dataset_info:
- config_name: css
features:
- name: structure
dtype: string
- name: text
dtype: string
- name: image
dtype: image
- name: download_url
dtype: string
- name: instance_name
dtype: string
- name: date
dtype: string
- name: additional_info
dtype: string
- name: date_scrapped
dtype: string
- name: file_filters
dtype: string
- name: compilation_info
dtype: string
- name: rendering_filters
dtype: string
- name: assets
sequence: string
- name: category
dtype: string
- name: uuid
dtype: string
- name: length
dtype: string
- name: difficulty
dtype: string
splits:
- name: validation
num_bytes: 815105541
num_examples: 300
download_size: 809865478
dataset_size: 815105541
- config_name: html
features:
- name: structure
dtype: string
- name: text
dtype: string
- name: image
dtype: image
- name: download_url
dtype: string
- name: instance_name
dtype: string
- name: date
dtype: string
- name: additional_info
dtype: string
- name: date_scrapped
dtype: string
- name: file_filters
dtype: string
- name: compilation_info
dtype: string
- name: rendering_filters
dtype: string
- name: assets
sequence: string
- name: category
dtype: string
- name: uuid
dtype: string
- name: length
dtype: string
- name: difficulty
dtype: string
splits:
- name: validation
num_bytes: 263470560
num_examples: 300
download_size: 257833986
dataset_size: 263470560
- config_name: javascript
features:
- name: structure
dtype: string
- name: text
dtype: string
- name: image
dtype: image
- name: download_url
dtype: string
- name: instance_name
dtype: string
- name: date
dtype: string
- name: additional_info
dtype: string
- name: date_scrapped
dtype: string
- name: file_filters
dtype: string
- name: compilation_info
dtype: string
- name: rendering_filters
dtype: string
- name: assets
sequence: string
- name: category
dtype: string
- name: uuid
dtype: string
- name: length
dtype: string
- name: difficulty
dtype: string
splits:
- name: validation
num_bytes: 279510653
num_examples: 300
download_size: 273214540
dataset_size: 279510653
- config_name: wild
features:
- name: image
dtype: image
- name: additional_info
dtype: string
- name: assets
sequence: string
- name: category
dtype: string
- name: uuid
dtype: string
- name: difficulty
dtype: string
splits:
- name: validation
num_bytes: 335841
num_examples: 2
download_size: 333134
dataset_size: 335841
- config_name: wild_legacy
features:
- name: structure
dtype: string
- name: image
dtype: image
- name: url
dtype: string
- name: instance_name
dtype: string
- name: date_scrapped
dtype: string
- name: uuid
dtype: string
- name: category
dtype: string
- name: additional_info
dtype: string
- name: assets
sequence: string
- name: difficulty
dtype: string
splits:
- name: validation
num_bytes: 99236852
num_examples: 50
download_size: 99142716
dataset_size: 99236852
configs:
- config_name: css
data_files:
- split: validation
path: css/validation-*
- config_name: html
data_files:
- split: validation
path: html/validation-*
- config_name: javascript
data_files:
- split: validation
path: javascript/validation-*
- config_name: wild
data_files:
- split: validation
path: wild/validation-*
- config_name: wild_legacy
data_files:
- split: validation
path: wild_legacy/validation-*
Image2Struct - Webpage
Paper | Website | Datasets (Webpages, Latex, Music sheets) | Leaderboard | HELM repo | Image2Struct repo
License: Apache License Version 2.0, January 2004
Dataset description
Image2struct is a benchmark for evaluating vision-language models in practical tasks of extracting structured information from images. This subdataset focuses on webpages. The model is given an image of the expected output with the prompt:
Please generate the source code to generate a webpage that looks like this image as much as feasibly possible.
You should output a json object associating each file name with its content.
Here is a simple example of the expected structure (that does not correspond to the image).
In this example, 3 files are created: index.html, style.css and script.js.
[
{
"filename": "index.html",
"content": "<!DOCTYPE html>\\n<html>\\n<head>\\n<title>Title of the document</title>\\n</head>\\n<body>\\n\\n<p>Content of the document......</p>\\n\\n</body>\\n</html>"
},
{
"filename": "style.css",
"content": "body {\\n background-color: lightblue;\\n}\\nh1 {\\n color: white;\\n text-align: center;\\n}"
},
{
"filename": "script.js",
"content": "document.getElementById(\\"demo\\").innerHTML = \\"Hello JavaScript!\\";"
}
]
You do not have to create files with the same names. Create as many files as you need, you can even use directories if necessary,
they will be created for you automatically. Try to write some realistic code keeping in mind that it should
look like the image as much as feasibly possible.
