Tonic commited on
Commit
9f6c3a5
1 Parent(s): cb8d9aa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +189 -187
README.md CHANGED
@@ -1,188 +1,190 @@
1
- ---
2
- language:
3
- - en
4
- license:
5
- - mit
6
- task_categories:
7
- - genomics
8
- - bioinformatics
9
- task_ids:
10
- - variant-analysis
11
- - transcript-expression
12
- - cancer-genomics
13
- pretty_name: TCGA Cancer Variant and Clinical Data
14
- tags:
15
- - cancer-genomics
16
- - variant-calling
17
- - transcriptomics
18
- - clinical-data
19
- dataset_info:
20
- features:
21
- - name: aliquot_id
22
- dtype: string
23
- - name: transcript_id
24
- dtype: string
25
- - name: mutated_protein
26
- dtype: string
27
- - name: wildtype_protein
28
- dtype: string
29
- - name: wgs_aliquot_id
30
- dtype: string
31
- - name: Cancer Type
32
- dtype: string
33
- - name: Cancer Stage
34
- dtype: string
35
- - name: Donor Survival Time
36
- dtype: float
37
- - name: Donor Vital Status
38
- dtype: string
39
- - name: Donor Age at Diagnosis
40
- dtype: float
41
- - name: Tumour Grade
42
- dtype: string
43
- - name: Donor Sex
44
- dtype: string
45
- - name: Histology Abbreviation
46
- dtype: string
47
- config_name: default
48
- splits:
49
- - name: train
50
- num_bytes:
51
- num_examples:
52
- dataset_files:
53
- - name: protein_sequences_metadata.tsv
54
- description: This file contains metadata on protein sequences, including transcript IDs, mutated protein sequences, wildtype sequences, and clinical information related to cancer studies from TCGA.
55
- format: tsv
56
- url: ./protein_sequences_metadata.tsv
57
- ---
58
-
59
- # TCGA Cancer Variant and Clinical Data
60
-
61
- ## Dataset Description
62
-
63
- This dataset combines genetic variant information at the protein level with clinical data from The Cancer Genome Atlas (TCGA) project, curated by the International Cancer Genome Consortium (ICGC). It provides a comprehensive view of protein-altering mutations and clinical characteristics across various cancer types.
64
-
65
- ### Dataset Summary
66
-
67
- The dataset includes:
68
-
69
- - Protein sequence data for both mutated and wildtype proteins
70
- - Clinical data for each patient, including cancer type, stage, survival time, and demographic information
71
- - Unique identifiers linking genomic data to clinical information
72
-
73
- ### Supported Tasks and Leaderboards
74
-
75
- This dataset can support various tasks in cancer genomics and precision medicine, including:
76
-
77
- - Analysis of protein-altering mutations and their impact on cancer progression
78
- - Correlation studies between specific protein mutations and clinical outcomes
79
- - Cancer subtype classification based on genetic and clinical features
80
- - Survival analysis incorporating genetic and clinical data
81
- - Identification of potential biomarkers for cancer prognosis or treatment response
82
-
83
- ### Languages
84
-
85
- The dataset is in English, but primarily consists of protein sequences, numerical data, and standardized clinical terms.
86
-
87
- ## Dataset Structure
88
-
89
- ### Data Instances
90
-
91
- Each row in the dataset represents a unique combination of a patient sample and a transcript. Here's an example entry:
92
-
93
- ```sh
94
- {
95
- 'aliquot_id': '8fb9496e-ddb8-11e4-ad8f-5ed8e2d07381',
96
- 'transcript_id': 'ENST00000512632',
97
- 'mutated_protein': 'MACPALGLEALQPLQPEPPPE...', # (truncated for brevity)
98
- 'wildtype_protein': 'MACPALGLEALQPLQPEPPPE...', # (truncated for brevity)
99
- 'wgs_aliquot_id': '80ab6c08-c622-11e3-bf01-24c6515278c0',
100
- 'Cancer Type': 'Liver Cancer - RIKEN, JP',
101
- 'Cancer Stage': '2',
102
- 'Donor Survival Time': 1440.0,
103
- 'Donor Vital Status': 'deceased',
104
- 'Donor Age at Diagnosis': 67.0,
105
- 'Tumour Grade': 'I',
106
- 'Donor Sex': 'male',
107
- 'Histology Abbreviation': 'Liver-HCC'
108
- }
109
- ```
110
-
111
- ### Data Fields
112
-
113
- - `aliquot_id`: Unique identifier for the RNA sequencing sample
114
- - `transcript_id`: Ensembl transcript ID
115
- - `mutated_protein`: Amino acid sequence of the mutated protein
116
- - `wildtype_protein`: Amino acid sequence of the wildtype (non-mutated) protein
117
- - `wgs_aliquot_id`: Identifier for the whole genome sequencing data
118
- - `Cancer Type`: Type and origin of the cancer
119
- - `Cancer Stage`: Stage of the cancer at diagnosis
120
- - `Donor Survival Time`: Survival time of the patient in days
121
- - `Donor Vital Status`: Whether the patient is alive or deceased
122
- - `Donor Age at Diagnosis`: Age of the patient at diagnosis
123
- - `Tumour Grade`: Grade of the tumor
124
- - `Donor Sex`: Sex of the patient
125
- - `Histology Abbreviation`: Abbreviation for the cancer histology
126
-
127
- ### Data Splits
128
-
129
- This dataset does not have explicit splits. All data is contained in a single table.
