Datasets:
Commit
•
9de948e
0
Parent(s):
Update files from the datasets library (from 1.5.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.5.0
- .gitattributes +27 -0
- README.md +192 -0
- dataset_infos.json +1 -0
- dummy/default/1.0.0/dummy_data.zip +3 -0
- dummy/dictionary/1.0.0/dummy_data.zip +3 -0
- dummy/ptb/1.0.0/dummy_data.zip +3 -0
- sst.py +209 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- crowdsourced
|
4 |
+
language_creators:
|
5 |
+
- found
|
6 |
+
languages:
|
7 |
+
- en
|
8 |
+
licenses: []
|
9 |
+
multilinguality:
|
10 |
+
- monolingual
|
11 |
+
size_categories:
|
12 |
+
default:
|
13 |
+
- 10K<n<100K
|
14 |
+
dictionary:
|
15 |
+
- 100K<n<1M
|
16 |
+
phrases:
|
17 |
+
- 100K<n<1M
|
18 |
+
ptb:
|
19 |
+
- 10K<n<100K
|
20 |
+
sentences:
|
21 |
+
- 10K<n<100K
|
22 |
+
source_datasets: []
|
23 |
+
task_categories:
|
24 |
+
- text-classification
|
25 |
+
- text-scoring
|
26 |
+
task_ids:
|
27 |
+
- sentiment-classification
|
28 |
+
- sentiment-scoring
|
29 |
+
---
|
30 |
+
|
31 |
+
# Dataset Card for sst
|
32 |
+
|
33 |
+
## Table of Contents
|
34 |
+
- [Dataset Description](#dataset-description)
|
35 |
+
- [Dataset Summary](#dataset-summary)
|
36 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
37 |
+
- [Languages](#languages)
|
38 |
+
- [Dataset Structure](#dataset-structure)
|
39 |
+
- [Data Instances](#data-instances)
|
40 |
+
- [Data Fields](#data-instances)
|
41 |
+
- [Data Splits](#data-instances)
|
42 |
+
- [Dataset Creation](#dataset-creation)
|
43 |
+
- [Curation Rationale](#curation-rationale)
|
44 |
+
- [Source Data](#source-data)
|
45 |
+
- [Annotations](#annotations)
|
46 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
47 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
48 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
49 |
+
- [Discussion of Biases](#discussion-of-biases)
|
50 |
+
- [Other Known Limitations](#other-known-limitations)
|
51 |
+
- [Additional Information](#additional-information)
|
52 |
+
- [Dataset Curators](#dataset-curators)
|
53 |
+
- [Licensing Information](#licensing-information)
|
54 |
+
- [Citation Information](#citation-information)
|
55 |
+
- [Contributions](#contributions)
|
56 |
+
|
57 |
+
## Dataset Description
|
58 |
+
|
59 |
+
- **Homepage:** https://nlp.stanford.edu/sentiment/index.html
|
60 |
+
- **Repository:** [Needs More Information]
|
61 |
+
- **Paper:** [Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank](https://www.aclweb.org/anthology/D13-1170/)
|
62 |
+
- **Leaderboard:** [Needs More Information]
|
63 |
+
- **Point of Contact:** [Needs More Information]
|
64 |
+
|
65 |
+
### Dataset Summary
|
66 |
+
|
67 |
+
The Stanford Sentiment Treebank is the first corpus with fully labeled parse trees that allows for a complete analysis of the compositional effects of sentiment in language.
|
68 |
+
|
69 |
+
### Supported Tasks and Leaderboards
|
70 |
+
|
71 |
+
- `sentiment-scoring`: Each complete sentence is annotated with a `float` label that indicates its level of positive sentiment from 0.0 to 1.0. One can decide to use only complete sentences or to include the contributions of the sub-sentences (aka phrases). The labels for each phrase are included in the `dictionary` configuration. To obtain all the phrases in a sentence we need to visit the parse tree included with each example. In contrast, the `ptb` configuration explicitly provides all the labelled parse trees in Penn Treebank format. Here the labels are binned in 5 bins from 0 to 4.
