Datasets:
skt
/

Modalities:
Text
Formats:
json
Languages:
Korean
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 8,589 Bytes
5b49ee1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
810f0e4
 
5b49ee1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
810f0e4
 
5b49ee1
 
 
 
 
 
 
 
 
 
 
 
 
2eebf1d
5b49ee1
 
 
 
 
 
810f0e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b49ee1
 
 
 
 
 
 
 
 
 
810f0e4
5b49ee1
 
 
 
 
 
 
 
 
 
 
 
 
810f0e4
5b49ee1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
810f0e4
5b49ee1
810f0e4
 
 
 
 
 
5b49ee1
810f0e4
5b49ee1
 
810f0e4
 
 
 
 
 
 
 
 
 
 
 
5b49ee1
 
810f0e4
5b49ee1
810f0e4
 
 
 
 
 
 
5b49ee1
810f0e4
5b49ee1
 
810f0e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b49ee1
 
810f0e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b49ee1
810f0e4
 
 
 
 
5b49ee1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""Korean Balanced Evaluation of Significant Tasks"""


import csv

import pandas as pd

import datasets


_CITATAION = """\
TBD
"""

_DESCRIPTION = """\
    The dataset contains data for KoBEST dataset
"""

_URL = "https://github.com/SKT-LSL/KoBEST_datarepo/raw/main"


_DATA_URLS = {
    "boolq": {
        "train": _URL + "/v1.0/BoolQ/train.tsv",
        "dev": _URL + "/v1.0/BoolQ/dev.tsv",
        "test": _URL + "/v1.0/BoolQ/test.tsv",
    },
    "copa": {
        "train": _URL + "/v1.0/COPA/train.tsv",
        "dev": _URL + "/v1.0/COPA/dev.tsv",
        "test": _URL + "/v1.0/COPA/test.tsv",
    },
    "sentineg": {
        "train": _URL + "/v1.0/SentiNeg/train.tsv",
        "dev": _URL + "/v1.0/SentiNeg/dev.tsv",
        "test": _URL + "/v1.0/SentiNeg/test.tsv",
    },
    "hellaswag": {
        "train": _URL + "/v1.0/HellaSwag/train.tsv",
        "dev": _URL + "/v1.0/HellaSwag/dev.tsv",
        "test": _URL + "/v1.0/HellaSwag/test.tsv",
    },
    "wic": {
        "train": _URL + "/v1.0/WiC/train.tsv",
        "dev": _URL + "/v1.0/WiC/dev.tsv",
        "test": _URL + "/v1.0/WiC/test.tsv",
    },
}

_LICENSE = "CC-BY-SA-4.0"


class KoBESTConfig(datasets.BuilderConfig):
    """Config for building KoBEST"""

    def __init__(self, description, data_url, citation, url, **kwargs):
        """
        Args:
            description: `string`, brief description of the dataset
            data_url: `dictionary`, dict with url for each split of data.
            citation: `string`, citation for the dataset.
            url: `string`, url for information about the dataset.
            **kwrags: keyword arguments frowarded to super
        """
        super(KoBESTConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
        self.description = description
        self.data_url = data_url
        self.citation = citation
        self.url = url


# class KoBESTConfig(datasets.BuilderConfig):
#     """BuilderConfig for KoTEST."""
#
#     def __init__(
#         self,
#         features,
#         data_url,
#         file_map,
#         url,
#         **kwargs,
#     ):
#         """BuilderConfig for KoTEST."""
#
#         super(KoBESTConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
#         self.features = features
#         self.data_url = data_url
#         self.file_map = file_map
#         self.url = url


class KoBEST(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        KoBESTConfig(name=name, description=_DESCRIPTION, data_url=_DATA_URLS[name], citation=_CITATAION, url=_URL)
        for name in ["boolq", "copa", 'sentineg', 'hellaswag', 'wic']
    ]
    BUILDER_CONFIG_CLASS = KoBESTConfig

    def _info(self):
        features = {}
        if self.config.name == "boolq":
            labels = ["False", "True"]
            features["paragraph"] = datasets.Value("string")
            features["question"] = datasets.Value("string")
            features["label"] = datasets.features.ClassLabel(names=labels)

        if self.config.name == "copa":
            labels = ["alternative_1", "alternative_2"]
            features["premise"] = datasets.Value("string")
            features["question"] = datasets.Value("string")
            features["alternative_1"] = datasets.Value("string")
            features["alternative_2"] = datasets.Value("string")
            features["label"] = datasets.features.ClassLabel(names=labels)

