Tonic commited on
Commit
cb8d9aa
1 Parent(s): 7e99bc9

Upload 2 files

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. README.md +186 -1
  3. protein_sequences_metadata.tsv +3 -0
.gitattributes CHANGED
@@ -56,3 +56,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
56
  # Video files - compressed
57
  *.mp4 filter=lfs diff=lfs merge=lfs -text
58
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
56
  # Video files - compressed
57
  *.mp4 filter=lfs diff=lfs merge=lfs -text
58
  *.webm filter=lfs diff=lfs merge=lfs -text
59
+ protein_sequences_metadata.tsv filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,188 @@
1
  ---
2
- license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ license:
5
+ - mit
6
+ task_categories:
7
+ - genomics
8
+ - bioinformatics
9
+ task_ids:
10
+ - variant-analysis
11
+ - transcript-expression
12
+ - cancer-genomics
13
+ pretty_name: TCGA Cancer Variant and Clinical Data
14
+ tags:
15
+ - cancer-genomics
16
+ - variant-calling
17
+ - transcriptomics
18
+ - clinical-data
19
+ dataset_info:
20
+ features:
21
+ - name: aliquot_id
22
+ dtype: string
23
+ - name: transcript_id
24
+ dtype: string
25
+ - name: mutated_protein
26
+ dtype: string
27
+ - name: wildtype_protein
28
+ dtype: string
29
+ - name: wgs_aliquot_id
30
+ dtype: string
31
+ - name: Cancer Type
32
+ dtype: string
33
+ - name: Cancer Stage
34
+ dtype: string
35
+ - name: Donor Survival Time
36
+ dtype: float
37
+ - name: Donor Vital Status
38
+ dtype: string
39
+ - name: Donor Age at Diagnosis
40
+ dtype: float
41
+ - name: Tumour Grade
42
+ dtype: string
43
+ - name: Donor Sex
44
+ dtype: string
45
+ - name: Histology Abbreviation
46
+ dtype: string
47
+ config_name: default
48
+ splits:
49
+ - name: train
50
+ num_bytes:
51
+ num_examples:
52
+ dataset_files:
53
+ - name: protein_sequences_metadata.tsv
54
+ description: This file contains metadata on protein sequences, including transcript IDs, mutated protein sequences, wildtype sequences, and clinical information related to cancer studies from TCGA.
55
+ format: tsv
56
+ url: ./protein_sequences_metadata.tsv
57
  ---
58
+
59
+ # TCGA Cancer Variant and Clinical Data
60
+
61
+ ## Dataset Description
62
+
63
+ This dataset combines genetic variant information at the protein level with clinical data from The Cancer Genome Atlas (TCGA) project, curated by the International Cancer Genome Consortium (ICGC). It provides a comprehensive view of protein-altering mutations and clinical characteristics across various cancer types.
64
+
65
+ ### Dataset Summary
66
+
67
+ The dataset includes:
68
+
69
+ - Protein sequence data for both mutated and wildtype proteins
70
+ - Clinical data for each patient, including cancer type, stage, survival time, and demographic information
71
+ - Unique identifiers linking genomic data to clinical information
72
+
73
+ ### Supported Tasks and Leaderboards
74
+
75
+ This dataset can support various tasks in cancer genomics and precision medicine, including:
76
+
77
+ - Analysis of protein-altering mutations and their impact on cancer progression
78
+ - Correlation studies between specific protein mutations and clinical outcomes
79
+ - Cancer subtype classification based on genetic and clinical features
80
+ - Survival analysis incorporating genetic and clinical data
81
+ - Identification of potential biomarkers for cancer prognosis or treatment response
82
+
83
+ ### Languages
84
+
85
+ The dataset is in English, but primarily consists of protein sequences, numerical data, and standardized clinical terms.
