|
|
|
"""using_dataset_hugginface.ipynb |
|
|
|
Automatically generated by Colaboratory. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1soGxkZu4antYbYG23GioJ6zoSt_GhSNT |
|
""" |
|
|
|
"""**Hugginface loggin for push on Hub**""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import time |
|
import math |
|
from huggingface_hub import login |
|
from datasets import load_dataset, concatenate_datasets |
|
from functools import reduce |
|
from pathlib import Path |
|
import pandas as pd |
|
import pathlib |
|
import xml.etree.ElementTree as ET |
|
|
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
typeMedicalDictionary = { |
|
'Nucleotide_Sequence':'Secuencia de Nucleotidos', |
|
'Gene_or_Genome': 'Gen o Genoma', |
|
'Professional_Society': 'Sociedad Profesional', |
|
'Molecular_Biology_Research_Technique':'Técnica de Investigación de Biología Molecular', |
|
'Occupation_or_Discipline':'Ocupacion o Disciplina', |
|
'Natural_Phenomenon_or_Process':'Proceso o Fenómeno Natural', |
|
'Bird':'Pájaro', 'Drug_Delivery_Device':'Dispositivo de entrega de medicamentos', |
|
'Animal':'Animal', 'Temporal_Concept':'Concepto Temporal', 'Physiologic_Function':'Función Psicológica', |
|
'Regulation_or_Law':'Ley o Regulacion', 'Mental_or_Behavioral_Dysfunction':'Disfunción mental o de comportamiento', |
|
'Event':'Evento', 'Antibiotic':'Antibiótico', 'Family_Group':'Grupo Familiar', 'Chemical':'Quimico', |
|
'Educational_Activity':'Actividad Educacional', 'Organism_Attribute':'Atributo organismo', 'Functional_Concept':'Concepto Funcional', |
|
'Age_Group':'Grupo Etareo', 'Organic_Compound':'Compuesto orgánico', 'Human':'Humano', 'Health_Care_Activity':'Actividad de cuidado de salud', |
|
'Mental_Process':'Proceso mental', 'Hormone':'Hormona', 'Experimental_Model_of_Disease':'Modelo experimental de una enfermedad', |
|
'Fully_Formed_Anatomical_Structure':'Estructura anatómica completamente formada', 'Classification':'Clasificación', 'Food':'Comida', 'Amino_Acid_Peptide_or_Protein':'Aminoácido péptido o proteína', |
|
'Injury_or_Poisoning':'Lesión o envenenamiento', 'Substance':'Sustancia', 'Organization':'Organizacion', 'Intellectual_Product':'Producto Intelectual', 'Behavior':'Comportamiento', |
|
'Body_Part_Organ_or_Organ_Component':'Parte del cuerpo órgano o componente del órgano', 'Cell_or_Molecular_Dysfunction':'Disfunción celular o molecular', 'Fish':'Pescado', 'Vertebrate':'Vertebrado', |
|
'Congenital_Abnormality':'Anormalidad congénita', 'Governmental_or_Regulatory_Activity':'Actividad gubernamental o regulatoria', |
|
'Daily_or_Recreational_Activity':'Actividad diaria o recreacional', 'Hazardous_or_Poisonous_Substance':'Sustancia peligrosa o venenosa', 'Group_Attribute':'Atributo grupo', 'Immunologic_Factor':'Factor inmunológico', 'Laboratory_or_Test_Result':'Resultado de la prueba o laboratorio', |
|
'Neoplastic_Process':'Proceso neoplásico', 'Phenomenon_or_Process':'Fenómeno o proceso', 'Cell_Component':'Componente celular', 'Health_Care_Related_Organization':'Organización relacionada con el cuidado dela_salud', 'Anatomical_Structure': 'Estructura anatómica', 'Chemical_Viewed_Structurally':'Química vista estructuralmente', |
|
'Population_Group':'Grupo poblacional', 'Biologic_Function':'Función biológica', 'Biologically_Active_Substance':'Sustancia activa biologicamente', 'Clinical_Attribute':'Atributo clínico', 'Laboratory_Procedure':'Procedimiento de laboratorio', 'Fungus':'Hongo', 'Body_Space_or_Junction':'Espacio del cuerpo o unión', 'Finding':'Hallazgo', 'Spatial_Concept':'Concepto espacial', |
