livedoor-news-corpus / livedoor_news_corpus.py
shunk031's picture
Initialize (#1)
cbbad45 unverified
raw
history blame
5.91 kB
import logging
import pathlib
from typing import Dict, List, Union, Optional
import random
import datasets as ds
import math
logger = logging.getLogger(__name__)
_CITATION = """\
https://www.rondhuit.com/download.html#ldcc
"""
_DESCRIPTION = """\
本コーパスは、NHN Japan株式会社が運営する「livedoor ニュース」のうち、下記のクリエイティブ・コモンズライセンスが適用されるニュース記事を収集し、可能な限りHTMLタグを取り除いて作成したものです。
"""
_HOMEPAGE = "https://www.rondhuit.com/download.html#ldcc"
_LICENSE = """\
各記事ファイルにはクリエイティブ・コモンズライセンス「表示 – 改変禁止」が適用されます。 クレジット表示についてはニュースカテゴリにより異なるため、ダウンロードしたファイルを展開したサブディレクトリにあるそれぞれの LICENSE.txt をご覧ください。 livedoor はNHN Japan株式会社の登録商標です。
"""
_DOWNLOAD_URL = "https://www.rondhuit.com/download/ldcc-20140209.tar.gz"
class LivedoorNewsCorpusConfig(ds.BuilderConfig):
def __init__(
self,
train_ratio: float = 0.8,
val_ratio: float = 0.1,
test_ratio: float = 0.1,
shuffle: bool = False,
random_state: int = 0,
name: str = "default",
version: Optional[Union[ds.utils.Version, str]] = ds.utils.Version("0.0.0"),
data_dir: Optional[str] = None,
data_files: Optional[ds.data_files.DataFilesDict] = None,
description: Optional[str] = None,
) -> None:
super().__init__(
name=name,
version=version,
data_dir=data_dir,
data_files=data_files,
description=description,
)
assert train_ratio + val_ratio + test_ratio == 1.0
self.train_ratio = train_ratio
self.val_ratio = val_ratio
self.test_ratio = test_ratio
self.shuffle = shuffle
self.random_state = random_state
class LivedoorNewsCorpusDataset(ds.GeneratorBasedBuilder):
VERSION = ds.Version("1.0.0") # type: ignore
BUILDER_CONFIG_CLASS = LivedoorNewsCorpusConfig # type: ignore
BUILDER_CONFIGS = [
LivedoorNewsCorpusConfig(
version=VERSION, # type: ignore
description="Livedoor ニュースコーパス",
)
]
def _info(self) -> ds.DatasetInfo:
features = ds.Features(
{
"url": ds.Value("string"),
"date": ds.Value("string"),
"title": ds.Value("string"),
"content": ds.Value("string"),
"category": ds.ClassLabel(
names=[
"movie-enter",
"it-life-hack",
"kaden-channel",
"topic-news",
"livedoor-homme",
"peachy",
"sports-watch",
"dokujo-tsushin",
"smax",
]
),
}
)
return ds.DatasetInfo(
description=_DESCRIPTION,
citation=_CITATION,
homepage=_HOMEPAGE,
license=_LICENSE,
features=features,
)
def _split_generators(self, dl_manager: ds.DownloadManager):
dataset_root = dl_manager.download_and_extract(_DOWNLOAD_URL)
dataset_root_dir = pathlib.Path(dataset_root) / "text"
article_paths = list(dataset_root_dir.glob("*/**/*.txt"))
article_paths = list(filter(lambda p: p.name != "LICENSE.txt", article_paths))
if self.config.shuffle: # type: ignore
random.seed(self.config.random_state) # type: ignore
random.shuffle(article_paths)
num_articles = len(article_paths)
num_tng = math.ceil(num_articles * self.config.train_ratio) # type: ignore
num_val = math.ceil(num_articles * self.config.val_ratio) # type: ignore
num_tst = math.ceil(num_articles * self.config.test_ratio) # type: ignore
tng_articles = article_paths[:num_tng]
val_articles = article_paths[num_tng : num_tng + num_val]
tst_articles = article_paths[num_tng + num_val : num_tng + num_val + num_tst]
assert len(tng_articles) + len(val_articles) + len(tst_articles) == num_articles
return [
ds.SplitGenerator(
name=ds.Split.TRAIN, # type: ignore
gen_kwargs={"article_paths": tng_articles},
),
ds.SplitGenerator(
name=ds.Split.VALIDATION, # type: ignore
gen_kwargs={"article_paths": val_articles},
),
ds.SplitGenerator(
name=ds.Split.TEST, # type: ignore
gen_kwargs={"article_paths": tst_articles},
),
]
def parse_article(self, article_data: List[str]) -> Dict[str, str]:
article_url = article_data[0]
article_date = article_data[1]
article_title = article_data[2]
article_content = " ".join(article_data[3:])
example_dict = {
"url": article_url,
"date": article_date,
"title": article_title,
"content": article_content,
}
return example_dict
def _generate_examples(self, article_paths: List[pathlib.Path]): # type: ignore[override]
for i, article_path in enumerate(article_paths):
article_category = article_path.parent.name
with open(article_path, "r") as rf:
article_data = [line.strip() for line in rf]
example_dict = self.parse_article(article_data=article_data)
example_dict["category"] = article_category
yield i, example_dict