130
-
131
- ## Dataset Creation
132
-
133
- ### Source Data
134
-
135
- The dataset was derived from the following ICGC/TCGA sources:
136
-
137
- 1. Normalized transcript expression data:
138
-
139
- ```r
140
- s3://icgc25k-open/PCAWG/transcriptome/transcript_expression/pcawg.rnaseq.transcript.expr.tpm.tsv.gz
141
- ```
142
-
143
- 2. Metadata linked to aliquot_id:
144
-
145
- ```r
146
- s3://icgc25k-open/PCAWG/transcriptome/metadata/rnaseq.extended.metadata.aliquot_id.V4.tsv.gz
147
- ```
148
-
149
- 3. SNV and Indel data:
150
-
151
- ```r
152
- s3://icgc25k-open/PCAWG/consensus_snv_indel/final_consensus_snv_indel_passonly_icgc.public.tgz
153
- ```
154
-
155
- ### Data Processing
156
-
157
- The data processing involved several steps:
158
-
159
- 1. Downloading and extracting the source files
160
- 2. Parsing VCF files to extract variant information
161
- 3. Translating DNA variants to protein sequences
162
- 4. Combining the protein sequence data with clinical data
163
-
164
- The script `set_tcga_data.py` was used to perform these processing steps.
165
-
166
- ## Additional Information
167
-
168
- ### Dataset Curators
169
-
170
- This dataset was curated by [Your Name/Organization] based on data from the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) project.
171
-
172
- ### Licensing Information
173
-
174
- This dataset is released under the MIT License. Please note that usage of the source TCGA data may be subject to additional terms and conditions.
175
-
176
- ### Citation Information
177
-
178
- If you use this dataset, please cite:
179
-
180
- [Your citation information]
181
-
182
- And also cite the original PCAWG project:
183
-
184
- The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020). https://doi.org/10.1038/s41586-020-1969-6
185
-
186
- ### Contributions
187
-
 
 
188
  Thanks to the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium for making the original data available.
 
1
+ ---
2
+ language:
3
+ - en
4
+ license:
5
+ - mit
6
+ task_categories:
7
+ - table-to-text
8
+ task_ids:
9
+ - entity-linking-retrieval
10
+ pretty_name: TCGA Cancer Variant and Clinical Data
11
+ tags:
12
+ - cancer-genomics
13
+ - variant-calling
14
+ - transcriptomics
15
+ - clinical-data
16
+ dataset_info:
17
+ features:
18
+ - name: aliquot_id
19
+ dtype: string
20
+ - name: transcript_id
21
+ dtype: string
22
+ - name: mutated_protein
23
+ dtype: string
24
+ - name: wildtype_protein
25
+ dtype: string
26
+ - name: wgs_aliquot_id
27
+ dtype: string
28
+ - name: Cancer Type
29
+ dtype: string
30
+ - name: Cancer Stage
31
+ dtype: string
32
+ - name: Donor Survival Time
33
+ dtype: float
34
+ - name: Donor Vital Status
35
+ dtype: string
36
+ - name: Donor Age at Diagnosis
37
+ dtype: float
38
+ - name: Tumour Grade
39
+ dtype: string
40
+ - name: Donor Sex
41
+ dtype: string
42
+ - name: Histology Abbreviation
43
+ dtype: string
44
+ config_name: default
45
+ splits:
46
+ - name: train
47
+ num_bytes: null
48
+ num_examples: null
49
+ dataset_files:
50
+ - name: protein_sequences_metadata.tsv
51
+ description: >-
52
+ This file contains metadata on protein sequences, including transcript IDs,
53
+ mutated protein sequences, wildtype sequences, and clinical information
54
+ related to cancer studies from TCGA.
55
+ format: tsv
56
+ url: ./protein_sequences_metadata.tsv
57
+ size_categories:
58
+ - 10K<n<100K
59
+ ---
60
+
61
+ # TCGA Cancer Variant and Clinical Data
62
+
63
+ ## Dataset Description
64
+
65
+ This dataset combines genetic variant information at the protein level with clinical data from The Cancer Genome Atlas (TCGA) project, curated by the International Cancer Genome Consortium (ICGC). It provides a comprehensive view of protein-altering mutations and clinical characteristics across various cancer types.