|
'Quantitative_Concept':'Concepto cuantitativo', 'Archaeon':'Arqueón', 'Biomedical_Occupation_or_Discipline':'Ocupación o disciplina biomédica', 'Therapeutic_or_Preventive_Procedure':'Procedimiento terapéutico o preventivo', 'Organ_or_Tissue_Function': 'Función de órgano o tejido', 'Cell':'Célula', 'Organic_Chemical':'Orgánico químico', |
|
'Human-caused_Phenomenon_or_Process':'Fenómeno o proceso causado por el humano', 'Body_System':'Sistema corporal', 'Sign_or_Symptom':'Signo o síntoma', 'Plant':'Planta', 'Virus':'Virus', 'Activity':'Actividad', 'Organism_Function':'Organismo Función', 'Molecular_Sequence':'Secuencia molecular', 'Steroid':'Esteroide', 'Reptile':'Reptil', |
|
'Molecular_Function':'Función molecular', 'Professional_or_Occupational_Group':'Grupo profesional o ocupacional', 'Embryonic_Structure':'Estructura embrionaria', 'Organism':'Organismo', 'Anatomical_Abnormality':'Anormalidad anatómica', 'Patient_or_Disabled_Group':'Grupo de paciente o discapacitado', 'Qualitative_Concept':'Concepto cualitativo', |
|
'Bacterium':'Bacteria', 'Idea_or_Concept':'Idea o concepto', 'Enzyme':'Enzima', 'Research_Device':'Dispositivo de investigación', 'Geographic_Area':'Área geográfica', 'Entity':'Entidad', 'Body_Location_or_Region':'Ubicación del cuerpo o región', 'Social_Behavior':'Comportamiento social', 'Self-help_or_Relief_Organization':'Organización de ayuda o alivio', |
|
'Inorganic_Chemical':'Químico inorgánico', 'Body_Substance':'Sustancia corporal', 'Conceptual_Entity':'Entidad conceptual', 'Physical_Object':'Objeto físico', |
|
'Mammal':'Mamífero', 'Manufactured_Object':'Objeto fabricado', 'Eukaryote':'Eucariota', 'Pathologic_Function':'Función patológica', 'Machine_Activity':'Actividad mecánica', 'Occupational_Activity':'Actividad ocupacional', 'Vitamin':'Vitamina', 'Research_Activity':'Actividad de investigación', |
|
'Biomedical_or_Dental_Material':'Material biomédico o dental', 'Environmental_Effect_of_Humans':'Efecto ambiental de los humanos', 'Amino_Acid_Sequence':'Secuencia de aminoácidos', 'Clinical_Drug':'Fármaco clinico', 'Receptor':'Receptor', 'Diagnostic_Procedure':'Procedimiento diagnóstico', |
|
'Pharmacologic_Substance':'Sustancia farmacológica', 'Medical_Device':'Dispositivo médico', 'Cell_Function':'Función celular', 'Nucleic_Acid_Nucleoside_or_Nucleotide':'Nucleósido o nucleósido de ácido nucleico', 'Language':'Idioma', 'Chemical_Viewed_Functionally':'Químico visto funcionalmente', |
|
'Group':'Grupo', 'Tissue':'Tejido', 'Element_Ion_or_Isotope':'Elemento ion o isótopo', 'Individual_Behavior':'Comportamiento individual', 'Indicator_Reagent_or_Diagnostic_Aid':'Indicador reactivo o ayuda de diagnóstico', 'Genetic_Function':'Función genética', 'Acquired_Abnormality': 'Anormalidad adquirida', 'Disease_or_Syndrome':'Enfermedad o síndrome' |
|
} |
|
|
|
|
|
HF_TOKEN = '' |
|
DATASET_TO_LOAD = 'bigbio/distemist' |
|
DATASET_TO_UPDATE = 'somosnlp/spanish_medica_llm' |
|
DATASET_SOURCE_ID = '13' |
|
BASE_DIR = "SPACC" + os.sep + "SPACCC" + os.sep + "SPACCC" + os.sep + "corpus" |
|
FILE_PATH = "MedLexSp_v2" + os.sep + "MedLexSp_v2" + os.sep + "MedLexSp_v2.xml" |
|
|
|
|
|
login(token = HF_TOKEN) |
|
|
|
dataset_CODING = load_dataset(DATASET_TO_LOAD) |
|
royalListOfCode = {} |
|
issues_path = 'dataset' |
|
