NimaBoscarino commited on
Commit
5427927
1 Parent(s): 369a1a9

Update LILA.py

Browse files
Files changed (1) hide show
  1. LILA.py +97 -1
LILA.py CHANGED
@@ -25,6 +25,102 @@ import pandas as pd
25
 
26
  import datasets
27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  # You can copy an official description
29
  _DESCRIPTION = """\
30
  LILA Camera Traps is an aggregate data set of images taken by camera traps, which are devices that automatically (e.g. via motion detection) capture images of wild animals to help ecological research.
@@ -804,7 +900,7 @@ class LILA(datasets.GeneratorBasedBuilder):
804
  description=_DESCRIPTION,
805
  features=features,
806
  homepage=_HOMEPAGE,
807
- citation=_CITATION,
808
  )
809
 
810
  def _split_generators(self, dl_manager):
 
25
 
26
  import datasets
27
 
28
+ _LILA_CITATIONS = {
29
+ "Caltech Camera Traps": """
30
+ @inproceedings{DBLP:conf/eccv/BeeryHP18,
31
+ author = {Sara Beery and
32
+ Grant Van Horn and
33
+ Pietro Perona},
34
+ title = {Recognition in Terra Incognita},
35
+ booktitle = {Computer Vision - {ECCV} 2018 - 15th European Conference, Munich,
36
+ Germany, September 8-14, 2018, Proceedings, Part {XVI}},
37
+ pages = {472--489},
38
+ year = {2018},
39
+ crossref = {DBLP:conf/eccv/2018-16},
40
+ url = {https://doi.org/10.1007/978-3-030-01270-0\_28},
41
+ doi = {10.1007/978-3-030-01270-0\_28},
42
+ timestamp = {Mon, 08 Oct 2018 17:08:07 +0200},
43
+ biburl = {https://dblp.org/rec/bib/conf/eccv/BeeryHP18},
44
+ bibsource = {dblp computer science bibliography, https://dblp.org}
45
+ }
46
+ """,
47
+ "ENA24": """
48
+ @article{yousif2019dynamic,
49
+ title={Dynamic Programming Selection of Object Proposals for Sequence-Level Animal Species Classification in the Wild},
50
+ author={Yousif, Hayder and Kays, Roland and He, Zhihai},
51
+ journal={IEEE Transactions on Circuits and Systems for Video Technology},
52
+ year={2019},
53
+ publisher={IEEE}
54
+ }
55
+ """,
56
+ "Missouri Camera Traps": """
57
+ @article{zhang2016animal,
58
+ title={Animal detection from highly cluttered natural scenes using spatiotemporal object region proposals and patch verification},
59
+ author={Zhang, Zhi and He, Zhihai and Cao, Guitao and Cao, Wenming},
60
+ journal={IEEE Transactions on Multimedia},
61
+ volume={18},
62
+ number={10},
63
+ pages={2079--2092},
64
+ year={2016},
65
+ publisher={IEEE}
66
+ }
67
+ """,
68
+ "NACTI": """
69
+ @article{tabak2019machine,
70
+ title={Machine learning to classify animal species in camera trap images: Applications in ecology},
71
+ author={Tabak, Michael A and Norouzzadeh, Mohammad S and Wolfson, David W and Sweeney, Steven J and VerCauteren, Kurt C and Snow, Nathan P and Halseth, Joseph M and Di Salvo, Paul A and Lewis, Jesse S and White, Michael D and others},
72
+ journal={Methods in Ecology and Evolution},
73
+ volume={10},
74
+ number={4},
75
+ pages={585--590},
76
+ year={2019},
77
+ publisher={Wiley Online Library}
78
+ }
79
+ """,
80
+ "WCS Camera Traps": "",
81
+ "Wellington Camera Traps": """
82
+ @article{anton2018monitoring,
83
+ title={Monitoring the mammalian fauna of urban areas using remote cameras and citizen science},
84
+ author={Anton, Victor and Hartley, Stephen and Geldenhuis, Andre and Wittmer, Heiko U},
85
+ journal={Journal of Urban Ecology},
86
+ volume={4},
87
+ number={1},
88
+ pages={juy002},
89
+ year={2018},
90
+ publisher={Oxford University Press}
91
+ }
92
+ """,
93
+ "Island Conservation Camera Traps": "",
94
+ "Channel Islands Camera Traps": "",
95
+ "Idaho Camera Traps": "",
96
+ "Snapshot Serengeti": """
97
+ @misc{dryad_5pt92,
98
+ title = {Data from: Snapshot Serengeti, high-frequency annotated camera trap images of 40 mammalian species in an African savanna},
99
+ author = {Swanson, AB and Kosmala, M and Lintott, CJ and Simpson, RJ and Smith, A and Packer, C},
100
+ year = {2015},
101
+ journal = {Scientific Data},
102
+ URL = {https://doi.org/10.5061/dryad.5pt92},
103
+ doi = {doi:10.5061/dryad.5pt92},
104
+ publisher = {Dryad Digital Repository}
105
+ }
106
+ """,
107
+ "Snapshot Karoo": "",
108
+ "Snapshot Kgalagadi": "",
109
+ "Snapshot Enonkishu": "",
110
+ "Snapshot Camdeboo": "",
111
+ "Snapshot Mountain Zebra": "",
112
+ "Snapshot Kruger": "",
113
+ "SWG Camera Traps": "",
114
+ "Orinoquia Camera Traps": """
115
+ @article{velez2022choosing,
116
+ title={Choosing an Appropriate Platform and Workflow for Processing Camera Trap Data using Artificial Intelligence},
117
+ author={V{\'e}lez, Juliana and Castiblanco-Camacho, Paula J and Tabak, Michael A and Chalmers, Carl and Fergus, Paul and Fieberg, John},
118
+ journal={arXiv preprint arXiv:2202.02283},
119
+ year={2022}
120
+ }
121
+ """,
122
+ }
123
+
124
  # You can copy an official description
125
  _DESCRIPTION = """\
126
  LILA Camera Traps is an aggregate data set of images taken by camera traps, which are devices that automatically (e.g. via motion detection) capture images of wild animals to help ecological research.
 
900
  description=_DESCRIPTION,
901
  features=features,
902
  homepage=_HOMEPAGE,
903
+ citation=_LILA_CITATIONS[self.config.name],
904
  )
905
 
906
  def _split_generators(self, dl_manager):