The dataset is divided into 4 categories. There are 3 categories that are collected automatically using the Image2Struct repo. The webpages were collected on GitHub pages (.github.io) and are split into 3 groups that are determined by the main language of the repository:
- html
- css
- javascript
The last category: wild, was collected by taking screenshots of popular websites. The full list is available at the end of this document.
Uses
To load the subset html
of the dataset to be sent to the model under evaluation in Python:
import datasets
datasets.load_dataset("stanford-crfm/i2s-webpage", "html", split="validation")
To evaluate a model on Image2Webpage (html) using HELM, run the following command-line commands:
pip install crfm-helm
helm-run --run-entries image2webpage:subset=html,model=vlm --models-to-run google/gemini-pro-vision --suite my-suite-i2s --max-eval-instances 10
You can also run the evaluation for only a specific subset
and difficulty
:
helm-run --run-entries image2webpage:subset=html,difficulty=hard,model=vlm --models-to-run google/gemini-pro-vision --suite my-suite-i2s --max-eval-instances 10
For more information on running Image2Struct using HELM, refer to the HELM documentation and the article on reproducing leaderboards.
Citation
BibTeX:
@misc{roberts2024image2struct,
title={Image2Struct: A Benchmark for Evaluating Vision-Language Models in Extracting Structured Information from Images},
author={Josselin Somerville Roberts and Tony Lee and Chi Heem Wong and Michihiro Yasunaga and Yifan Mai and Percy Liang},
year={2024},
eprint={TBD},
archivePrefix={arXiv},
primaryClass={TBD}
}
List of websites used for wild subset
[
"https://www.nytimes.com",
"https://www.bbc.com",
"https://www.wikipedia.org",
"https://www.github.com",
"https://www.reddit.com",
"https://www.twitter.com",
"https://www.facebook.com",
"https://www.instagram.com",
"https://www.linkedin.com",
"https://www.youtube.com",
"https://www.amazon.com",
"https://www.apple.com",
"https://www.microsoft.com",
"https://www.ibm.com",
"https://www.google.com",
"https://www.yahoo.com",
"https://www.bing.com",
"https://www.duckduckgo.com",
"https://www.netflix.com",
"https://www.hulu.com",
"https://www.disneyplus.com",
"https://www.imdb.com",
"https://www.metacritic.com",
"https://www.rottentomatoes.com",
"https://www.nationalgeographic.com",
"https://www.nasa.gov",
"https://www.cnn.com",
"https://www.foxnews.com",
"https://www.bloomberg.com",
"https://www.cnbc.com",
"https://www.forbes.com",
"https://www.businessinsider.com",
"https://www.techcrunch.com",
"https://www.engadget.com",
"https://www.arstechnica.com",
"https://www.lifehacker.com",
"https://www.theguardian.com",
"https://www.independent.co.uk",
"https://www.buzzfeed.com",
"https://www.vox.com",
"https://www.theverge.com",
"https://www.wired.com",
"https://www.polygon.com",
"https://www.gamespot.com",
"https://www.kotaku.com",
"https://www.twitch.tv",
"https://www.netflix.com",
"https://www.hbo.com",
"https://www.showtime.com",
"https://www.cbs.com",
"https://www.abc.com",
"https://www.nbc.com",
"https://www.criterion.com",
"https://www.imdb.com",
"https://www.rottentomatoes.com",
"https://www.metacritic.com",
"https://www.pitchfork.com",
"https://www.billboard.com",
"https://www.rollingstone.com",
"https://www.npr.org",
"https://www.bbc.co.uk",
"https://www.thetimes.co.uk",
"https://www.telegraph.co.uk",
"https://www.guardian.co.uk",
"https://www.independent.co.uk",
"https://www.economist.com",
"https://www.ft.com",
"https://www.wsj.com",
"https://www.nature.com",
"https://www.scientificamerican.com",
"https://www.newscientist.com",
"https://www.sciencedaily.com",
"https://www.space.com",
"https://www.livescience.com",
"https://www.popsci.com",
"https://www.healthline.com",
"https://www.webmd.com",
"https://www.mayoclinic.org",
"https://www.nih.gov",
"https://www.cdc.gov",
"https://www.who.int",
"https://www.un.org",
"https://www.nationalgeographic.com",
"https://www.worldreallife.org",
"https://www.greenpeace.org",
"https://www.nrdc.org",
"https://www.sierraclub.org",
"https://www.amnesty.org",
"https://www.hrw.org",
"https://www.icrc.org",
"https://www.redcross.org",
"https://www.unicef.org",
"https://www.savethechildren.org",
"https://www.doctorswithoutborders.org",
"https://www.wikimedia.org",
"https://www.archive.org",
"https://www.opendemocracy.net",
"https://www.projectgutenberg.org",
"https://www.khanacademy.org",
"https://www.codecademy.com",
]