""" --> this code takes use of URLFetcher.py and fetches the text data from each of the pages --> saves it in a .txt file --> voila!! """ import os import json os.chdir('D:/Machine Learning/SLM-Project/') query_file = 'Data Collection/webscrapper/search_queries.json' out_file = f'Data/webscrapped data/britannica_output.txt' max_limit = 10 with open(query_file, 'r') as file: search_queries = json.load(file) from tqdm import tqdm from URLFetcher import BritannicaUrls scrape = BritannicaUrls(search_queries=search_queries, max_limit=10) with tqdm(total=len(search_queries) * max_limit, desc="Generating URL snippets: ") as pbar: url_snippets = scrape.generate_urls(progress_bar=pbar) print('fetched snippets successfully!') print(f"total snippets: {len(url_snippets)}") import requests from bs4 import BeautifulSoup import re def text_extractor(url_snippet): target_url = f"https://britannica.com{url_snippet}" r = requests.get(target_url, headers=scrape.headers) if r.status_code == 200: soup = BeautifulSoup(r.content, 'html.parser') paragraphs = soup.find_all('p') # extract text content from each
tag, excluding specified text page = '\n'.join([p.get_text() for p in paragraphs if "Our editors will review what you’ve submitted and determine whether to revise the article." not in p.get_text()]) page = re.sub('&\w+;','',page) return page if __name__ == '__main__': with tqdm(total=len(url_snippets), desc="Scrapping in progress: ") as pbar: for snippets in url_snippets: page = text_extractor(snippets) with open(out_file, 'a', encoding='utf-8') as file: file.write(page) pbar.update(1)