Datasets:

Modalities:
Text
Languages:
Chinese
ArXiv:
Libraries:
Datasets
License:
File size: 7,235 Bytes
f9b841a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49f9a08
f9b841a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The PersonalDialog dataset is a large-scale multi-turn Chinese dialogue dataset containing various traits from a large number of speakers.
We are releasing about 5M sessions of carefully filtered dialogues.
Each utterance in PersonalDialog is associated with a speaker marked with traits like Gender, Location, Interest Tags.
"""

import json

import datasets


_CITATION = """\
@article{zheng2019personalized,
  title   = {Personalized dialogue generation with diversified traits},
  author  = {Zheng, Yinhe and Chen, Guanyi and Huang, Minlie and Liu, Song and Zhu, Xuan},
  journal = {arXiv preprint arXiv:1901.09672},
  year    = {2019}
}

@inproceedings{zheng2020pre,
  title     = {A pre-training based personalized dialogue generation model with persona-sparse data},
  author    = {Zheng, Yinhe and Zhang, Rongsheng and Huang, Minlie and Mao, Xiaoxi},
  booktitle = {Proceedings of the AAAI Conference on Artificial Intelligence},
  volume    = {34},
  number    = {05},
  pages     = {9693--9700},
  year      = {2020}
}
"""

_DESCRIPTION = """\
The PersonalDialog dataset is a large-scale multi-turn Chinese dialogue dataset containing various traits from a large number of speakers.
We are releasing about 5M sessions of carefully filtered dialogues.
Each utterance in PersonalDialog is associated with a speaker marked with traits like Gender, Location, Interest Tags.
"""

_HOMEPAGE = "https://github.com/silverriver/PersonalDilaog"

_LICENSE = "MIT"

_URLS = {
    "valid": [
        "https://huggingface.co/datasets/silver/personal_dialog/resolve/main/dev_biased.jsonl.gz",
        "https://huggingface.co/datasets/silver/personal_dialog/resolve/main/dev_random.jsonl.gz",
    ],
    "train": "https://huggingface.co/datasets/silver/personal_dialog/resolve/main/dialogues_train.jsonl.gz",
    "test": [
        "https://huggingface.co/datasets/silver/personal_dialog/resolve/main/test_biased.jsonl.gz",
        "https://huggingface.co/datasets/silver/personal_dialog/resolve/main/test_random.jsonl.gz",
    ],
}


class PersonalDialog(datasets.GeneratorBasedBuilder):
    """Chinese Dialogues with Personal Traits."""

    VERSION = datasets.Version("1.0.0")

    def _info(self):
        features = datasets.Features(
            {
                "dialog": [datasets.Value("string")],
                "profile": [
                    {
                        "tag": [datasets.Value("string")],
                        "loc": datasets.Value("string"),
                        "gender": datasets.Value("string"),
                    }
                ],
                "uid": [datasets.Value("int32")],
                "responder_profile": {
                    "tag": [datasets.Value("string")],
                    "loc": datasets.Value("string"),
                    "gender": datasets.Value("string"),
                },
                "golden_response": datasets.Value("string"),
                "is_biased": datasets.Value("bool"),
            }
        )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls = _URLS
        data_dir = dl_manager.download_and_extract(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "data_files": [data_dir["train"]],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "data_files": [data_dir["valid"][0], data_dir["valid"][1]],
                    "split": "valid",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "data_files": [data_dir["test"][0], data_dir["test"][1]],
                    "split": "test",
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, data_files, split):
        id = 0
        for file_i, data_file in enumerate(data_files):
            with open(data_file, encoding="utf-8") as f:
                for line in f:
                    line = line.strip()
                    if len(line) == 0:
                        continue
                    line = json.loads(line)

                    profile = [
                        {"tag": i["tag"][0].split(";"), "loc": i["loc"], "gender": i["gender"]}
                        for i in line["profile"]
                    ]
                    dialog = [i[0] for i in line["dialog"]]

                    if split == "train":
                        yield id, {
                            "dialog": dialog,
                            "profile": profile,
                            "uid": line["uid"],
                            "responder_profile": None,
                            "golden_response": None,
                            "is_biased": None,
                        }
                    else:
                        yield id, {
                            "dialog": dialog,
                            "profile": profile,
                            "uid": line["uid"],
                            "responder_profile": {
                                "tag": line["responder_profile"]["tag"][0].split(";"),
                                "loc": line["responder_profile"]["loc"],
                                "gender": line["responder_profile"]["gender"],
                            },
                            "golden_response": line["golden_response"][0],
                            "is_biased": True if file_i == 0 else False,
                        }
                    id += 1