Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 7,598 Bytes
72112ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
788845f
 
72112ee
 
 
 
 
 
 
 
 
 
788845f
72112ee
788845f
72112ee
 
 
788845f
72112ee
788845f
72112ee
 
788845f
 
 
72112ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
{
    "light": {
        "description": "AmbigNQ, a dataset covering 14,042 questions from NQ-open, an existing open-domain QA benchmark. We find that over half of the questions in NQ-open are ambiguous. The types of ambiguity are diverse and sometimes subtle, many of which are only apparent after examining evidence provided by a very large text corpus.  AMBIGNQ, a dataset with\n14,042 annotations on NQ-OPEN questions containing diverse types of ambiguity.\nWe provide two distributions of our new dataset AmbigNQ: a full version with all annotation metadata and a light version with only inputs and outputs.\n",
        "citation": "@inproceedings{ min2020ambigqa,\n    title={ {A}mbig{QA}: Answering Ambiguous Open-domain Questions },\n    author={ Min, Sewon and Michael, Julian and Hajishirzi, Hannaneh and Zettlemoyer, Luke },\n    booktitle={ EMNLP },\n    year={2020}\n}\n",
        "homepage": "https://nlp.cs.washington.edu/ambigqa/",
        "license": "CC BY-SA 3.0",
        "features": {
            "id": {
                "dtype": "string",
                "_type": "Value"
            },
            "question": {
                "dtype": "string",
                "_type": "Value"
            },
            "annotations": {
                "feature": {
                    "type": {
                        "dtype": "string",
                        "_type": "Value"
                    },
                    "answer": {
                        "feature": {
                            "dtype": "string",
                            "_type": "Value"
                        },
                        "_type": "Sequence"
                    },
                    "qaPairs": {
                        "feature": {
                            "question": {
                                "dtype": "string",
                                "_type": "Value"
                            },
                            "answer": {
                                "feature": {
                                    "dtype": "string",
                                    "_type": "Value"
                                },
                                "_type": "Sequence"
                            }
                        },
                        "_type": "Sequence"
                    }
                },
                "_type": "Sequence"
            }
        },
        "builder_name": "parquet",
        "dataset_name": "ambig_qa",
        "config_name": "light",
        "version": {
            "version_str": "1.0.0",
            "major": 1,
            "minor": 0,
            "patch": 0
        },
        "splits": {
            "train": {
                "name": "train",
                "num_bytes": 2739628,
                "num_examples": 10036,
                "dataset_name": null
            },
            "validation": {
                "name": "validation",
                "num_bytes": 805756,
                "num_examples": 2002,
                "dataset_name": null
            }
        },
        "download_size": 1777867,
        "dataset_size": 3545384,
        "size_in_bytes": 5323251
    },
    "full": {
        "description": "AmbigNQ, a dataset covering 14,042 questions from NQ-open, an existing open-domain QA benchmark. We find that over half of the questions in NQ-open are ambiguous. The types of ambiguity are diverse and sometimes subtle, many of which are only apparent after examining evidence provided by a very large text corpus.  AMBIGNQ, a dataset with\n14,042 annotations on NQ-OPEN questions containing diverse types of ambiguity.\nWe provide two distributions of our new dataset AmbigNQ: a full version with all annotation metadata and a light version with only inputs and outputs.\n",
        "citation": "@inproceedings{ min2020ambigqa,\n    title={ {A}mbig{QA}: Answering Ambiguous Open-domain Questions },\n    author={ Min, Sewon and Michael, Julian and Hajishirzi, Hannaneh and Zettlemoyer, Luke },\n    booktitle={ EMNLP },\n    year={2020}\n}\n",
        "homepage": "https://nlp.cs.washington.edu/ambigqa/",
        "license": "CC BY-SA 3.0",
        "features": {
            "id": {
                "dtype": "string",
                "_type": "Value"
            },
            "question": {
                "dtype": "string",
                "_type": "Value"
            },
            "annotations": {
                "feature": {
                    "type": {
                        "dtype": "string",
                        "_type": "Value"
                    },
                    "answer": {
                        "feature": {
                            "dtype": "string",
                            "_type": "Value"
                        },
                        "_type": "Sequence"
                    },
                    "qaPairs": {
                        "feature": {
                            "question": {
                                "dtype": "string",
                                "_type": "Value"
                            },
                            "answer": {
                                "feature": {
                                    "dtype": "string",
                                    "_type": "Value"
                                },
                                "_type": "Sequence"
                            }
                        },
                        "_type": "Sequence"
                    }
                },
                "_type": "Sequence"
            },
            "viewed_doc_titles": {
                "feature": {
                    "dtype": "string",
                    "_type": "Value"
                },
                "_type": "Sequence"
            },
            "used_queries": {
                "feature": {
                    "query": {
                        "dtype": "string",
                        "_type": "Value"
                    },
                    "results": {
                        "feature": {
                            "title": {
                                "dtype": "string",
                                "_type": "Value"
                            },
                            "snippet": {
                                "dtype": "string",
                                "_type": "Value"
                            }
                        },
                        "_type": "Sequence"
                    }
                },
                "_type": "Sequence"
            },
            "nq_answer": {
                "feature": {
                    "dtype": "string",
                    "_type": "Value"
                },
                "_type": "Sequence"
            },
            "nq_doc_title": {
                "dtype": "string",
                "_type": "Value"
            }
        },
        "builder_name": "parquet",
        "dataset_name": "ambig_qa",
        "config_name": "full",
        "version": {
            "version_str": "1.0.0",
            "major": 1,
            "minor": 0,
            "patch": 0
        },
        "splits": {
            "train": {
                "name": "train",
                "num_bytes": 43538533,
                "num_examples": 10036,
                "dataset_name": null
            },
            "validation": {
                "name": "validation",
                "num_bytes": 15383268,
                "num_examples": 2002,
                "dataset_name": null
            }
        },
        "download_size": 30674462,
        "dataset_size": 58921801,
        "size_in_bytes": 89596263
    }
}