Create new file
Browse files- wikimedqa.py +131 -0
wikimedqa.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
|
18 |
+
|
19 |
+
import csv
|
20 |
+
import os
|
21 |
+
import textwrap
|
22 |
+
import numpy as np
|
23 |
+
import datasets
|
24 |
+
import pandas as pd
|
25 |
+
|
26 |
+
|
27 |
+
_CITATION = """\
|
28 |
+
Anonymous submission
|
29 |
+
"""
|
30 |
+
|
31 |
+
_DESCRIPTION = """\
|
32 |
+
Anonymous submission
|
33 |
+
"""
|
34 |
+
|
35 |
+
URL = 'https://sileod.s3.eu-west-3.amazonaws.com/wikimedqa/'
|
36 |
+
|
37 |
+
|
38 |
+
class WikiMedQAConfig(datasets.BuilderConfig):
|
39 |
+
"""BuilderConfig for WikiMedQA."""
|
40 |
+
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
data_dir,
|
44 |
+
label_classes=None,
|
45 |
+
process_label=lambda x: x,
|
46 |
+
**kwargs,
|
47 |
+
):
|
48 |
+
|
49 |
+
super(WikiMedQAConfig, self).__init__(version=datasets.Version("1.0.5", ""), **kwargs)
|
50 |
+
self.text_features = {k:k for k in ['text']+[f'option_{i}' for i in range(8)]}
|
51 |
+
self.label_column = 'label'
|
52 |
+
self.label_classes = list('01234567')
|
53 |
+
self.data_url = URL
|
54 |
+
self.url=URL
|
55 |
+
self.data_dir=data_dir
|
56 |
+
self.citation = _CITATION
|
57 |
+
self.process_label = process_label
|
58 |
+
|
59 |
+
|
60 |
+
class WikiMedQA(datasets.GeneratorBasedBuilder):
|
61 |
+
"""Evaluation of word estimative of probability understanding"""
|
62 |
+
|
63 |
+
BUILDER_CONFIGS = [
|
64 |
+
WikiMedQAConfig(
|
65 |
+
name="medwiki",
|
66 |
+
data_dir="medwiki"),
|
67 |
+
WikiMedQAConfig(
|
68 |
+
name="wikem",
|
69 |
+
data_dir="wikem"),
|
70 |
+
WikiMedQAConfig(
|
71 |
+
name="wikidoc",
|
72 |
+
data_dir="wikidoc"),
|
73 |
+
]
|
74 |
+
|
75 |
+
def _info(self):
|
76 |
+
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()}
|
77 |
+
features["label"] = datasets.features.ClassLabel(names=self.config.label_classes)
|
78 |
+
features["idx"] = datasets.Value("int32")
|
79 |
+
|
80 |
+
return datasets.DatasetInfo(
|
81 |
+
description=_DESCRIPTION,
|
82 |
+
features=datasets.Features(features),
|
83 |
+
homepage=self.config.url,
|
84 |
+
citation=self.config.citation + "\n" + _CITATION,
|
85 |
+
)
|
86 |
+
def _split_generators(self, dl_manager):
|
87 |
+
|
88 |
+
data_dirs=[]
|
89 |
+
for split in ['train','validation','test']:
|
90 |
+
url=f'{URL}{self.config.data_dir}.csv'
|
91 |
+
print(url)
|
92 |
+
data_dirs+=[dl_manager.download(url)]
|
93 |
+
print(data_dirs)
|
94 |
+
return [
|
95 |
+
datasets.SplitGenerator(
|
96 |
+
name=datasets.Split.TRAIN,
|
97 |
+
gen_kwargs={
|
98 |
+
"data_file": data_dirs[0],
|
99 |
+
"split": "train",
|
100 |
+
},
|
101 |
+
),
|
102 |
+
datasets.SplitGenerator(
|
103 |
+
name=datasets.Split.VALIDATION,
|
104 |
+
gen_kwargs={
|
105 |
+
"data_file": data_dirs[1],
|
106 |
+
"split": "dev",
|
107 |
+
},
|
108 |
+
),
|
109 |
+
datasets.SplitGenerator(
|
110 |
+
name=datasets.Split.TEST,
|
111 |
+
gen_kwargs={
|
112 |
+
"data_file": data_dirs[2],
|
113 |
+
"split": "test",
|
114 |
+
},
|
115 |
+
),
|
116 |
+
]
|
117 |
+
|
118 |
+
def _generate_examples(self, data_file, split):
|
119 |
+
df = pd.read_csv(data_file)
|
120 |
+
df=df[['text','options','label']]
|
121 |
+
train, dev, test = np.split(df.sample(frac=1, random_state=42),
|
122 |
+
[int(.9*len(df)), int(.95*len(df))])
|
123 |
+
df=eval(split)
|
124 |
+
df['options']=df['options'].map(eval)
|
125 |
+
for i in range(8):
|
126 |
+
df[f'option_{i}']=df.options.map(lambda x:x[i])
|
127 |
+
del df['options']
|
128 |
+
df['idx']=df.index
|
129 |
+
for idx, example in df.iterrows():
|
130 |
+
yield idx, dict(example)
|
131 |
+
|