|
72 |
+
- `sentiment-classification`: We can transform the above into a binary sentiment classification task by rounding each label to 0 or 1.
|
73 |
+
|
74 |
+
### Languages
|
75 |
+
|
76 |
+
The text in the dataset is in English
|
77 |
+
|
78 |
+
## Dataset Structure
|
79 |
+
|
80 |
+
### Data Instances
|
81 |
+
|
82 |
+
For the `default` configuration:
|
83 |
+
```
|
84 |
+
{'label': 0.7222200036048889,
|
85 |
+
'sentence': 'Yet the act is still charming here .',
|
86 |
+
'tokens': 'Yet|the|act|is|still|charming|here|.',
|
87 |
+
'tree': '15|13|13|10|9|9|11|12|10|11|12|14|14|15|0'}
|
88 |
+
```
|
89 |
+
|
90 |
+
For the `dictionary` configuration:
|
91 |
+
```
|
92 |
+
{'label': 0.7361099720001221,
|
93 |
+
'phrase': 'still charming'}
|
94 |
+
```
|
95 |
+
|
96 |
+
For the `ptb` configuration:
|
97 |
+
```
|
98 |
+
{'ptb_tree': '(3 (2 Yet) (3 (2 (2 the) (2 act)) (3 (4 (3 (2 is) (3 (2 still) (4 charming))) (2 here)) (2 .))))'}
|
99 |
+
```
|
100 |
+
|
101 |
+
### Data Fields
|
102 |
+
|
103 |
+
- `sentence`: a complete sentence expressing an opinion about a film
|
104 |
+
- `label`: the degree of "positivity" of the opinion, on a scale between 0.0 and 1.0
|
105 |
+
- `tokens`: a sequence of tokens that form a sentence
|
106 |
+
- `tree`: a sentence parse tree formatted as a parent pointer tree
|
107 |
+
- `phrase`: a sub-sentence of a complete sentence
|
108 |
+
- `ptb_tree`: a sentence parse tree formatted in Penn Treebank-style, where each component's degree of positive sentiment is labelled on a scale from 0 to 4
|
109 |
+
|
110 |
+
### Data Splits
|
111 |
+
|
112 |
+
The set of complete sentences (both `default` and `ptb` configurations) is split into a training, validation and test set. The `dictionary` configuration has only one split as it is used for reference rather than for learning.
|
113 |
+
|
114 |
+
## Dataset Creation
|
115 |
+
|
116 |
+
### Curation Rationale
|
117 |
+
|
118 |
+
[Needs More Information]
|
119 |
+
|
120 |
+
### Source Data
|
121 |
+
|
122 |
+
#### Initial Data Collection and Normalization
|
123 |
+
|
124 |
+
[Needs More Information]
|
125 |
+
|
126 |
+
#### Who are the source language producers?
|
127 |
+
|
128 |
+
Rotten Tomatoes reviewers.
|
129 |
+
|
130 |
+
### Annotations
|
131 |
+
|
132 |
+
#### Annotation process
|
133 |
+
|
134 |
+
[Needs More Information]
