Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
albertvillanova HF staff commited on
Commit
e969d01
1 Parent(s): 4b3c61e

Convert dataset to Parquet (#1)

Browse files

- Convert dataset to Parquet (72112ee8ef9e57ecede00ddfa000cde9de421ba6)
- Add light data files (788845f32591342633c60167a81b60d521790efb)
- Delete loading script (a202432ef5aa99a29d0304a530a93877e1ffcfac)
- Delete legacy dataset_infos.json (1681964e138ab7f6961e9114974f6761fcfd0466)

README.md CHANGED
@@ -21,7 +21,7 @@ task_ids:
21
  paperswithcode_id: ambigqa
22
  pretty_name: 'AmbigQA: Answering Ambiguous Open-domain Questions'
23
  dataset_info:
24
- - config_name: light
25
  features:
26
  - name: id
27
  dtype: string
@@ -39,16 +39,32 @@ dataset_info:
39
  dtype: string
40
  - name: answer
41
  sequence: string
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  splits:
43
  - name: train
44
- num_bytes: 2739732
45
  num_examples: 10036
46
  - name: validation
47
- num_bytes: 805808
48
  num_examples: 2002
49
- download_size: 19700900
50
- dataset_size: 3545540
51
- - config_name: full
52
  features:
53
  - name: id
54
  dtype: string
@@ -66,31 +82,29 @@ dataset_info:
66
  dtype: string
67
  - name: answer
68
  sequence: string
69
- - name: viewed_doc_titles
70
- sequence: string
71
- - name: used_queries
72
- sequence:
73
- - name: query
74
- dtype: string
75
- - name: results
76
- sequence:
77
- - name: title
78
- dtype: string
79
- - name: snippet
80
- dtype: string
81
- - name: nq_answer
82
- sequence: string
83
- - name: nq_doc_title
84
- dtype: string
85
  splits:
86
  - name: train
87
- num_bytes: 43538733
88
  num_examples: 10036
89
  - name: validation
90
- num_bytes: 15383368
91
  num_examples: 2002
92
- download_size: 19700900
93
- dataset_size: 58922101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94
  ---
95
 
96
  # Dataset Card for AmbigQA: Answering Ambiguous Open-domain Questions
 
21
  paperswithcode_id: ambigqa
22
  pretty_name: 'AmbigQA: Answering Ambiguous Open-domain Questions'
23
  dataset_info:
24
+ - config_name: full
25
  features:
26
  - name: id
27
  dtype: string
 
39
  dtype: string
40
  - name: answer
41
  sequence: string
42
+ - name: viewed_doc_titles
43
+ sequence: string
44
+ - name: used_queries
45
+ sequence:
46
+ - name: query
47
+ dtype: string
48
+ - name: results
49
+ sequence:
50
+ - name: title
51
+ dtype: string
52
+ - name: snippet
53
+ dtype: string
54
+ - name: nq_answer
55
+ sequence: string
56
+ - name: nq_doc_title
57
+ dtype: string
58
  splits:
59
  - name: train
60
+ num_bytes: 43538533
61
  num_examples: 10036
62
  - name: validation
63
+ num_bytes: 15383268
64
  num_examples: 2002
65
+ download_size: 30674462
66
+ dataset_size: 58921801
67
+ - config_name: light
68
  features:
69
  - name: id
70
  dtype: string
 
82
  dtype: string
83
  - name: answer
84
  sequence: string
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
  splits:
86
  - name: train
87
+ num_bytes: 2739628
88
  num_examples: 10036
89
  - name: validation
90
+ num_bytes: 805756
91
  num_examples: 2002
92
+ download_size: 1777867
93
+ dataset_size: 3545384
94
+ configs:
95
+ - config_name: full
96
+ data_files:
97
+ - split: train
98
+ path: full/train-*
99
+ - split: validation
100
+ path: full/validation-*
101
+ default: true
102
+ - config_name: light
103
+ data_files:
104
+ - split: train
105
+ path: light/train-*
106
+ - split: validation
107
+ path: light/validation-*
108
  ---
109
 