        if self.config.name == "wic":
            labels = ["False", "True"]
            features["word"] = datasets.Value("string")
            features["context_1"] = datasets.Value("string")
            features["context_2"] = datasets.Value("string")
            features["label"] = datasets.features.ClassLabel(names=labels)

        if self.config.name == "hellaswag":
            labels = ["ending_1", "ending_2", "ending_3", "ending_4"]

            features["context"] = datasets.Value("string")
            features["ending_1"] = datasets.Value("string")
            features["ending_2"] = datasets.Value("string")
            features["ending_3"] = datasets.Value("string")
            features["ending_4"] = datasets.Value("string")
            features["label"] = datasets.features.ClassLabel(names=labels)

        if self.config.name == "sentineg":
            labels = ["negative", "positive"]
            features["sentence"] = datasets.Value("string")
            features["label"] = datasets.features.ClassLabel(names=labels)

        return datasets.DatasetInfo(
            description=_DESCRIPTION, features=datasets.Features(features), homepage=_URL, citation=_CITATAION
        )

    def _split_generators(self, dl_manager):

        train = dl_manager.download_and_extract(self.config.data_url["train"])
        dev = dl_manager.download_and_extract(self.config.data_url["dev"])
        test = dl_manager.download_and_extract(self.config.data_url["test"])

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train, "split": "train"}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": dev, "split": "dev"}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test, "split": "test"}),
        ]

    def _generate_examples(self, filepath, split):
        if self.config.name == "boolq":
            df = pd.read_csv(filepath, sep="\t")
            df = df.dropna()
            df = df[['Text', 'Question', 'Answer']]

            df = df.rename(columns={
                'Text': 'paragraph',
                'Question': 'question',
                'Answer': 'label',
            })
            df['label'] = [0 if str(s) == 'False' else 1 for s in df['label'].tolist()]

        elif self.config.name == "copa":
            df = pd.read_csv(filepath, sep="\t")
            df = df.dropna()
            df = df[['sentence', 'question', '1', '2', 'Answer']]

            df = df.rename(columns={
                'sentence': 'premise',
                'question': 'question',
                '1': 'alternative_1',
                '2': 'alternative_2',
                'Answer': 'label',
            })
            df['label'] = [i-1 for i in df['label'].tolist()]

        elif self.config.name == "wic":
            df = pd.read_csv(filepath, sep="\t")
            df = df.dropna()
            df = df[['Target', 'SENTENCE1', 'SENTENCE2', 'ANSWER']]

            df = df.rename(columns={
                'Target': 'word',
                'SENTENCE1': 'context_1',
                'SENTENCE2': 'context_2',
                'ANSWER': 'label',
            })
            df['label'] = [0 if str(s) == 'False' else 1 for s in df['label'].tolist()]

        elif self.config.name == "hellaswag":
            df = pd.read_csv(filepath, sep="\t")
            df = df.dropna()
            df = df[['context', 'choice1', 'choice2', 'choice3', 'choice4', 'label']]

            # for id_, row in df.iterrows():
            #     yield id_, {
            #         "context": str(row["context"]),
            #         "ending_1": str(row["choice1"]),
            #         "ending_2": str(int(row["choice2"])),
            #         "ending_3": str(int(row["choice3"])),
            #         "ending_4": str(int(row["choice4"])),
            #         "label": str(row["label"]),
            #     }
            #
            df = df.rename(columns={
                'context': 'context',
                'choice1': 'ending_1',
                'choice2': 'ending_2',
                'choice3': 'ending_3',
                'choice4': 'ending_4',
                'label': 'label',
            })

        elif self.config.name == "sentineg":
            df = pd.read_csv(filepath, sep="\t")
            df = df.dropna()
            df = df[['Text', 'Label']]

            # for id_, row in df.iterrows():
            #     yield id_, {
            #         "sentence": str(row["Text"]),
            #         "label": str(int(row["Label"])),
            #     }

            df = df.rename(columns={
                'Text': 'sentence',
                'Label': 'label',
            })

        else:
            raise NotImplementedError

        for id_, row in df.iterrows():
            features = {key: row[key] for key in row.keys()}
            yield id_, features


if __name__ == "__main__":
    for task in ['boolq', 'copa', 'wic', 'hellaswag', 'sentineg']:
        dataset = datasets.load_dataset("kobest_v1.py", task, ignore_verifications=True)
        print(dataset)
        print(dataset['train']['label'])