|
135 |
+
|
136 |
+
#### Who are the annotators?
|
137 |
+
|
138 |
+
[Needs More Information]
|
139 |
+
|
140 |
+
### Personal and Sensitive Information
|
141 |
+
|
142 |
+
[Needs More Information]
|
143 |
+
|
144 |
+
## Considerations for Using the Data
|
145 |
+
|
146 |
+
### Social Impact of Dataset
|
147 |
+
|
148 |
+
[Needs More Information]
|
149 |
+
|
150 |
+
### Discussion of Biases
|
151 |
+
|
152 |
+
[Needs More Information]
|
153 |
+
|
154 |
+
### Other Known Limitations
|
155 |
+
|
156 |
+
[Needs More Information]
|
157 |
+
|
158 |
+
## Additional Information
|
159 |
+
|
160 |
+
### Dataset Curators
|
161 |
+
|
162 |
+
[Needs More Information]
|
163 |
+
|
164 |
+
### Licensing Information
|
165 |
+
|
166 |
+
[Needs More Information]
|
167 |
+
|
168 |
+
### Citation Information
|
169 |
+
|
170 |
+
```
|
171 |
+
@inproceedings{socher-etal-2013-recursive,
|
172 |
+
title = "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank",
|
173 |
+
author = "Socher, Richard and
|
174 |
+
Perelygin, Alex and
|
175 |
+
Wu, Jean and
|
176 |
+
Chuang, Jason and
|
177 |
+
Manning, Christopher D. and
|
178 |
+
Ng, Andrew and
|
179 |
+
Potts, Christopher",
|
180 |
+
booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing",
|
181 |
+
month = oct,
|
182 |
+
year = "2013",
|
183 |
+
address = "Seattle, Washington, USA",
|
184 |
+
publisher = "Association for Computational Linguistics",
|
185 |
+
url = "https://www.aclweb.org/anthology/D13-1170",
|
186 |
+
pages = "1631--1642",
|
187 |
+
}
|
188 |
+
```
|
189 |
+
|
190 |
+
### Contributions
|
191 |
+
|
192 |
+
Thanks to [@patpizio](https://github.com/patpizio) for adding this dataset.
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default": {"description": "The Stanford Sentiment Treebank, the first corpus with fully labeled parse trees that allows for a\ncomplete analysis of the compositional effects of sentiment in language.\n", "citation": "@inproceedings{socher-etal-2013-recursive,\n title = \"Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank\",\n author = \"Socher, Richard and Perelygin, Alex and Wu, Jean and\n Chuang, Jason and Manning, Christopher D. and Ng, Andrew and Potts, Christopher\",\n booktitle = \"Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing\",\n month = oct,\n year = \"2013\",\n address = \"Seattle, Washington, USA\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D13-1170\",\n pages = \"1631--1642\",\n}\n", "homepage": "https://nlp.stanford.edu/sentiment/", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "float32", "id": null, "_type": "Value"}, "tokens": {"dtype": "string", "id": null, "_type": "Value"}, "tree": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "sst", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2818768, "num_examples": 8544, "dataset_name": "sst"}, "validation": {"name": "validation", "num_bytes": 366205, "num_examples": 1101, "dataset_name": "sst"}, "test": {"name": "test", "num_bytes": 730154, "num_examples": 2210, "dataset_name": "sst"}}, "download_checksums": {"https://nlp.stanford.edu/~socherr/stanfordSentimentTreebank.zip": {"num_bytes": 6372817, "checksum": "3f5209483b46bbf129cacbbbe6ae02fe780407034f61cf6342b7833257c3f1db"}, "https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip": {"num_bytes": 789539, "checksum": "5c613a4f673fc74097d523a2c83f38e0cc462984d847b82c7aaf36b01cbbbfcc"}}, "download_size": 7162356, "post_processing_size": null, "dataset_size": 3915127, "size_in_bytes": 11077483}, "dictionary": {"description": "The Stanford Sentiment Treebank, the first corpus with fully labeled parse trees that allows for a\ncomplete analysis of the compositional effects of sentiment in language.