 0.038508 (0.012428) | 0.032000 / 0.023109 (0.008890) | 0.273282 / 0.275898 (-0.002616) | 0.293889 / 0.323480 (-0.029591) | 0.004287 / 0.007986 (-0.003699) | 0.002797 / 0.004328 (-0.001531) | 0.049088 / 0.004250 (0.044838) | 0.040235 / 0.037052 (0.003183) | 0.280240 / 0.258489 (0.021751) | 0.315749 / 0.293841 (0.021908) | 0.029986 / 0.128546 (-0.098560) | 0.010440 / 0.075646 (-0.065206) | 0.058935 / 0.419271 (-0.360336) | 0.033198 / 0.043533 (-0.010335) | 0.274321 / 0.255139 (0.019182) | 0.288039 / 0.283200 (0.004840) | 0.018865 / 0.141683 (-0.122818) | 1.114915 / 1.452155 (-0.337240) | 1.180548 / 1.492716 (-0.312169) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095028 / 0.018006 (0.077022) | 0.304797 / 0.000490 (0.304307) | 0.000221 / 0.000200 (0.000021) | 0.000056 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022556 / 0.037411 (-0.014855) | 0.076839 / 0.014526 (0.062313) | 0.090255 / 0.176557 (-0.086302) | 0.128748 / 0.737135 (-0.608387) | 0.091718 / 0.296338 (-0.204621) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296061 / 0.215209 (0.080852) | 2.851376 / 2.077655 (0.773722) | 1.548084 / 1.504120 (0.043964) | 1.428589 / 1.541195 (-0.112606) | 1.467244 / 1.468490 (-0.001246) | 0.583533 / 4.584777 (-4.001244) | 0.967436 / 3.745712 (-2.778277) | 2.774775 / 5.269862 (-2.495087) | 1.800435 / 4.565676 (-2.765242) | 0.063998 / 0.424275 (-0.360277) | 0.005420 / 0.007607 (-0.002187) | 0.346353 / 0.226044 (0.120308) | 3.383885 / 2.268929 (1.114956) | 1.902914 / 55.444624 (-53.541710) | 1.599545 / 6.876477 (-5.276932) | 1.772754 / 2.142072 (-0.369318) | 0.651804 / 4.805227 (-4.153423) | 0.120380 / 6.500664 (-6.380284) | 0.043311 / 0.075469 (-0.032159) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.004414 / 1.841788 (-0.837374) | 12.356077 / 8.074308 (4.281769) | 10.513420 / 10.191392 (0.322028) | 0.132419 / 0.680424 (-0.548005) | 0.015470 / 0.534201 (-0.518731) | 0.284883 / 0.579283 (-0.294400) | 0.130763 / 0.434364 (-0.303601) | 0.320068 / 0.540337 (-0.220270) | 0.430284 / 1.386936 (-0.956652) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#574791e0a0cf57ba761f679a054b9e89e4a3ee22 \"CML watermark\")\n" ]
2024-06-13T14:59:45
2024-06-13T15:06:18
2024-06-13T14:59:56
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6970", "html_url": "https://github.com/huggingface/datasets/pull/6970", "diff_url": "https://github.com/huggingface/datasets/pull/6970.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6970.patch", "merged_at": "2024-06-13T14:59:56" }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6970/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6970/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6969
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6969/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6969/comments
https://api.github.com/repos/huggingface/datasets/issues/6969/events
https://github.com/huggingface/datasets/pull/6969
2,351,351,436
PR_kwDODunzps5yX_nC
6,969
Release: 2.20.0
{ "login": "albertvillanova", "id": 8515462, "node_id": "MDQ6VXNlcjg1MTU0NjI=", "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "gravatar_id": "", "url": "https://api.github.com/users/albertvillanova", "html_url": "https://github.com/albertvillanova", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "repos_url": "https://api.github.com/users/albertvillanova/repos", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6969). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005414 / 0.011353 (-0.005939) | 0.003936 / 0.011008 (-0.007073) | 0.064129 / 0.038508 (0.025621) | 0.032985 / 0.023109 (0.009875) | 0.244051 / 0.275898 (-0.031847) | 0.273500 / 0.323480 (-0.049980) | 0.003227 / 0.007986 (-0.004759) | 0.002858 / 0.004328 (-0.001470) | 0.049212 / 0.004250 (0.044962) | 0.046432 / 0.037052 (0.009380) | 0.249543 / 0.258489 (-0.008946) | 0.297339 / 0.293841 (0.003498) | 0.027880 / 0.128546 (-0.100666) | 0.010582 / 0.075646 (-0.065065) | 0.202345 / 0.419271 (-0.216927) | 0.036402 / 0.043533 (-0.007131) | 0.253157 / 0.255139 (-0.001982) | 0.283355 / 0.283200 (0.000155) | 0.021907 / 0.141683 (-0.119776) | 1.174431 / 1.452155 (-0.277723) | 1.172103 / 1.492716 (-0.320613) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097942 / 0.018006 (0.079936) | 0.307114 / 0.000490 (0.306624) | 0.000230 / 0.000200 (0.000030) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019149 / 0.037411 (-0.018262) | 0.064283 / 0.014526 (0.049758) | 0.075643 / 0.176557 (-0.100913) | 0.122531 / 0.737135 (-0.614604) | 0.077360 / 0.296338 (-0.218978) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291790 / 0.215209 (0.076581) | 2.869234 / 2.077655 (0.791580) | 1.550266 / 1.504120 (0.046146) | 1.392392 / 1.541195 (-0.148802) | 1.375700 / 1.468490 (-0.092790) | 0.574963 / 4.584777 (-4.009814) | 2.444746 / 3.745712 (-1.300966) | 2.920602 / 5.269862 (-2.349259) | 1.812720 / 4.565676 (-2.752957) | 0.064811 / 0.424275 (-0.359464) | 0.005163 / 0.007607 (-0.002444) | 0.341306 / 0.226044 (0.115261) | 3.443177 / 2.268929 (1.174249) | 1.843510 / 55.444624 (-53.601115) | 1.534023 / 6.876477 (-5.342454) | 1.603575 / 2.142072 (-0.538498) | 0.656923 / 4.805227 (-4.148304) | 0.120338 / 6.500664 (-6.380326) | 0.042958 / 0.075469 (-0.032511) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.975993 / 1.841788 (-0.865795) | 11.942335 / 8.074308 (3.868027) | 9.964277 / 10.191392 (-0.227115) | 0.131247 / 0.680424 (-0.549176) | 0.014166 / 0.534201 (-0.520035) | 0.283994 / 0.579283 (-0.295290) | 0.267516 / 0.434364 (-0.166848) | 0.328363 / 0.540337 (-0.211974) | 0.412204 / 1.386936 (-0.974732) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005867 / 0.011353 (-0.005486) | 0.003860 / 0.011008 (-0.007148) | 0.050247 / 0.038508 (0.011739) | 0.033819 / 0.023109 (0.010710) | 0.264840 / 0.275898 (-0.011058) | 0.291253 / 0.323480 (-0.032227) | 0.004481 / 0.007986 (-0.003504) | 0.002880 / 0.004328 (-0.001449) | 0.048528 / 0.004250 (0.044278) | 0.041720 / 0.037052 (0.004667) | 0.280467 / 0.258489 (0.021978) | 0.315244 / 0.293841 (0.021404) | 0.030569 / 0.128546 (-0.097977) | 0.010494 / 0.075646 (-0.065152) | 0.058652 / 0.419271 (-0.360620) | 0.034181 / 0.043533 (-0.009352) | 0.266466 / 0.255139 (0.011327) | 0.292038 / 0.283200 (0.008838) | 0.018501 / 0.141683 (-0.123182) | 1.115965 / 1.452155 (-0.336189) | 1.162753 / 1.492716 (-0.329963) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.101301 / 0.018006 (0.083295) | 0.296812 / 0.000490 (0.296322) | 0.000212 / 0.000200 (0.000012) | 0.000049 / 0.000054 (-0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023662 / 0.037411 (-0.013749) | 0.080678 / 0.014526 (0.066153) | 0.089867 / 0.176557 (-0.086689) | 0.130803 / 0.737135 (-0.606332) | 0.091479 / 0.296338 (-0.204860) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286028 / 0.215209 (0.070819) | 2.780072 / 2.077655 (0.702418) | 1.520146 / 1.504120 (0.016026) | 1.372952 / 1.541195 (-0.168243) | 1.428734 / 1.468490 (-0.039756) | 0.571484 / 4.584777 (-4.013293) | 0.969643 / 3.745712 (-2.776069) | 2.788157 / 5.269862 (-2.481705) | 1.841166 / 4.565676 (-2.724511) | 0.063311 / 0.424275 (-0.360964) | 0.005320 / 0.007607 (-0.002287) | 0.333341 / 0.226044 (0.107296) | 3.295141 / 2.268929 (1.026213) | 1.865537 / 55.444624 (-53.579088) | 1.584655 / 6.876477 (-5.291821) | 1.747417 / 2.142072 (-0.394655) | 0.634549 / 4.805227 (-4.170678) | 0.116373 / 6.500664 (-6.384291) | 0.041567 / 0.075469 (-0.033902) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.023086 / 1.841788 (-0.818702) | 13.091905 / 8.074308 (5.017597) | 10.572164 / 10.191392 (0.380772) | 0.142208 / 0.680424 (-0.538216) | 0.015692 / 0.534201 (-0.518509) | 0.284309 / 0.579283 (-0.294974) | 0.126467 / 0.434364 (-0.307897) | 0.322719 / 0.540337 (-0.217618) | 0.439952 / 1.386936 (-0.946985) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#98fdc9e78e6d057ca66e58a37f49d6618aab8130 \"CML watermark\")\n" ]
2024-06-13T14:48:20
2024-06-13T15:04:39
2024-06-13T14:55:53
MEMBER