110
  # Dataset Card for AmbigQA: Answering Ambiguous Open-domain Questions
ambig_qa.py DELETED
@@ -1,150 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- """AmbigQA: Answering Ambiguous Open-domain Questions"""
17
-
18
-
19
- import json
20
- import os
21
-
22
- import datasets
23
-
24
-
25
- _CITATION = """\
26
- @inproceedings{ min2020ambigqa,
27
- title={ {A}mbig{QA}: Answering Ambiguous Open-domain Questions },
28
- author={ Min, Sewon and Michael, Julian and Hajishirzi, Hannaneh and Zettlemoyer, Luke },
29
- booktitle={ EMNLP },
30
- year={2020}
31
- }
32
- """
33
-
34
- _DESCRIPTION = """\
35
- AmbigNQ, a dataset covering 14,042 questions from NQ-open, an existing open-domain QA benchmark. We find that over half of the questions in NQ-open are ambiguous. The types of ambiguity are diverse and sometimes subtle, many of which are only apparent after examining evidence provided by a very large text corpus. AMBIGNQ, a dataset with
36
- 14,042 annotations on NQ-OPEN questions containing diverse types of ambiguity.
37
- We provide two distributions of our new dataset AmbigNQ: a full version with all annotation metadata and a light version with only inputs and outputs.
38
- """
39
- _HOMEPAGE = "https://nlp.cs.washington.edu/ambigqa/"
40
- _LICENSE = "CC BY-SA 3.0"
41
-
42
- _URL = "https://nlp.cs.washington.edu/ambigqa/data/"
43
- _URLS = {
44
- "light": _URL + "ambignq_light.zip",
45
- "full": _URL + "ambignq.zip",
46
- }
47
-
48
-
49
- class AmbigQa(datasets.GeneratorBasedBuilder):
50
- """AmbigQA dataset"""
51
-
52
- VERSION = datasets.Version("1.0.0")
53
- BUILDER_CONFIGS = [
54
- datasets.BuilderConfig(
55
- name="light",
56
- version=VERSION,
57
- description="AmbigNQ light version with only inputs and outputs",
58
- ),
59
- datasets.BuilderConfig(
60
- name="full",
61
- version=VERSION,
62
- description="AmbigNQ full version with all annotation metadata",
63
- ),
64
- ]
65
- DEFAULT_CONFIG_NAME = "full"
66
-
67
- def _info(self):
68
- features_dict = {
69
- "id": datasets.Value("string"),
70
- "question": datasets.Value("string"),
71
- "annotations": datasets.features.Sequence(
72
- {
73
- "type": datasets.Value("string"), # datasets.ClassLabel(names = ["singleAnswer","multipleQAs"])
74
- "answer": datasets.features.Sequence(datasets.Value("string")),
75
- "qaPairs": datasets.features.Sequence(
76
- {
77
- "question": datasets.Value("string"),
78
- "answer": datasets.features.Sequence(datasets.Value("string")),
79
- }
80
- ),
81
- }
82
- ),
83
- }
84
- if self.config.name == "full":
85
-
86
- detail_features = {
87
- "viewed_doc_titles": datasets.features.Sequence(datasets.Value("string")),
88
- "used_queries": datasets.features.Sequence(
89
- {
90
- "query": datasets.Value("string"),
91
- "results": datasets.features.Sequence(
92
- {
93
- "title": datasets.Value("string"),
94
- "snippet": datasets.Value("string"),
95
- }
96
- ),
97
- }
98
- ),
99
- "nq_answer": datasets.features.Sequence(datasets.Value("string")),
100
- "nq_doc_title": datasets.Value("string"),
101
- }
102
- features_dict.update(detail_features)
103
-
104
- features = datasets.Features(features_dict)
105
-
106
- return datasets.DatasetInfo(
107
- description=_DESCRIPTION,
108
- features=features,
109
- supervised_keys=None,
110
- homepage=_HOMEPAGE,
111
- license=_LICENSE,
112
- citation=_CITATION,
113
- )
114
-
115
- def _split_generators(self, dl_manager):
116
- """Returns SplitGenerators."""
117
- # download and extract URLs
118
- urls_to_download = _URLS
119
- downloaded_files = dl_manager.download_and_extract(urls_to_download)
120
-
121
- train_file_name = "train.json" if self.config.name == "full" else "train_light.json"
122
- dev_file_name = "dev.json" if self.config.name == "full" else "dev_light.json"
123
-
124
- return [
125
- datasets.SplitGenerator(
126
- name=datasets.Split.TRAIN,
127
- gen_kwargs={"filepath": os.path.join(downloaded_files[self.config.name], train_file_name)},
128
- ),
129
- datasets.SplitGenerator(
130
- name=datasets.Split.VALIDATION,
131
- gen_kwargs={"filepath": os.path.join(downloaded_files[self.config.name], dev_file_name)},
132
- ),
133
- ]
134
-
135
- def _generate_examples(self, filepath):
136
- """Yields examples."""
137
-
138
- with open(filepath, encoding="utf-8") as f:
139
- data = json.load(f)
140
- for example in data:
141
- id_ = example["id"]
142
- annotations = example["annotations"]
143
- # Add this because we cannot have None values (all keys in the schema should be present)
144
- for an in annotations:
145
- if "qaPairs" not in an:
146
- an["qaPairs"] = []
147
- if "answer" not in an:
148
- an["answer"] = []
149
-
150
- yield id_, example
