bakrianoo commited on
Commit
8652912
1 Parent(s): 17949b7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md CHANGED
@@ -35,4 +35,92 @@ configs:
35
  path: data/s3_multilingual_1-*
36
  - split: s4_multilingual_2
37
  path: data/s4_multilingual_2-*
 
 
 
 
 
 
 
 
38
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  path: data/s3_multilingual_1-*
36
  - split: s4_multilingual_2
37
  path: data/s4_multilingual_2-*
38
+ license: apache-2.0
39
+ task_categories:
40
+ - sentence-similarity
41
+ language:
42
+ - ar
43
+ - en
44
+ size_categories:
45
+ - 10K<n<100K
46
  ---
47
+
48
+ # Silma STS Arabic/English Dataset - v1.0
49
+
50
+ ## Overview
51
+
52
+ The **Silma STS Arabic/English Dataset - v1.0** is a dataset designed for training and evaluating sentence embeddings for Arabic and English tasks. It consists of five different splits that cover monolingual and multilingual sentence pairs, with human-annotated similarity scores. The dataset includes both Arabic-to-Arabic and English-to-English pairs, as well as cross-lingual Arabic-English pairs, making it a valuable resource for multilingual and cross-lingual semantic similarity tasks.
53
+
54
+ ## Dataset Structure
55
+
56
+ The dataset is divided into five splits, each containing sentence pairs and similarity scores.
57
+
58
+ ### Split 1: ar_ar
59
+ - **Description:** Contains Arabic-to-Arabic sentence pairs with similarity scores.
60
+ - **Size:** 11,512 examples
61
+ - **JSON Sample:**
62
+ ```json
63
+ {
64
+ "sentence1": "رجلين يلعبان الشطرنج",
65
+ "sentence2": "ثلاثة رجال يلعبون الشطرنج",
66
+ "score": 0.52,
67
+ "langs": "ar-ar"
68
+ }
69
+
70
+ ### Split 2: en_en
71
+ - **Description:** Contains English-to-English sentence pairs with similarity scores.
72
+ - **Size:** 11,512 examples
73
+ - **JSON Sample:**
74
+ ```json
75
+ {
76
+ "sentence1": "A plane is taking off.",
77
+ "sentence2": "An air plane is taking off.",
78
+ "score": 1.0
79
+ }
80
+
81
+ ### Split 3: multilingual_1
82
+ - **Description:** Contains sentence pairs from both Arabic and English, with similarity scores. The sentences are aligned cross-lingually.
83
+ - **Size:** 5,756 examples
84
+ - **JSON Sample:**
85
+ ```json
86
+ {
87
+ "sentence1": "The man is playing the guitar. | الرجل يعزف على الغيتار",
88
+ "sentence2": "The man is playing the piano. | الرجل يعزف على البيانو",
89
+ "score": 0.32
90
+ }
91
+
92
+ ### Split 4: multilingual_2
93
+ - **Description:** Similar to Split 3, but with reversed language pairs.
94
+ - **Size:** 5,756 examples
95
+ - **JSON Sample:**
96
+ ```json
97
+ {
98
+ "sentence1": "رجل يدخن | A man is smoking.",
99
+ "sentence2": "رجل يتزلج | A man is skating.",
100
+ "score": 0.1
101
+ }
102
+
103
+ ## Column Descriptions
104
+
105
+ Each split in the dataset contains the following columns:
106
+
107
+ - *sentence1:* The first sentence in the pair. It can be in Arabic or English depending on the split.
108
+ - *sentence2:* The second sentence in the pair. It can also be in Arabic or English depending on the split.
109
+ - *score:* A floating-point number between 0 and 1 representing the semantic similarity between the two sentences, where 1 indicates maximum similarity.
110
+ - *langs:* Indicates the language pair of the sentences. The possible values are:
111
+ - ar-ar (Arabic-Arabic)
112
+ - en-en (English-English)
113
+ - Multilingual-1 (Multilingual, English-Arabic)
114
+ - Multilingual-2 (Multilingual, Arabic-English)
115
+
116
+ ## Use Cases
117
+
118
+ The **Silma STS Arabic/English Dataset - v1.0** can be used in various NLP tasks, including but not limited to:
119
+
120
+ 1. **Sentence Embedding Training:** The dataset is well-suited for training models that generate sentence embeddings, enabling effective comparison of sentence-level semantics in both Arabic and English.
121
+ 2. **Multilingual and Cross-Lingual STS:** This dataset can be used for evaluating the performance of multilingual and cross-lingual sentence transformers, as it includes both monolingual and multilingual sentence pairs.
122
+ 3. **Semantic Similarity Tasks:** The dataset can be utilized in semantic similarity benchmarks, particularly for Arabic and English language pairs.
123
+ 4. **Cross-Lingual Transfer Learning:** The multilingual sentence pairs provide a good opportunity for training models in cross-lingual transfer learning, where knowledge from one language can be transferred to another.
124
+
125
+ This dataset is a useful resource for researchers and developers working on NLP tasks that involve sentence semantics across different languages, especially for Arabic and English.
126
+