66
+
67
+ ### Dataset Summary
68
+
69
+ The dataset includes:
70
+
71
+ - Protein sequence data for both mutated and wildtype proteins
72
+ - Clinical data for each patient, including cancer type, stage, survival time, and demographic information
73
+ - Unique identifiers linking genomic data to clinical information
74
+
75
+ ### Supported Tasks and Leaderboards
76
+
77
+ This dataset can support various tasks in cancer genomics and precision medicine, including:
78
+
79
+ - Analysis of protein-altering mutations and their impact on cancer progression
80
+ - Correlation studies between specific protein mutations and clinical outcomes
81
+ - Cancer subtype classification based on genetic and clinical features
82
+ - Survival analysis incorporating genetic and clinical data
83
+ - Identification of potential biomarkers for cancer prognosis or treatment response
84
+
85
+ ### Languages
86
+
87
+ The dataset is in English, but primarily consists of protein sequences, numerical data, and standardized clinical terms.
88
+
89
+ ## Dataset Structure
90
+
91
+ ### Data Instances
92
+
93
+ Each row in the dataset represents a unique combination of a patient sample and a transcript. Here's an example entry:
94
+
95
+ ```sh
96
+ {
97
+ 'aliquot_id': '8fb9496e-ddb8-11e4-ad8f-5ed8e2d07381',
98
+ 'transcript_id': 'ENST00000512632',
99
+ 'mutated_protein': 'MACPALGLEALQPLQPEPPPE...', # (truncated for brevity)
100
+ 'wildtype_protein': 'MACPALGLEALQPLQPEPPPE...', # (truncated for brevity)
101
+ 'wgs_aliquot_id': '80ab6c08-c622-11e3-bf01-24c6515278c0',
102
+ 'Cancer Type': 'Liver Cancer - RIKEN, JP',
103
+ 'Cancer Stage': '2',
104
+ 'Donor Survival Time': 1440.0,
105
+ 'Donor Vital Status': 'deceased',
106
+ 'Donor Age at Diagnosis': 67.0,
107
+ 'Tumour Grade': 'I',
108
+ 'Donor Sex': 'male',
109
+ 'Histology Abbreviation': 'Liver-HCC'
110
+ }
111
+ ```
112
+
113
+ ### Data Fields
114
+
115
+ - `aliquot_id`: Unique identifier for the RNA sequencing sample
116
+ - `transcript_id`: Ensembl transcript ID
117
+ - `mutated_protein`: Amino acid sequence of the mutated protein
118
+ - `wildtype_protein`: Amino acid sequence of the wildtype (non-mutated) protein
119
+ - `wgs_aliquot_id`: Identifier for the whole genome sequencing data
120
+ - `Cancer Type`: Type and origin of the cancer
121
+ - `Cancer Stage`: Stage of the cancer at diagnosis
122
+ - `Donor Survival Time`: Survival time of the patient in days
123
+ - `Donor Vital Status`: Whether the patient is alive or deceased
124
+ - `Donor Age at Diagnosis`: Age of the patient at diagnosis
125
+ - `Tumour Grade`: Grade of the tumor
126
+ - `Donor Sex`: Sex of the patient
127
+ - `Histology Abbreviation`: Abbreviation for the cancer histology
128
+
129
+ ### Data Splits
130
+
131
+ This dataset does not have explicit splits. All data is contained in a single table.
132
+
133
+ ## Dataset Creation
134
+
135
+ ### Source Data
136
+
137
+ The dataset was derived from the following ICGC/TCGA sources:
138
+
139
+ 1. Normalized transcript expression data:
140
+
141
+ ```r
142
+ s3://icgc25k-open/PCAWG/transcriptome/transcript_expression/pcawg.rnaseq.transcript.expr.tpm.tsv.gz
143
+ ```
144
+
145
+ 2. Metadata linked to aliquot_id:
146
+
147
+ ```r
148
+ s3://icgc25k-open/PCAWG/transcriptome/metadata/rnaseq.extended.metadata.aliquot_id.V4.tsv.gz
149
+ ```
150
+
151
+ 3. SNV and Indel data:
152
+
153
+ ```r
154
+ s3://icgc25k-open/PCAWG/consensus_snv_indel/final_consensus_snv_indel_passonly_icgc.public.tgz
155
+ ```
156
+
157
+ ### Data Processing
158
+
159
+ The data processing involved several steps:
160
+
161
+ 1. Downloading and extracting the source files
162
+ 2. Parsing VCF files to extract variant information
163
+ 3. Translating DNA variants to protein sequences
164
+ 4. Combining the protein sequence data with clinical data
165
+
166
+ The script `set_tcga_data.py` was used to perform these processing steps.
167
+
168
+ ## Additional Information
169
+
170
+ ### Dataset Curators
171
+
172
+ This dataset was curated by [Your Name/Organization] based on data from the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) project.
173
+
174
+ ### Licensing Information
175
+
176
+ This dataset is released under the MIT License. Please note that usage of the source TCGA data may be subject to additional terms and conditions.
177
+
178
+ ### Citation Information
179
+
180
+ If you use this dataset, please cite:
181
+
182
+ [Your citation information]
183
+
184
+ And also cite the original PCAWG project:
185
+
186
+ The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020). https://doi.org/10.1038/s41586-020-1969-6
187
+
188
+ ### Contributions
189
+
190
  Thanks to the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium for making the original data available.