Datasets:
Languages:
English
Size:
1M<n<10M
ArXiv:
Tags:
task-oriented-dialog
task-oriented-dialogues
dialog-flow
dialog-modeling
dialogue-flow
dialogue-modeling
License:
File size: 7,304 Bytes
3f27e03 df5a112 3f27e03 df5a112 3f27e03 df5a112 3f27e03 df5a112 3f27e03 5774b28 3f27e03 5774b28 3f27e03 df5a112 3f27e03 df5a112 3f27e03 66eb780 3f27e03 5008aa3 3f27e03 66eb780 5008aa3 66eb780 df5a112 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
"""
Copyright (c) 2024, Idiap Research Institute.
All rights reserved.
SPDX-License-Identifier: MIT License
For full license text, see the LICENSE file in the repo root
"""
#!/usr/bin/env python3
import os
import csv
import json
import datasets
from datasets import (GeneratorBasedBuilder,
BuilderConfig,
SplitGenerator,
DatasetInfo,
Features,
Value,
Version)
logger = datasets.logging.get_logger(__name__)
datasets.logging.disable_progress_bar()
_VERSION = Version("1.0.0")
_CITATION = """
@inproceedings{burdisso-etal-2024-dialog2flow,
title = "Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction",
author = "Burdisso, Sergio and
Madikeri, Srikanth and
Motlicek, Petr",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami",
publisher = "Association for Computational Linguistics",
}
"""
DATASETS_PRETRAIN = ["dialog-acts", "slots", "dialog-acts+slots"]
DATASETS_DS = {
'ABCD': ['test', 'train', 'val'],
'BiTOD': ['test', 'train', 'val'],
'DSTC2-Clean': ['test', 'train', 'val'],
'Disambiguation': ['test', 'train', 'val'],
'FRAMES': ['test', 'train'],
'HDSA-Dialog': ['test', 'train', 'val'],
'GECOR': ['train'],
'KETOD': ['test', 'train', 'val'],
'MS-DC': ['train'],
'MULTIWOZ2_2': ['test', 'train', 'val'],
'MulDoGO': ['test', 'train', 'val'],
'MultiWOZ_2.1': ['test', 'train', 'val'],
'SGD': ['test', 'train', 'val'],
'SimJointMovie': ['test', 'train', 'val'],
'SimJointRestaurant': ['test', 'train', 'val'],
'Taskmaster1': ['test', 'train', 'val'],
'Taskmaster2': ['train'],
'Taskmaster3': ['test', 'train', 'val'],
'WOZ2_0': ['test', 'train', 'val'],
'SimJointGEN': ['test', 'train', 'val'],
}
DATASETS = list(DATASETS_DS.keys()) + DATASETS_PRETRAIN
SPLIT2NAME = {
"train": datasets.Split.TRAIN,
"val": datasets.Split.VALIDATION,
"test": datasets.Split.TEST,
}
class Dialog2FlowConfig(BuilderConfig):
"""BuilderConfig for Dialog2Flow."""
def __init__(self, name, citation, url, **kwargs):
"""BuilderConfig for Dialog2Flow.
Args:
extra_features: `list[string]`, list of the features that will appear in the
feature dict. Should not include "label".
data_url: `string`, url to download the zip file from.
citation: `string`, citation for the data set.
url: `string`, url for information about the data set.
label_classes: `list[string]`, the list of classes for the label if the
label is present as a string. Non-string labels will be cast to either
'False' or 'True'.
**kwargs: keyword arguments forwarded to super.
"""
super(Dialog2FlowConfig, self).__init__(version=_VERSION, **kwargs)
self.name = name
self.citation = citation
self.url = url
class Dialog2FlowBuilder(GeneratorBasedBuilder):
BUILDER_CONFIG_CLASS = Dialog2FlowConfig
BUILDER_CONFIGS = []
for dataset in DATASETS:
BUILDER_CONFIGS.append(
Dialog2FlowConfig(
name=dataset,
description="",
citation=_CITATION,
url="https://github.com/idiap/dialog2flow",
))
DEFAULT_CONFIG_NAME = "dialog-acts+slots"
def _info(self):
if self.config.name in DATASETS_PRETRAIN:
features = {"utterance": Value("string"), "label": Value("string")}
else:
features = {"dialog": [
{
"speaker": Value("string"),
"text": Value("string"),
"domains": [
Value("string")
],
"labels": {
"dialog_acts": {
"acts" : [Value("string")],
"main_acts" : [Value("string")],
"original_acts" : [Value("string")],
},
"slots": [Value("string")],
"intents": [Value("string")]
}
}
]}
return DatasetInfo(
description="",
features=Features(features),
homepage=self.config.url,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
if self.config.name in DATASETS_PRETRAIN:
file_path = dl_manager.download({
"train": f"{self.config.name}.csv", # full
"val": "val.csv", # few shot subset
# "test": "test.csv", # TODO: use SpokenWOZ
})
splits = [
SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"file_path": file_path["train"],
"split": datasets.Split.TRAIN,
},
),
SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"file_path": file_path["val"],
"split": datasets.Split.VALIDATION,
},
),
# SplitGenerator( # TODO: use SpokenWOZ
# name=datasets.Split.TEST,
# gen_kwargs={
# "file_path": file_path["test"],
# "split": datasets.Split.TEST,
# },
# )
]
else:
splits = []
file_path = dl_manager.download({
"train": os.path.join(self.config.name, "data.json")
})
split_names = DATASETS_DS[self.config.name]
for split_name in split_names:
splits.append(
SplitGenerator(
name=SPLIT2NAME[split_name],
gen_kwargs={
"file_path": file_path["train"],
"split": SPLIT2NAME[split_name],
"split_name": split_name
},
)
)
return splits
def _load_json(self, file_path):
with open(file_path, encoding="utf-8") as f:
data = json.load(f)
return data
def _generate_examples(self, file_path, split, split_name=None):
if split_name is not None:
data = self._load_json(file_path)
data = [(dial_id, dial) for dial_id, dial in data["dialogs"].items() if split_name in dial_id]
logger.info(f"generating {len(data)} examples from = {split}")
for dial_id, dial in data:
yield dial_id, {"dialog": dial}
else:
with open(file_path, newline='') as csvfile:
csvreader = csv.reader(csvfile)
for ix, row in enumerate(csvreader):
yield ix, {"utterance": row[0], "label": row[1]}
|