# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import csv import os import textwrap import numpy as np import datasets import pandas as pd _CITATION = """\ Anonymous submission """ _DESCRIPTION = """\ Anonymous submission """ URL = 'https://sileod.s3.eu-west-3.amazonaws.com/wikimedqa/' class WikiMedQAConfig(datasets.BuilderConfig): """BuilderConfig for WikiMedQA.""" def __init__( self, data_dir, label_classes=None, process_label=lambda x: x, **kwargs, ): super(WikiMedQAConfig, self).__init__(version=datasets.Version("1.0.5", ""), **kwargs) self.text_features = {k:k for k in ['text']+[f'option_{i}' for i in range(8)]} self.label_column = 'label' self.label_classes = list('01234567') self.data_url = URL self.url=URL self.data_dir=data_dir self.citation = _CITATION self.process_label = process_label class WikiMedQA(datasets.GeneratorBasedBuilder): """Evaluation of word estimative of probability understanding""" BUILDER_CONFIGS = [ WikiMedQAConfig( name="medwiki", data_dir="medwiki"), WikiMedQAConfig( name="wikem", data_dir="wikem"), WikiMedQAConfig( name="wikidoc", data_dir="wikidoc"), ] def _info(self): features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()} features["label"] = datasets.features.ClassLabel(names=self.config.label_classes) features["idx"] = datasets.Value("int32") return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features(features), homepage=self.config.url, citation=self.config.citation + "\n" + _CITATION, ) def _split_generators(self, dl_manager): data_dirs=[] for split in ['train','validation','test']: url=f'{URL}{self.config.data_dir}.csv' print(url) data_dirs+=[dl_manager.download(url)] print(data_dirs) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_file": data_dirs[0], "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "data_file": data_dirs[1], "split": "dev", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "data_file": data_dirs[2], "split": "test", }, ), ] def _generate_examples(self, data_file, split): df = pd.read_csv(data_file) df=df[['text','options','label']] train, dev, test = np.split(df.sample(frac=1, random_state=42), [int(.9*len(df)), int(.95*len(df))]) df=eval(split) df['options']=df['options'].map(eval) for i in range(8): df[f'option_{i}']=df.options.map(lambda x:x[i]) del df['options'] df['idx']=df.index for idx, example in df.iterrows(): yield idx, dict(example)