Datasets:
Languages:
English
Size:
1M<n<10M
ArXiv:
Tags:
task-oriented-dialog
task-oriented-dialogues
dialog-flow
dialog-modeling
dialogue-flow
dialogue-modeling
License:
""" | |
Copyright (c) 2024, Idiap Research Institute. | |
All rights reserved. | |
SPDX-License-Identifier: MIT License | |
For full license text, see the LICENSE file in the repo root | |
""" | |
#!/usr/bin/env python3 | |
import os | |
import json | |
import datasets | |
from datasets import (GeneratorBasedBuilder, | |
BuilderConfig, | |
SplitGenerator, | |
DatasetInfo, | |
Features, | |
Value, | |
Version) | |
logger = datasets.logging.get_logger(__name__) | |
datasets.logging.disable_progress_bar() | |
_VERSION = Version("1.0.0") | |
_CITATION = """ | |
@inproceedings{burdisso-etal-2024-dialog2flow, | |
title = "Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction", | |
author = "Burdisso, Sergio and | |
Madikeri, Srikanth and | |
Motlicek, Petr", | |
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing", | |
month = nov, | |
year = "2024", | |
address = "Miami", | |
publisher = "Association for Computational Linguistics", | |
} | |
""" | |
DATASETS_PRETRAIN = ["dialog-acts", "slots", "dialog-actions"] | |
DATASETS_DS = { | |
'ABCD': ['test', 'train', 'val'], | |
'BiTOD': ['test', 'train', 'val'], | |
'DSTC2-Clean': ['test', 'train', 'val'], | |
'Disambiguation': ['test', 'train', 'val'], | |
'FRAMES': ['test', 'train'], | |
'HDSA-Dialog': ['test', 'train', 'val'], | |
'GECOR': ['train'], | |
'KETOD': ['test', 'train', 'val'], | |
'MS-DC': ['train'], | |
'MULTIWOZ2_2': ['test', 'train', 'val'], | |
'MulDoGO': ['test', 'train', 'val'], | |
'MultiWOZ_2.1': ['test', 'train', 'val'], | |
'SGD': ['test', 'train', 'val'], | |
'SimJointMovie': ['test', 'train', 'val'], | |
'SimJointRestaurant': ['test', 'train', 'val'], | |
'Taskmaster1': ['test', 'train', 'val'], | |
'Taskmaster2': ['train'], | |
'Taskmaster3': ['test', 'train', 'val'], | |
'WOZ2_0': ['test', 'train', 'val'], | |
# 'SimJointGEN': ['test', 'train', 'val'], | |
} | |
DATASETS = list(DATASETS_DS.keys()) + DATASETS_PRETRAIN | |
SPLIT2NAME = { | |
"train": datasets.Split.TRAIN, | |
"val": datasets.Split.VALIDATION, | |
"test": datasets.Split.TEST, | |
} | |
class Dialog2FlowConfig(BuilderConfig): | |
"""BuilderConfig for Dialog2Flow.""" | |
def __init__(self, name, citation, url, **kwargs): | |
"""BuilderConfig for Dialog2Flow. | |
Args: | |
extra_features: `list[string]`, list of the features that will appear in the | |
feature dict. Should not include "label". | |
data_url: `string`, url to download the zip file from. | |
citation: `string`, citation for the data set. | |
url: `string`, url for information about the data set. | |
label_classes: `list[string]`, the list of classes for the label if the | |
label is present as a string. Non-string labels will be cast to either | |
'False' or 'True'. | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(Dialog2FlowConfig, self).__init__(version=_VERSION, **kwargs) | |
self.name = name | |
self.citation = citation | |
self.url = url | |
class Dialog2FlowBuilder(GeneratorBasedBuilder): | |
BUILDER_CONFIG_CLASS = Dialog2FlowConfig | |
BUILDER_CONFIGS = [] | |
for dataset in DATASETS: | |
BUILDER_CONFIGS.append( | |
Dialog2FlowConfig( | |
name=dataset, | |
description="", | |
citation=_CITATION, | |
url="https://github.com/idiap/dialog2flow", | |
)) | |
DEFAULT_CONFIG_NAME = "dialog-actions" | |
def _info(self): | |
if self.config.name in DATASETS_PRETRAIN: | |
features = {"utterance": Value("string"), "label": Value("string")} | |
else: | |
features = {"dialog": [ | |
{ | |
"speaker": Value("string"), | |
"text": Value("string"), | |
"domains": [ | |
Value("string") | |
], | |
"labels": { | |
"dialog_acts": { | |
"acts" : [Value("string")], | |
"main_acts" : [Value("string")], | |
"original_acts" : [Value("string")], | |
}, | |
"slots": [Value("string")], | |
"intents": [Value("string")] | |
} | |
} | |
]} | |
return DatasetInfo( | |
description="", | |
features=Features(features), | |
homepage=self.config.url, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
if self.config.name in DATASETS_PRETRAIN: | |
# TODO | |
file_path = dl_manager.download({ | |
"train": "train.csv", # full | |
"val": "eval.csv", # few shot subset | |
"test": "test.csv", # SpokenWOZ | |
}) | |
splits = [ | |
SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"file_path": file_path["train"], | |
"split": datasets.Split.TRAIN, | |
}, | |
), | |
SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"file_path": file_path["val"], | |
"split": datasets.Split.VALIDATION, | |
}, | |
), | |
SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"file_path": file_path["test"], | |
"split": datasets.Split.TEST, | |
}, | |
) | |
] | |
else: | |
splits = [] | |
file_path = dl_manager.download({ | |
"train": os.path.join(self.config.name, "data.json") | |
}) | |
split_names = DATASETS_DS[self.config.name] | |
for split_name in split_names: | |
splits.append( | |
SplitGenerator( | |
name=SPLIT2NAME[split_name], | |
gen_kwargs={ | |
"file_path": file_path["train"], | |
"split": SPLIT2NAME[split_name], | |
"split_name": split_name | |
}, | |
) | |
) | |
return splits | |
def _load_json(self, file_path): | |
with open(file_path, encoding="utf-8") as f: | |
data = json.loads(f.read()) | |
return data | |
def _generate_examples(self, file_path, split, split_name=None): | |
if split_name is not None: | |
data = self._load_json(file_path) | |
data = [(dial_id, dial) for dial_id, dial in data["dialogs"].items() if split_name in dial_id] | |
logger.info(f"generating {len(data)} examples from = {split}") | |
for dial_id, dial in data.items(): | |
yield dial_id, {"dialog": dial} | |
else: | |
pass | |