Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
system HF staff commited on
Commit
3b913b7
0 Parent(s):

Update files from the datasets library (from 1.0.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.0.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"plain_text": {"description": "The SNLI corpus (version 1.0) is a collection of 570k human-written English\nsentence pairs manually labeled for balanced classification with the labels\nentailment, contradiction, and neutral, supporting the task of natural language\ninference (NLI), also known as recognizing textual entailment (RTE).\n", "citation": "@inproceedings{snli:emnlp2015,\n\tAuthor = {Bowman, Samuel R. and Angeli, Gabor and Potts, Christopher, and Manning, Christopher D.},\n\tBooktitle = {Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n\tPublisher = {Association for Computational Linguistics},\n\tTitle = {A large annotated corpus for learning natural language inference},\n\tYear = {2015}\n}\n", "homepage": "https://nlp.stanford.edu/projects/snli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "supervised_keys": null, "builder_name": "snli", "config_name": "plain_text", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 1263912, "num_examples": 10000, "dataset_name": "snli"}, "train": {"name": "train", "num_bytes": 66159510, "num_examples": 550152, "dataset_name": "snli"}, "validation": {"name": "validation", "num_bytes": 1268044, "num_examples": 10000, "dataset_name": "snli"}}, "download_checksums": {"https://nlp.stanford.edu/projects/snli/snli_1.0.zip": {"num_bytes": 94550081, "checksum": "afb3d70a5af5d8de0d9d81e2637e0fb8c22d1235c2749d83125ca43dab0dbd3e"}}, "download_size": 94550081, "dataset_size": 68691466, "size_in_bytes": 163241547}}
dummy/plain_text/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:415936f595d8ec7c004a08095d90c41b29ffcb769d032de336e67475c0a4d744
3
+ size 2282
snli.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """The Stanford Natural Language Inference (SNLI) Corpus."""
18
+
19
+ from __future__ import absolute_import, division, print_function
20
+
21
+ import csv
22
+ import os
23
+
24
+ import datasets
25
+
26
+
27
+ _CITATION = """\
28
+ @inproceedings{snli:emnlp2015,
29
+ Author = {Bowman, Samuel R. and Angeli, Gabor and Potts, Christopher, and Manning, Christopher D.},
30
+ Booktitle = {Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
31
+ Publisher = {Association for Computational Linguistics},
32
+ Title = {A large annotated corpus for learning natural language inference},
33
+ Year = {2015}
34
+ }
35
+ """
36
+
37
+ _DESCRIPTION = """\
38
+ The SNLI corpus (version 1.0) is a collection of 570k human-written English
39
+ sentence pairs manually labeled for balanced classification with the labels
40
+ entailment, contradiction, and neutral, supporting the task of natural language
41
+ inference (NLI), also known as recognizing textual entailment (RTE).
42
+ """
43
+
44
+ _DATA_URL = "https://nlp.stanford.edu/projects/snli/snli_1.0.zip"
45
+
46
+
47
+ class Snli(datasets.GeneratorBasedBuilder):
48
+ """The Stanford Natural Language Inference (SNLI) Corpus."""
49
+
50
+ BUILDER_CONFIGS = [
51
+ datasets.BuilderConfig(
52
+ name="plain_text",
53
+ version=datasets.Version("1.0.0", ""),
54
+ description="Plain text import of SNLI",
55
+ )
56
+ ]
57
+
58
+ def _info(self):
59
+ return datasets.DatasetInfo(
60
+ description=_DESCRIPTION,
61
+ features=datasets.Features(
62
+ {
63
+ "premise": datasets.Value("string"),
64
+ "hypothesis": datasets.Value("string"),
65
+ "label": datasets.features.ClassLabel(names=["entailment", "neutral", "contradiction"]),
66
+ }
67
+ ),
68
+ # No default supervised_keys (as we have to pass both premise
69
+ # and hypothesis as input).
70
+ supervised_keys=None,
71
+ homepage="https://nlp.stanford.edu/projects/snli/",
72
+ citation=_CITATION,
73
+ )
74
+
75
+ def _split_generators(self, dl_manager):
76
+ dl_dir = dl_manager.download_and_extract(_DATA_URL)
77
+ data_dir = os.path.join(dl_dir, "snli_1.0")
78
+ return [
79
+ datasets.SplitGenerator(
80
+ name=datasets.Split.TEST, gen_kwargs={"filepath": os.path.join(data_dir, "snli_1.0_test.txt")}
81
+ ),
82
+ datasets.SplitGenerator(
83
+ name=datasets.Split.VALIDATION, gen_kwargs={"filepath": os.path.join(data_dir, "snli_1.0_dev.txt")}
84
+ ),
85
+ datasets.SplitGenerator(
86
+ name=datasets.Split.TRAIN, gen_kwargs={"filepath": os.path.join(data_dir, "snli_1.0_train.txt")}
87
+ ),
88
+ ]
89
+
90
+ def _generate_examples(self, filepath):
91
+ """This function returns the examples in the raw (text) form."""
92
+ with open(filepath, encoding="utf-8") as f:
93
+ reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
94
+ for idx, row in enumerate(reader):
95
+ label = -1 if row["gold_label"] == "-" else row["gold_label"]
96
+ yield idx, {
97
+ "premise": row["sentence1"],
98
+ "hypothesis": row["sentence2"],
99
+ "label": label,
100
+ }