tokenizer = AutoTokenizer.from_pretrained("DeepESP/gpt2-spanish-medium") |
|
|
|
|
|
path = Path(__file__).parent.absolute() |
|
MAIN_FILE_ADRESS = str(path) + os.sep + BASE_DIR |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cantemistDstDict = { |
|
'raw_text': '', |
|
'topic': '', |
|
'speciallity': '', |
|
'raw_text_type': 'question', |
|
'topic_type': 'answer', |
|
'source': DATASET_SOURCE_ID, |
|
'country': 'es', |
|
'document_id': '' |
|
} |
|
|
|
totalOfTokens = 0 |
|
corpusToLoad = [] |
|
countCopySeveralDocument = 0 |
|
counteOriginalDocument = 0 |
|
setOfTopic = set() |
|
|
|
|
|
|
|
path = Path(__file__).parent.absolute() |
|
tree = ET.parse(str(path) + os.sep + FILE_PATH) |
|
root = tree.getroot() |
|
sets = [] |
|
counterSeveralType = 0 |
|
counterDocument = 0 |
|
for group in root.findall("{http://www.lexicalmarkupframework.org/}Lexicon"): |
|
for igroup in group.findall("{http://www.lexicalmarkupframework.org/}LexicalEntry"): |
|
for item in igroup.findall("{http://www.lexicalmarkupframework.org/}Lemma"): |
|
text = str(item.attrib['writtenForm']).capitalize() |
|
|
|
counteOriginalDocument += 1 |
|
|
|
listOfTokens = tokenizer.tokenize(text) |
|
currentSizeOfTokens = len(listOfTokens) |
|
totalOfTokens += currentSizeOfTokens |
|
newCorpusRow = cantemistDstDict.copy() |
|
|
|
|
|
newCorpusRow['raw_text'] = text |
|
newCorpusRow['document_id'] = str(counteOriginalDocument) |
|
|
|
|
|
counterType = 0 |
|
for doc in igroup.findall("{http://www.lexicalmarkupframework.org/}SemanticType"): |
|
if counterType > 0: |
|
newCorpusRow = cantemistDstDict.copy() |
|
newCorpusRow['raw_text'] = text |
|
newCorpusRow['document_id'] = str(counteOriginalDocument) |
|
|
|
topic = doc.attrib['val'] |
|
|
|
newCorpusRow['topic'] = typeMedicalDictionary[topic] |
|
|
|
setOfTopic.add(topic) |
|
|
|
counterSeveralType += 1 |
|
counterType += 1 |
|
corpusToLoad.append(newCorpusRow) |
|
|
|
df = pd.DataFrame.from_records(corpusToLoad) |
|
|
|
if os.path.exists(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl"): |
|
os.remove(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl") |
|
|
|
df.to_json(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl", orient="records", lines=True) |
|
print( |
|
f"Downloaded all the issues for {DATASET_TO_LOAD}! Dataset stored at {issues_path}/spanish_medical_llms.jsonl" |
|
) |
|
|
|
print(' On dataset there are as document ', counteOriginalDocument) |
|
print(' On dataset there are as copy document ', countCopySeveralDocument) |
|
print(' On dataset there are as size of Tokens ', totalOfTokens) |
|
file = Path(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl") |
|
size = file.stat().st_size |
|
print ('File size on Kilobytes (kB)', size >> 10) |
|
print ('File size on Megabytes (MB)', size >> 20 ) |
|
print ('File size on Gigabytes (GB)', size >> 30 ) |
|
|
|
|
|
local_spanish_dataset = load_dataset("json", data_files=f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl", split="train") |
|
|
|
|
|
|
|
try: |
|
spanish_dataset = load_dataset(DATASET_TO_UPDATE, split="train") |
|
print("=== Before ====") |
|
print(spanish_dataset) |
|
spanish_dataset = concatenate_datasets([spanish_dataset, local_spanish_dataset]) |
|
except Exception: |
|
spanish_dataset = local_spanish_dataset |
|
|
|
spanish_dataset.push_to_hub(DATASET_TO_UPDATE) |
|
|
|
print("=== After ====") |
|
print(spanish_dataset) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|