Datasets:
shibing624
commited on
Commit
•
f70f39d
1
Parent(s):
0a02f7a
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,134 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: cc-by-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
annotations_creators:
|
3 |
+
- shibing624
|
4 |
+
language_creators:
|
5 |
+
- shibing624
|
6 |
+
language:
|
7 |
+
- zh
|
8 |
license: cc-by-4.0
|
9 |
+
multilinguality:
|
10 |
+
- monolingual
|
11 |
+
size_categories:
|
12 |
+
- 1M<n<10M
|
13 |
+
source_datasets:
|
14 |
+
- https://huggingface.co/datasets
|
15 |
+
task_categories:
|
16 |
+
- text-classification
|
17 |
+
task_ids:
|
18 |
+
- natural-language-inference
|
19 |
+
- semantic-similarity-scoring
|
20 |
+
- text-scoring
|
21 |
+
paperswithcode_id: snli
|
22 |
+
pretty_name: Stanford Natural Language Inference
|
23 |
---
|
24 |
+
# Dataset Card for SNLI_zh
|
25 |
+
|
26 |
+
## Dataset Description
|
27 |
+
- **Repository:** [Chinese NLI dataset](https://github.com/shibing624/text2vec)
|
28 |
+
- **Dataset:** [zh NLI](https://huggingface.co/datasets/shibing624/nli-zh-all)
|
29 |
+
- **Size of downloaded dataset files:** 4.7 GB
|
30 |
+
- **Total amount of disk used:** 4.7 GB
|
31 |
+
### Dataset Summary
|
32 |
+
|
33 |
+
中文自然语言推理(NLI)数据合集(nli-zh-all)
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
### Supported Tasks and Leaderboards
|
38 |
+
|
39 |
+
Supported Tasks: 支持中文文本匹配任务,文本相似度计算等相关任务。
|
40 |
+
|
41 |
+
中文匹配任务的结果目前在顶会paper上出现较少,我罗列一个我自己训练的结果:
|
42 |
+
|
43 |
+
**Leaderboard:** [NLI_zh leaderboard](https://github.com/shibing624/text2vec)
|
44 |
+
|
45 |
+
### Languages
|
46 |
+
|
47 |
+
数据集均是简体中文文本。
|
48 |
+
|
49 |
+
## Dataset Structure
|
50 |
+
### Data Instances
|
51 |
+
An example of 'train' looks as follows.
|
52 |
+
```
|
53 |
+
{"text1":"借款后多长时间给打电话","text2":"借款后多久打电话啊","label":1}
|
54 |
+
{"text1":"没看到微粒贷","text2":"我借那么久也没有提升啊","label":0}
|
55 |
+
```
|
56 |
+
|
57 |
+
### Data Fields
|
58 |
+
The data fields are the same among all splits.
|
59 |
+
|
60 |
+
- `text1`: a `string` feature.
|
61 |
+
- `text2`: a `string` feature.
|
62 |
+
- `label`: a classification label, with possible values including entailment(1), contradiction(0)。
|
63 |
+
|
64 |
+
### Data Splits
|
65 |
+
|
66 |
+
after remove None and len(text) < 1 data:
|
67 |
+
```shell
|
68 |
+
|
69 |
+
$ wc -l nli-zh-all/*
|
70 |
+
48818 nli-zh-all/alpaca_gpt4-train.jsonl
|
71 |
+
5000 nli-zh-all/amazon_reviews-train.jsonl
|
72 |
+
519255 nli-zh-all/belle-train.jsonl
|
73 |
+
16000 nli-zh-all/cblue_chip_sts-train.jsonl
|
74 |
+
549326 nli-zh-all/chatmed_consult-train.jsonl
|
75 |
+
10142 nli-zh-all/cmrc2018-train.jsonl
|
76 |
+
395927 nli-zh-all/csl-train.jsonl
|
77 |
+
50000 nli-zh-all/dureader_robust-train.jsonl
|
78 |
+
709761 nli-zh-all/firefly-train.jsonl
|
79 |
+
9568 nli-zh-all/mlqa-train.jsonl
|
80 |
+
455875 nli-zh-all/nli_zh-train.jsonl
|
81 |
+
50486 nli-zh-all/ocnli-train.jsonl
|
82 |
+
2678694 nli-zh-all/simclue-train.jsonl
|
83 |
+
419402 nli-zh-all/snli_zh-train.jsonl
|
84 |
+
3024 nli-zh-all/webqa-train.jsonl
|
85 |
+
1213780 nli-zh-all/wiki_atomic_edits-train.jsonl
|
86 |
+
93404 nli-zh-all/xlsum-train.jsonl
|
87 |
+
1006218 nli-zh-all/zhihu_kol-train.jsonl
|
88 |
+
8234680 total
|
89 |
+
|
90 |
+
```
|
91 |
+
|
92 |
+
### Data Length
|
93 |
+
|
94 |
+
![len](https://huggingface.co/datasets/shibing624/nli-zh-all/resolve/main/nli-zh-all-len.png)
|
95 |
+
|
96 |
+
## Dataset Creation
|
97 |
+
### Curation Rationale
|
98 |
+
受[m3e-base](https://huggingface.co/moka-ai/m3e-base#M3E%E6%95%B0%E6%8D%AE%E9%9B%86)启发,合并了中文高质量NLI(natural langauge inference)数据集,
|
99 |
+
这里把这个数据集上传到huggingface的datasets,方便大家使用。
|
100 |
+
### Source Data
|
101 |
+
#### Initial Data Collection and Normalization
|
102 |
+
#### Who are the source language producers?
|
103 |
+
数据集的版权归原作者所有,使用各数据集时请尊重原数据集的版权。
|
104 |
+
|
105 |
+
- SNLI:
|
106 |
+
@inproceedings{snli:emnlp2015,
|
107 |
+
Author = {Bowman, Samuel R. and Angeli, Gabor and Potts, Christopher, and Manning, Christopher D.},
|
108 |
+
Booktitle = {Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
|
109 |
+
Publisher = {Association for Computational Linguistics},
|
110 |
+
Title = {A large annotated corpus for learning natural language inference},
|
111 |
+
Year = {2015}
|
112 |
+
}
|
113 |
+
|
114 |
+
#### Who are the annotators?
|
115 |
+
原作者。
|
116 |
+
|
117 |
+
|
118 |
+
### Social Impact of Dataset
|
119 |
+
This dataset was developed as a benchmark for evaluating representational systems for text, especially including those induced by representation learning methods, in the task of predicting truth conditions in a given context.
|
120 |
+
|
121 |
+
Systems that are successful at such a task may be more successful in modeling semantic representations.
|
122 |
+
|
123 |
+
|
124 |
+
### Licensing Information
|
125 |
+
|
126 |
+
for reasearch
|
127 |
+
|
128 |
+
用于学术研究
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
### Contributions
|
133 |
+
|
134 |
+
[shibing624](https://github.com/shibing624) add this dataset.
|