SMC / medlexsp /using_dataset_hugginface.py
inoid's picture
Upload 3 files
1cea235 verified
# -*- coding: utf-8 -*-
"""using_dataset_hugginface.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1soGxkZu4antYbYG23GioJ6zoSt_GhSNT
"""
"""**Hugginface loggin for push on Hub**"""
###
#
# Used bibliografy:
# https://huggingface.co/learn/nlp-course/chapter5/5
#
###
import os
import time
import math
from huggingface_hub import login
from datasets import load_dataset, concatenate_datasets
from functools import reduce
from pathlib import Path
import pandas as pd
import pathlib
import xml.etree.ElementTree as ET
# Load model directly
from transformers import AutoTokenizer, AutoModelForCausalLM
typeMedicalDictionary = {
'Nucleotide_Sequence':'Secuencia de Nucleotidos',
'Gene_or_Genome': 'Gen o Genoma',
'Professional_Society': 'Sociedad Profesional',
'Molecular_Biology_Research_Technique':'Técnica de Investigación de Biología Molecular',
'Occupation_or_Discipline':'Ocupacion o Disciplina',
'Natural_Phenomenon_or_Process':'Proceso o Fenómeno Natural',
'Bird':'Pájaro', 'Drug_Delivery_Device':'Dispositivo de entrega de medicamentos',
'Animal':'Animal', 'Temporal_Concept':'Concepto Temporal', 'Physiologic_Function':'Función Psicológica',
'Regulation_or_Law':'Ley o Regulacion', 'Mental_or_Behavioral_Dysfunction':'Disfunción mental o de comportamiento',
'Event':'Evento', 'Antibiotic':'Antibiótico', 'Family_Group':'Grupo Familiar', 'Chemical':'Quimico',
'Educational_Activity':'Actividad Educacional', 'Organism_Attribute':'Atributo organismo', 'Functional_Concept':'Concepto Funcional',
'Age_Group':'Grupo Etareo', 'Organic_Compound':'Compuesto orgánico', 'Human':'Humano', 'Health_Care_Activity':'Actividad de cuidado de salud',
'Mental_Process':'Proceso mental', 'Hormone':'Hormona', 'Experimental_Model_of_Disease':'Modelo experimental de una enfermedad',
'Fully_Formed_Anatomical_Structure':'Estructura anatómica completamente formada', 'Classification':'Clasificación', 'Food':'Comida', 'Amino_Acid_Peptide_or_Protein':'Aminoácido péptido o proteína',
'Injury_or_Poisoning':'Lesión o envenenamiento', 'Substance':'Sustancia', 'Organization':'Organizacion', 'Intellectual_Product':'Producto Intelectual', 'Behavior':'Comportamiento',
'Body_Part_Organ_or_Organ_Component':'Parte del cuerpo órgano o componente del órgano', 'Cell_or_Molecular_Dysfunction':'Disfunción celular o molecular', 'Fish':'Pescado', 'Vertebrate':'Vertebrado',
'Congenital_Abnormality':'Anormalidad congénita', 'Governmental_or_Regulatory_Activity':'Actividad gubernamental o regulatoria',
'Daily_or_Recreational_Activity':'Actividad diaria o recreacional', 'Hazardous_or_Poisonous_Substance':'Sustancia peligrosa o venenosa', 'Group_Attribute':'Atributo grupo', 'Immunologic_Factor':'Factor inmunológico', 'Laboratory_or_Test_Result':'Resultado de la prueba o laboratorio',
'Neoplastic_Process':'Proceso neoplásico', 'Phenomenon_or_Process':'Fenómeno o proceso', 'Cell_Component':'Componente celular', 'Health_Care_Related_Organization':'Organización relacionada con el cuidado dela_salud', 'Anatomical_Structure': 'Estructura anatómica', 'Chemical_Viewed_Structurally':'Química vista estructuralmente',
'Population_Group':'Grupo poblacional', 'Biologic_Function':'Función biológica', 'Biologically_Active_Substance':'Sustancia activa biologicamente', 'Clinical_Attribute':'Atributo clínico', 'Laboratory_Procedure':'Procedimiento de laboratorio', 'Fungus':'Hongo', 'Body_Space_or_Junction':'Espacio del cuerpo o unión', 'Finding':'Hallazgo', 'Spatial_Concept':'Concepto espacial',