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6969", "html_url": "https://github.com/huggingface/datasets/pull/6969", "diff_url": "https://github.com/huggingface/datasets/pull/6969.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6969.patch", "merged_at": "2024-06-13T14:55:53" }
null
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6969/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6969/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/6968
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6968/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6968/comments
https://api.github.com/repos/huggingface/datasets/issues/6968/events
https://github.com/huggingface/datasets/pull/6968
2,351,331,417
PR_kwDODunzps5yX7Qr
6,968
Use `HF_HUB_OFFLINE` instead of `HF_DATASETS_OFFLINE`
{ "login": "Wauplin", "id": 11801849, "node_id": "MDQ6VXNlcjExODAxODQ5", "avatar_url": "https://avatars.githubusercontent.com/u/11801849?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Wauplin", "html_url": "https://github.com/Wauplin", "followers_url": "https://api.github.com/users/Wauplin/followers", "following_url": "https://api.github.com/users/Wauplin/following{/other_user}", "gists_url": "https://api.github.com/users/Wauplin/gists{/gist_id}", "starred_url": "https://api.github.com/users/Wauplin/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Wauplin/subscriptions", "organizations_url": "https://api.github.com/users/Wauplin/orgs", "repos_url": "https://api.github.com/users/Wauplin/repos", "events_url": "https://api.github.com/users/Wauplin/events{/privacy}", "received_events_url": "https://api.github.com/users/Wauplin/received_events", "type": "User", "site_admin": false }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6968). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Oops, sorry for the style issue. Fixed in https://github.com/huggingface/datasets/pull/6968/commits/a4e2b28fa647b28190ae2615d7271e6ac63c8499.\r\n\r\nRegarding docs, I can't find mentions of `HF_DATASETS_OFFLINE` anywhere else in `datasets`/`hub-docs`. Once this is merged and released, I'm planning to update some `transformers` docs that briefly mention it.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005173 / 0.011353 (-0.006180) | 0.003485 / 0.011008 (-0.007524) | 0.063867 / 0.038508 (0.025359) | 0.031338 / 0.023109 (0.008229) | 0.242093 / 0.275898 (-0.033805) | 0.266606 / 0.323480 (-0.056874) | 0.003069 / 0.007986 (-0.004916) | 0.003307 / 0.004328 (-0.001022) | 0.051059 / 0.004250 (0.046808) | 0.044396 / 0.037052 (0.007344) | 0.254896 / 0.258489 (-0.003593) | 0.282835 / 0.293841 (-0.011006) | 0.027548 / 0.128546 (-0.100998) | 0.010520 / 0.075646 (-0.065126) | 0.201701 / 0.419271 (-0.217570) | 0.035613 / 0.043533 (-0.007920) | 0.240955 / 0.255139 (-0.014184) | 0.271902 / 0.283200 (-0.011298) | 0.019826 / 0.141683 (-0.121857) | 1.116994 / 1.452155 (-0.335161) | 1.162886 / 1.492716 (-0.329831) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093683 / 0.018006 (0.075677) | 0.297970 / 0.000490 (0.297480) | 0.000211 / 0.000200 (0.000011) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018952 / 0.037411 (-0.018459) | 0.062710 / 0.014526 (0.048184) | 0.073641 / 0.176557 (-0.102916) | 0.121200 / 0.737135 (-0.615935) | 0.075723 / 0.296338 (-0.220616) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286056 / 0.215209 (0.070847) | 2.811424 / 2.077655 (0.733770) | 1.448045 / 1.504120 (-0.056075) | 1.338309 / 1.541195 (-0.202885) | 1.328371 / 1.468490 (-0.140119) | 0.557282 / 4.584777 (-4.027495) | 2.362235 / 3.745712 (-1.383477) | 2.732108 / 5.269862 (-2.537754) | 1.730911 / 4.565676 (-2.834765) | 0.061689 / 0.424275 (-0.362586) | 0.004947 / 0.007607 (-0.002660) | 0.346700 / 0.226044 (0.120656) | 3.355989 / 2.268929 (1.087060) | 1.828078 / 55.444624 (-53.616546) | 1.511531 / 6.876477 (-5.364946) | 1.535897 / 2.142072 (-0.606175) | 0.630276 / 4.805227 (-4.174951) | 0.115808 / 6.500664 (-6.384857) | 0.042199 / 0.075469 (-0.033270) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.969203 / 1.841788 (-0.872584) | 11.282997 / 8.074308 (3.208689) | 9.538914 / 10.191392 (-0.652478) | 0.140072 / 0.680424 (-0.540352) | 0.014021 / 0.534201 (-0.520180) | 0.283784 / 0.579283 (-0.295499) | 0.255973 / 0.434364 (-0.178391) | 0.320284 / 0.540337 (-0.220053) | 0.412689 / 1.386936 (-0.974247) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005201 / 0.011353 (-0.006152) | 0.003312 / 0.011008 (-0.007697) | 0.050044 / 0.038508 (0.011536) | 0.033610 / 0.023109 (0.010501) | 0.266429 / 0.275898 (-0.009469) | 0.287782 / 0.323480 (-0.035698) | 0.004316 / 0.007986 (-0.003670) | 0.002696 / 0.004328 (-0.001633) | 0.049667 / 0.004250 (0.045417) | 0.040244 / 0.037052 (0.003192) | 0.278870 / 0.258489 (0.020381) | 0.311415 / 0.293841 (0.017574) | 0.029150 / 0.128546 (-0.099396) | 0.010046 / 0.075646 (-0.065600) | 0.058527 / 0.419271 (-0.360744) | 0.032871 / 0.043533 (-0.010662) | 0.266582 / 0.255139 (0.011443) | 0.286157 / 0.283200 (0.002957) | 0.017197 / 0.141683 (-0.124486) | 1.120944 / 1.452155 (-0.331211) | 1.161111 / 1.492716 (-0.331606) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092679 / 0.018006 (0.074672) | 0.299195 / 0.000490 (0.298705) | 0.000204 / 0.000200 (0.000004) | 0.000048 / 0.000054 (-0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022212 / 0.037411 (-0.015199) | 0.076734 / 0.014526 (0.062208) | 0.088326 / 0.176557 (-0.088230) | 0.128209 / 0.737135 (-0.608926) | 0.088807 / 0.296338 (-0.207531) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291782 / 0.215209 (0.076573) | 2.882990 / 2.077655 (0.805335) | 1.601638 / 1.504120 (0.097518) | 1.457560 / 1.541195 (-0.083635) | 1.470517 / 1.468490 (0.002027) | 0.565738 / 4.584777 (-4.019039) | 0.949235 / 3.745712 (-2.796478) | 2.661927 / 5.269862 (-2.607934) | 1.722178 / 4.565676 (-2.843498) | 0.063680 / 0.424275 (-0.360595) | 0.005339 / 0.007607 (-0.002268) | 0.344280 / 0.226044 (0.118235) | 3.432998 / 2.268929 (1.164070) | 1.985516 / 55.444624 (-53.459108) | 1.651826 / 6.876477 (-5.224651) | 1.764541 / 2.142072 (-0.377531) | 0.640219 / 4.805227 (-4.165008) | 0.116541 / 6.500664 (-6.384124) | 0.041237 / 0.075469 (-0.034232) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.013927 / 1.841788 (-0.827861) | 11.876661 / 8.074308 (3.802353) | 10.264144 / 10.191392 (0.072752) | 0.131151 / 0.680424 (-0.549273) | 0.015774 / 0.534201 (-0.518427) | 0.284948 / 0.579283 (-0.294335) | 0.125924 / 0.434364 (-0.308439) | 0.319845 / 0.540337 (-0.220493) | 0.431978 / 1.386936 (-0.954958) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#68f67741ffde68c98d0a2f59ac4d8e3a7bc03065 \"CML watermark\")\n" ]
2024-06-13T14:39:40
2024-06-13T17:31:37
2024-06-13T17:25:37
CONTRIBUTOR
null
false
{ "url": "https://api.github.com/repos/huggingface/datasets/pulls/6968", "html_url": "https://github.com/huggingface/datasets/pull/6968", "diff_url": "https://github.com/huggingface/datasets/pull/6968.diff", "patch_url": "https://github.com/huggingface/datasets/pull/6968.patch", "merged_at": "2024-06-13T17:25:37" }
To use `datasets` offline, one can use the `HF_DATASETS_OFFLINE` environment variable. This PR makes `HF_HUB_OFFLINE` the recommended environment variable for offline training. Goal is to be more consistent with the rest of HF ecosystem and have a single config value to set. The changes are backward-compatible meaning that: - `HF_DATASETS_OFFLINE` environment is still taken into account, though not documented - `datasets.config.HF_DATASETS_OFFLINE` still exists, though it is not used anymore (in favor of `datasets.config.HF_HUB_OFFLINE`) **Note:** it might break things in downstream libraries if they were monkeypatching `datasets.config.HF_DATASETS_OFFLINE` in their CI tests (for instance). Not much of a problem IMO.
{ "url": "https://api.github.com/repos/huggingface/datasets/issues/6968/reactions", "total_count": 1, "+1": 1, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/datasets/issues/6968/timeline
null
null
true