86
+
87
+ ## Dataset Structure
88
+
89
+ ### Data Instances
90
+
91
+ Each row in the dataset represents a unique combination of a patient sample and a transcript. Here's an example entry:
92
+
93
+ ```sh
94
+ {
95
+ 'aliquot_id': '8fb9496e-ddb8-11e4-ad8f-5ed8e2d07381',
96
+ 'transcript_id': 'ENST00000512632',
97
+ 'mutated_protein': 'MACPALGLEALQPLQPEPPPE...', # (truncated for brevity)
98
+ 'wildtype_protein': 'MACPALGLEALQPLQPEPPPE...', # (truncated for brevity)
99
+ 'wgs_aliquot_id': '80ab6c08-c622-11e3-bf01-24c6515278c0',
100
+ 'Cancer Type': 'Liver Cancer - RIKEN, JP',
101
+ 'Cancer Stage': '2',
102
+ 'Donor Survival Time': 1440.0,
103
+ 'Donor Vital Status': 'deceased',
104
+ 'Donor Age at Diagnosis': 67.0,
105
+ 'Tumour Grade': 'I',
106
+ 'Donor Sex': 'male',
107
+ 'Histology Abbreviation': 'Liver-HCC'
108
+ }
109
+ ```
110
+
111
+ ### Data Fields
112
+
113
+ - `aliquot_id`: Unique identifier for the RNA sequencing sample
114
+ - `transcript_id`: Ensembl transcript ID
115
+ - `mutated_protein`: Amino acid sequence of the mutated protein
116
+ - `wildtype_protein`: Amino acid sequence of the wildtype (non-mutated) protein
117
+ - `wgs_aliquot_id`: Identifier for the whole genome sequencing data
118
+ - `Cancer Type`: Type and origin of the cancer
119
+ - `Cancer Stage`: Stage of the cancer at diagnosis
120
+ - `Donor Survival Time`: Survival time of the patient in days
121
+ - `Donor Vital Status`: Whether the patient is alive or deceased
122
+ - `Donor Age at Diagnosis`: Age of the patient at diagnosis
123
+ - `Tumour Grade`: Grade of the tumor
124
+ - `Donor Sex`: Sex of the patient
125
+ - `Histology Abbreviation`: Abbreviation for the cancer histology
126
+
127
+ ### Data Splits
128
+
129
+ This dataset does not have explicit splits. All data is contained in a single table.
130
+
131
+ ## Dataset Creation
132
+
133
+ ### Source Data
134
+
135
+ The dataset was derived from the following ICGC/TCGA sources:
136
+
137
+ 1. Normalized transcript expression data:
138
+
139
+ ```r
140
+ s3://icgc25k-open/PCAWG/transcriptome/transcript_expression/pcawg.rnaseq.transcript.expr.tpm.tsv.gz
141
+ ```
142
+
143
+ 2. Metadata linked to aliquot_id:
144
+
145
+ ```r
146
+ s3://icgc25k-open/PCAWG/transcriptome/metadata/rnaseq.extended.metadata.aliquot_id.V4.tsv.gz
147
+ ```
148
+
149
+ 3. SNV and Indel data:
150
+
151
+ ```r
152
+ s3://icgc25k-open/PCAWG/consensus_snv_indel/final_consensus_snv_indel_passonly_icgc.public.tgz
153
+ ```
154
+
155
+ ### Data Processing
156
+
157
+ The data processing involved several steps:
158
+
159
+ 1. Downloading and extracting the source files
160
+ 2. Parsing VCF files to extract variant information
161
+ 3. Translating DNA variants to protein sequences
162
+ 4. Combining the protein sequence data with clinical data
163
+
164
+ The script `set_tcga_data.py` was used to perform these processing steps.
165
+
166
+ ## Additional Information
167
+
168
+ ### Dataset Curators
169
+
170
+ This dataset was curated by [Your Name/Organization] based on data from the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) project.
171
+
172
+ ### Licensing Information
173
+
174
+ This dataset is released under the MIT License. Please note that usage of the source TCGA data may be subject to additional terms and conditions.
175
+
176
+ ### Citation Information
177
+
178
+ If you use this dataset, please cite:
179
+
180
+ [Your citation information]
181
+
182
+ And also cite the original PCAWG project:
183
+
184
+ The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020). https://doi.org/10.1038/s41586-020-1969-6
185
+
186
+ ### Contributions
187
+
188
+ Thanks to the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium for making the original data available.
protein_sequences_metadata.tsv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90f134a93301434e629d412aa031b15e14ec9c25df0f4346dda29860530da2a0
3
+ size 190843404