'Quantitative_Concept':'Concepto cuantitativo', 'Archaeon':'Arqueón', 'Biomedical_Occupation_or_Discipline':'Ocupación o disciplina biomédica', 'Therapeutic_or_Preventive_Procedure':'Procedimiento terapéutico o preventivo', 'Organ_or_Tissue_Function': 'Función de órgano o tejido', 'Cell':'Célula', 'Organic_Chemical':'Orgánico químico',
'Human-caused_Phenomenon_or_Process':'Fenómeno o proceso causado por el humano', 'Body_System':'Sistema corporal', 'Sign_or_Symptom':'Signo o síntoma', 'Plant':'Planta', 'Virus':'Virus', 'Activity':'Actividad', 'Organism_Function':'Organismo Función', 'Molecular_Sequence':'Secuencia molecular', 'Steroid':'Esteroide', 'Reptile':'Reptil',
'Molecular_Function':'Función molecular', 'Professional_or_Occupational_Group':'Grupo profesional o ocupacional', 'Embryonic_Structure':'Estructura embrionaria', 'Organism':'Organismo', 'Anatomical_Abnormality':'Anormalidad anatómica', 'Patient_or_Disabled_Group':'Grupo de paciente o discapacitado', 'Qualitative_Concept':'Concepto cualitativo',
'Bacterium':'Bacteria', 'Idea_or_Concept':'Idea o concepto', 'Enzyme':'Enzima', 'Research_Device':'Dispositivo de investigación', 'Geographic_Area':'Área geográfica', 'Entity':'Entidad', 'Body_Location_or_Region':'Ubicación del cuerpo o región', 'Social_Behavior':'Comportamiento social', 'Self-help_or_Relief_Organization':'Organización de ayuda o alivio',
'Inorganic_Chemical':'Químico inorgánico', 'Body_Substance':'Sustancia corporal', 'Conceptual_Entity':'Entidad conceptual', 'Physical_Object':'Objeto físico',
'Mammal':'Mamífero', 'Manufactured_Object':'Objeto fabricado', 'Eukaryote':'Eucariota', 'Pathologic_Function':'Función patológica', 'Machine_Activity':'Actividad mecánica', 'Occupational_Activity':'Actividad ocupacional', 'Vitamin':'Vitamina', 'Research_Activity':'Actividad de investigación',
'Biomedical_or_Dental_Material':'Material biomédico o dental', 'Environmental_Effect_of_Humans':'Efecto ambiental de los humanos', 'Amino_Acid_Sequence':'Secuencia de aminoácidos', 'Clinical_Drug':'Fármaco clinico', 'Receptor':'Receptor', 'Diagnostic_Procedure':'Procedimiento diagnóstico',
'Pharmacologic_Substance':'Sustancia farmacológica', 'Medical_Device':'Dispositivo médico', 'Cell_Function':'Función celular', 'Nucleic_Acid_Nucleoside_or_Nucleotide':'Nucleósido o nucleósido de ácido nucleico', 'Language':'Idioma', 'Chemical_Viewed_Functionally':'Químico visto funcionalmente',
'Group':'Grupo', 'Tissue':'Tejido', 'Element_Ion_or_Isotope':'Elemento ion o isótopo', 'Individual_Behavior':'Comportamiento individual', 'Indicator_Reagent_or_Diagnostic_Aid':'Indicador reactivo o ayuda de diagnóstico', 'Genetic_Function':'Función genética', 'Acquired_Abnormality': 'Anormalidad adquirida', 'Disease_or_Syndrome':'Enfermedad o síndrome'
}
HF_TOKEN = ''
DATASET_TO_LOAD = 'bigbio/distemist'
DATASET_TO_UPDATE = 'somosnlp/spanish_medica_llm'
DATASET_SOURCE_ID = '13'
BASE_DIR = "SPACC" + os.sep + "SPACCC" + os.sep + "SPACCC" + os.sep + "corpus"
FILE_PATH = "MedLexSp_v2" + os.sep + "MedLexSp_v2" + os.sep + "MedLexSp_v2.xml"
#Loggin to Huggin Face
login(token = HF_TOKEN)
dataset_CODING = load_dataset(DATASET_TO_LOAD)
royalListOfCode = {}
issues_path = 'dataset'
tokenizer = AutoTokenizer.from_pretrained("DeepESP/gpt2-spanish-medium")
#Read current path
path = Path(__file__).parent.absolute()
MAIN_FILE_ADRESS = str(path) + os.sep + BASE_DIR
#print ( os.listdir(str(path) + os.sep + BASE_DIR))