\n", "citation": "@inproceedings{socher-etal-2013-recursive,\n title = \"Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank\",\n author = \"Socher, Richard and Perelygin, Alex and Wu, Jean and\n Chuang, Jason and Manning, Christopher D. and Ng, Andrew and Potts, Christopher\",\n booktitle = \"Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing\",\n month = oct,\n year = \"2013\",\n address = \"Seattle, Washington, USA\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D13-1170\",\n pages = \"1631--1642\",\n}\n", "homepage": "https://nlp.stanford.edu/sentiment/", "license": "", "features": {"phrase": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "float32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "sst", "config_name": "dictionary", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"dictionary": {"name": "dictionary", "num_bytes": 12121843, "num_examples": 239232, "dataset_name": "sst"}}, "download_checksums": {"https://nlp.stanford.edu/~socherr/stanfordSentimentTreebank.zip": {"num_bytes": 6372817, "checksum": "3f5209483b46bbf129cacbbbe6ae02fe780407034f61cf6342b7833257c3f1db"}, "https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip": {"num_bytes": 789539, "checksum": "5c613a4f673fc74097d523a2c83f38e0cc462984d847b82c7aaf36b01cbbbfcc"}}, "download_size": 7162356, "post_processing_size": null, "dataset_size": 12121843, "size_in_bytes": 19284199}, "ptb": {"description": "The Stanford Sentiment Treebank, the first corpus with fully labeled parse trees that allows for a\ncomplete analysis of the compositional effects of sentiment in language.\n", "citation": "@inproceedings{socher-etal-2013-recursive,\n title = \"Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank\",\n author = \"Socher, Richard and Perelygin, Alex and Wu, Jean and\n Chuang, Jason and Manning, Christopher D. and Ng, Andrew and Potts, Christopher\",\n booktitle = \"Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing\",\n month = oct,\n year = \"2013\",\n address = \"Seattle, Washington, USA\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D13-1170\",\n pages = \"1631--1642\",\n}\n", "homepage": "https://nlp.stanford.edu/sentiment/", "license": "", "features": {"ptb_tree": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "sst", "config_name": "ptb", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2185694, "num_examples": 8544, "dataset_name": "sst"}, "validation": {"name": "validation", "num_bytes": 284132, "num_examples": 1101, "dataset_name": "sst"}, "test": {"name": "test", "num_bytes": 566248, "num_examples": 2210, "dataset_name": "sst"}}, "download_checksums": {"https://nlp.stanford.edu/~socherr/stanfordSentimentTreebank.zip": {"num_bytes": 6372817, "checksum": "3f5209483b46bbf129cacbbbe6ae02fe780407034f61cf6342b7833257c3f1db"}, "https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip": {"num_bytes": 789539, "checksum": "5c613a4f673fc74097d523a2c83f38e0cc462984d847b82c7aaf36b01cbbbfcc"}}, "download_size": 7162356, "post_processing_size": null, "dataset_size": 3036074, "size_in_bytes": 10198430}}
|
dummy/default/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:605f2a643fdf537402cadaeec68e1e4c9d773001fc42f954b3aa33a8b752d8ee
|
3 |
+
size 7759
|
dummy/dictionary/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:605f2a643fdf537402cadaeec68e1e4c9d773001fc42f954b3aa33a8b752d8ee
|
3 |
+
size 7759
|
dummy/ptb/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:605f2a643fdf537402cadaeec68e1e4c9d773001fc42f954b3aa33a8b752d8ee
|
3 |
+
size 7759
|
sst.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""TODO: Add a description here."""
|
16 |
+
|
17 |
+
from __future__ import absolute_import, division, print_function
|
18 |
+
|
19 |
+
import csv
|
20 |
+
import os
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
|
25 |
+
_CITATION = """\
|
26 |
+
@inproceedings{socher-etal-2013-recursive,
|
27 |
+
title = "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank",
|
28 |
+
author = "Socher, Richard and Perelygin, Alex and Wu, Jean and
|
29 |
+
Chuang, Jason and Manning, Christopher D. and Ng, Andrew and Potts, Christopher",
|
30 |
+
booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing",
|
31 |
+
month = oct,
|
32 |
+
year = "2013",
|
33 |
+
address = "Seattle, Washington, USA",
|
34 |
+
publisher = "Association for Computational Linguistics",
|
35 |
+
url = "https://www.aclweb.org/anthology/D13-1170",
|
36 |
+
pages = "1631--1642",
|
37 |
+
}
|
38 |
+
"""
|
39 |
+
|
40 |
+
_DESCRIPTION = """\
|
41 |
+
The Stanford Sentiment Treebank, the first corpus with fully labeled parse trees that allows for a
|
42 |
+
complete analysis of the compositional effects of sentiment in language.
