Datasets:
File size: 1,471 Bytes
231a52f b1be79d b6f20f7 b1be79d a180b7d b1be79d 015ac88 b1be79d 7e75aa2 edfc230 7e75aa2 763cee4 7e75aa2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
multilinguality:
- monolingual
pretty_name: 'probability_words_nli'
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- text-classification
- multiple-choice
- question-answering
task_ids:
- open-domain-qa
- multiple-choice-qa
- natural-language-inference
tags:
- wep
- words of estimative probability
- probability
- logical reasoning
- soft logic
- nli
- natural-language-inference
- reasoning
- logic
---
# Dataset accompanying the "Probing neural language models for understanding of words of estimative probability" article
This dataset tests the capabilities of language models to correctly capture the meaning of words denoting probabilities (WEP). We used probabilitic soft logic to combine probabilistic statements expressed with WEP (WEP-Reaosning) and we also used the UNLI dataset (https://nlp.jhu.edu/unli/) to directly check whether models can detect the WEP matching human-annotated probabilities.
The dataset can be used as natural langauge inference data (context, premise, label) or multiple choice question answering (context,valid_hypothesis, invalid_hypothesis).
```bib
@article{sileo2022probing,
title={Probing neural language models for understanding of words of estimative probability},
author={Sileo, Damien and Moens, Marie-Francine},
journal={arXiv preprint arXiv:2211.03358},
year={2022}
}
``` |