# # raw_text: Texto asociado al documento, pregunta, caso clínico u otro tipo de información.
# # topic: (puede ser healthcare_treatment, healthcare_diagnosis, tema, respuesta a pregunta, o estar vacío p.ej en el texto abierto)
# # speciality: (especialidad médica a la que se relaciona el raw_text p.ej: cardiología, cirugía, otros)
# # raw_text_type: (puede ser caso clínico, open_text, question)
# # topic_type: (puede ser medical_topic, medical_diagnostic,answer,natural_medicine_topic, other, o vacio)
# # source: Identificador de la fuente asociada al documento que aparece en el README y descripción del dataset.
# # country: Identificador del país de procedencia de la fuente (p.ej.; ch, es) usando el estándar ISO 3166-1 alfa-2 (Códigos de país de dos letras.).
cantemistDstDict = {
'raw_text': '',
'topic': '',
'speciallity': '',
'raw_text_type': 'question',
'topic_type': 'answer',
'source': DATASET_SOURCE_ID,
'country': 'es',
'document_id': ''
}
totalOfTokens = 0
corpusToLoad = []
countCopySeveralDocument = 0
counteOriginalDocument = 0
setOfTopic = set()
#print (dataset_CODING['train'][5]['entities'])
path = Path(__file__).parent.absolute()
tree = ET.parse(str(path) + os.sep + FILE_PATH)
root = tree.getroot()
sets = []
counterSeveralType = 0
counterDocument = 0
for group in root.findall("{http://www.lexicalmarkupframework.org/}Lexicon"):
for igroup in group.findall("{http://www.lexicalmarkupframework.org/}LexicalEntry"):
for item in igroup.findall("{http://www.lexicalmarkupframework.org/}Lemma"):
text = str(item.attrib['writtenForm']).capitalize()
#print (str(item.attrib['writtenForm']).capitalize())
counteOriginalDocument += 1
listOfTokens = tokenizer.tokenize(text)
currentSizeOfTokens = len(listOfTokens)
totalOfTokens += currentSizeOfTokens
newCorpusRow = cantemistDstDict.copy()
newCorpusRow['raw_text'] = text
newCorpusRow['document_id'] = str(counteOriginalDocument)
counterType = 0
for doc in igroup.findall("{http://www.lexicalmarkupframework.org/}SemanticType"):
if counterType > 0:
newCorpusRow = cantemistDstDict.copy()
newCorpusRow['raw_text'] = text
newCorpusRow['document_id'] = str(counteOriginalDocument)
topic = doc.attrib['val']
newCorpusRow['topic'] = typeMedicalDictionary[topic]
setOfTopic.add(topic)
counterSeveralType += 1
counterType += 1
corpusToLoad.append(newCorpusRow)
df = pd.DataFrame.from_records(corpusToLoad)
if os.path.exists(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl"):
os.remove(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl")
df.to_json(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl", orient="records", lines=True)
print(
f"Downloaded all the issues for {DATASET_TO_LOAD}! Dataset stored at {issues_path}/spanish_medical_llms.jsonl"
)
print(' On dataset there are as document ', counteOriginalDocument)
print(' On dataset there are as copy document ', countCopySeveralDocument)
print(' On dataset there are as size of Tokens ', totalOfTokens)
file = Path(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl") # or Path('./doc.txt')
size = file.stat().st_size
print ('File size on Kilobytes (kB)', size >> 10) # 5242880 kilobytes (kB)
print ('File size on Megabytes (MB)', size >> 20 ) # 5120 megabytes (MB)
print ('File size on Gigabytes (GB)', size >> 30 ) # 5 gigabytes (GB)
#Once the issues are downloaded we can load them locally using our
local_spanish_dataset = load_dataset("json", data_files=f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl", split="train")
##Update local dataset with cloud dataset
try:
spanish_dataset = load_dataset(DATASET_TO_UPDATE, split="train")
print("=== Before ====")
print(spanish_dataset)
spanish_dataset = concatenate_datasets([spanish_dataset, local_spanish_dataset])
except Exception:
spanish_dataset = local_spanish_dataset
spanish_dataset.push_to_hub(DATASET_TO_UPDATE)
print("=== After ====")
print(spanish_dataset)
#print('List of Term Topic')
#print(setOfTopic)
# Augmenting the dataset
#Importan if exist element on DATASET_TO_UPDATE we must to update element
# in list, and review if the are repeted elements