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"light": {"description": "AmbigNQ, a dataset covering 14,042 questions from NQ-open, an existing open-domain QA benchmark. We find that over half of the questions in NQ-open are ambiguous. The types of ambiguity are diverse and sometimes subtle, many of which are only apparent after examining evidence provided by a very large text corpus. AMBIGNQ, a dataset with\n14,042 annotations on NQ-OPEN questions containing diverse types of ambiguity.\nWe provide two distributions of our new dataset AmbigNQ: a full version with all annotation metadata and a light version with only inputs and outputs.\n", "citation": "@inproceedings{ min2020ambigqa,\n title={ {A}mbig{QA}: Answering Ambiguous Open-domain Questions },\n author={ Min, Sewon and Michael, Julian and Hajishirzi, Hannaneh and Zettlemoyer, Luke },\n booktitle={ EMNLP },\n year={2020}\n}\n", "homepage": "https://nlp.cs.washington.edu/ambigqa/", "license": "CC BY-SA 3.0", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "annotations": {"feature": {"type": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "qaPairs": {"feature": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "ambig_qa", "config_name": "light", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2739732, "num_examples": 10036, "dataset_name": "ambig_qa"}, "validation": {"name": "validation", "num_bytes": 805808, "num_examples": 2002, "dataset_name": "ambig_qa"}}, "download_checksums": {"https://nlp.cs.washington.edu/ambigqa/data/ambignq_light.zip": {"num_bytes": 1061383, "checksum": "3f5dada69dec05cef1533a64945cd7bafde1aa94b0cdd6fa9a22f881206220db"}, "https://nlp.cs.washington.edu/ambigqa/data/ambignq.zip": {"num_bytes": 18639517, "checksum": "e85cec5909f076c6f584322c7f05cae44dcacaec93758c110a26fcceaa8da0ce"}}, "download_size": 19700900, "post_processing_size": null, "dataset_size": 3545540, "size_in_bytes": 23246440}, "full": {"description": "AmbigNQ, a dataset covering 14,042 questions from NQ-open, an existing open-domain QA benchmark. We find that over half of the questions in NQ-open are ambiguous. The types of ambiguity are diverse and sometimes subtle, many of which are only apparent after examining evidence provided by a very large text corpus. AMBIGNQ, a dataset with\n14,042 annotations on NQ-OPEN questions containing diverse types of ambiguity.\nWe provide two distributions of our new dataset AmbigNQ: a full version with all annotation metadata and a light version with only inputs and outputs.\n", "citation": "@inproceedings{ min2020ambigqa,\n title={ {A}mbig{QA}: Answering Ambiguous Open-domain Questions },\n author={ Min, Sewon and Michael, Julian and Hajishirzi, Hannaneh and Zettlemoyer, Luke },\n booktitle={ EMNLP },\n year={2020}\n}\n", "homepage": "https://nlp.cs.washington.edu/ambigqa/", "license": "CC BY-SA 3.0", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "annotations": {"feature": {"type": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "qaPairs": {"feature": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}, "viewed_doc_titles": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "used_queries": {"feature": {"query": {"dtype": "string", "id": null, "_type": "Value"}, "results": {"feature": {"title": {"dtype": "string", "id": null, "_type": "Value"}, "snippet": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}, "nq_answer": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "nq_doc_title": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "ambig_qa", "config_name": "full", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 43538733, "num_examples": 10036, "dataset_name": "ambig_qa"}, "validation": {"name": "validation", "num_bytes": 15383368, "num_examples": 2002, "dataset_name": "ambig_qa"}}, "download_checksums": {"https://nlp.cs.washington.edu/ambigqa/data/ambignq_light.zip": {"num_bytes": 1061383, "checksum": "3f5dada69dec05cef1533a64945cd7bafde1aa94b0cdd6fa9a22f881206220db"}, "https://nlp.cs.washington.edu/ambigqa/data/ambignq.zip": {"num_bytes": 18639517, "checksum": "e85cec5909f076c6f584322c7f05cae44dcacaec93758c110a26fcceaa8da0ce"}}, "download_size": 19700900, "post_processing_size": null, "dataset_size": 58922101, "size_in_bytes": 78623001}}
 
 
full/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d95567d551a8a3101b846f184320f0cbeaecf24aca7d2acf29fbb7c54e2951f0
3
+ size 23476142
full/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc99e779bbfc3049d0f42aaf90eccc055146dd4096d68950d87568215f2a001d
3
+ size 7198320
light/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7876a94a06706dd904b32f66aa0883301c6b3906991cb5fb4db7d820f96a7c95
3
+ size 1411343
light/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bdb0ad1c39e6df47372d38c9b82505d8d790053cd736d497fb7c387c2223121f
3
+ size 366524