sebchw commited on
Commit
1857370
1 Parent(s): 039cffa

add loading script

Browse files
Files changed (1) hide show
  1. musdb18.py +94 -0
musdb18.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datasets
2
+ from pathlib import Path
3
+ import stempeg
4
+ import numpy as np
5
+
6
+
7
+ _DESCRIPTION = """\
8
+ MUSDB18 music source separation dataset
9
+
10
+ to open original stem file (mp4), which is done internally you need stempeg library.
11
+ Outcome of mp4 file is a 3 dimensional np_array [n_stems, n_samples, sample_rate].
12
+
13
+ firt dimension meanings: {
14
+ 0: mixture.
15
+ 1: drugs,
16
+ 2: bass,
17
+ 3: others,
18
+ 4:vocals,
19
+ }
20
+
21
+ Original dataset is not cutted in any parts, but here I cut each song in 10 seconds chunks with 1 sec overlap.
22
+ """
23
+
24
+ _DESCRIPTION = "musdb dataset"
25
+
26
+
27
+ class Musdb18Dataset(datasets.GeneratorBasedBuilder):
28
+ DEFAULT_WRITER_BATCH_SIZE = 300
29
+ SAMPLING_RATE = 44100
30
+ WINDOW_SIZE = SAMPLING_RATE * 10 # 10s windows
31
+ INSTRUMENT_NAMES = ["mixture", "drums", "bass", "other", "vocals"]
32
+
33
+ #! To configure different configurations (length of window is the only thing)
34
+ # use datasets.BuilderConfig
35
+
36
+ def _info(self):
37
+ return datasets.DatasetInfo(
38
+ description=_DESCRIPTION,
39
+ features=datasets.Features({
40
+ "name": datasets.Value("string"),
41
+ "n_window": datasets.Value("int16"),
42
+ **{name: datasets.Audio(sampling_rate=self.SAMPLING_RATE, mono=False)
43
+ for name in self.INSTRUMENT_NAMES}
44
+ })
45
+ )
46
+
47
+ def _split_generators(self, dl_manager):
48
+ #! you must have your folder locally!
49
+ archive_path = dl_manager.download_and_extract(
50
+ "https://zenodo.org/record/1117372/files/musdb18.zip?download=1")
51
+
52
+ return [
53
+ datasets.SplitGenerator(
54
+ name=datasets.Split.TRAIN,
55
+ gen_kwargs={
56
+ "audio_path": f"{archive_path}/train"}
57
+ ),
58
+ datasets.SplitGenerator(
59
+ name=datasets.Split.TEST,
60
+ gen_kwargs={
61
+ "audio_path": f"{archive_path}/test"
62
+ }
63
+ )
64
+ ]
65
+
66
+ def _generate_stem_dict(self, S, song_name, start):
67
+ return {name: {"path": f"{song_name}/{name}",
68
+ "array": S[i, start:start+self.WINDOW_SIZE, :], "sampling_rate": self.SAMPLING_RATE}
69
+ for i, name in enumerate(self.INSTRUMENT_NAMES)}
70
+
71
+ def _generate_examples(self, audio_path):
72
+ id_ = 0
73
+ for stems_path in Path(audio_path).iterdir():
74
+ song_name = stems_path.stem
75
+ S, sr = stempeg.read_stems(
76
+ str(stems_path), dtype=np.float32, multiprocess=False)
77
+
78
+ for idx, start in enumerate(range(0, S.shape[1], self.WINDOW_SIZE)):
79
+ yield id_, {
80
+ "name": song_name,
81
+ "n_window": idx,
82
+ **self._generate_stem_dict(S, song_name, start)
83
+ }
84
+
85
+ id_ += 1
86
+
87
+ # It's very rare for song to have exactly 3 minutes
88
+ yield id_, {
89
+ "name": song_name,
90
+ "n_window": idx+1,
91
+ **self._generate_stem_dict(S, song_name, start=S.shape[1] - self.WINDOW_SIZE)
92
+ }
93
+
94
+ id_ += 1