|
43 |
+
"""
|
44 |
+
|
45 |
+
_HOMEPAGE = "https://nlp.stanford.edu/sentiment/"
|
46 |
+
|
47 |
+
_LICENSE = ""
|
48 |
+
|
49 |
+
_DEFAULT_URL = "https://nlp.stanford.edu/~socherr/stanfordSentimentTreebank.zip"
|
50 |
+
_PTB_URL = "https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip"
|
51 |
+
|
52 |
+
|
53 |
+
class Sst(datasets.GeneratorBasedBuilder):
|
54 |
+
"""The Stanford Sentiment Treebank"""
|
55 |
+
|
56 |
+
VERSION = datasets.Version("1.0.0")
|
57 |
+
|
58 |
+
BUILDER_CONFIGS = [
|
59 |
+
datasets.BuilderConfig(
|
60 |
+
name="default",
|
61 |
+
version=VERSION,
|
62 |
+
description="Sentences and relative parse trees annotated with sentiment labels.",
|
63 |
+
),
|
64 |
+
datasets.BuilderConfig(
|
65 |
+
name="dictionary",
|
66 |
+
version=VERSION,
|
67 |
+
description="List of all possible sub-sentences (phrases) with their sentiment label.",
|
68 |
+
),
|
69 |
+
datasets.BuilderConfig(
|
70 |
+
name="ptb", version=VERSION, description="Penn Treebank-formatted trees with labelled sub-sentences."
|
71 |
+
),
|
72 |
+
]
|
73 |
+
|
74 |
+
DEFAULT_CONFIG_NAME = "default"
|
75 |
+
|
76 |
+
def _info(self):
|
77 |
+
|
78 |
+
if self.config.name == "default":
|
79 |
+
features = datasets.Features(
|
80 |
+
{
|
81 |
+
"sentence": datasets.Value("string"),
|
82 |
+
"label": datasets.Value("float"),
|
83 |
+
"tokens": datasets.Value("string"),
|
84 |
+
"tree": datasets.Value("string"),
|
85 |
+
}
|
86 |
+
)
|
87 |
+
elif self.config.name == "dictionary":
|
88 |
+
features = datasets.Features({"phrase": datasets.Value("string"), "label": datasets.Value("float")})
|
89 |
+
else:
|
90 |
+
features = datasets.Features(
|
91 |
+
{
|
92 |
+
"ptb_tree": datasets.Value("string"),
|
93 |
+
}
|
94 |
+
)
|
95 |
+
|
96 |
+
return datasets.DatasetInfo(
|
97 |
+
description=_DESCRIPTION,
|
98 |
+
features=features,
|
99 |
+
supervised_keys=None,
|
100 |
+
homepage=_HOMEPAGE,
|
101 |
+
citation=_CITATION,
|
102 |
+
)
|
103 |
+
|
104 |
+
def _split_generators(self, dl_manager):
|
105 |
+
default_dir = dl_manager.download_and_extract(_DEFAULT_URL)
|
106 |
+
ptb_dir = dl_manager.download_and_extract(_PTB_URL)
|
107 |
+
|
108 |
+
file_paths = {}
|
109 |
+
for split_index in range(0, 4):
|
110 |
+
file_paths[split_index] = {
|
111 |
+
"phrases_path": os.path.join(default_dir, "stanfordSentimentTreebank/dictionary.txt"),
|
112 |
+
"labels_path": os.path.join(default_dir, "stanfordSentimentTreebank/sentiment_labels.txt"),
|
113 |
+
"tokens_path": os.path.join(default_dir, "stanfordSentimentTreebank/SOStr.txt"),
|
114 |
+
"trees_path": os.path.join(default_dir, "stanfordSentimentTreebank/STree.txt"),
|
115 |
+
"splits_path": os.path.join(default_dir, "stanfordSentimentTreebank/datasetSplit.txt"),
|
116 |
+
"sentences_path": os.path.join(default_dir, "stanfordSentimentTreebank/datasetSentences.txt"),
|
117 |
+
"ptb_filepath": None,
|
118 |
+
"split_id": str(split_index),
|
119 |
+
}
|
120 |
+
|
121 |
+
ptb_file_paths = {}
|
122 |
+
for ptb_split in ["train", "dev", "test"]:
|
123 |
+
ptb_file_paths[ptb_split] = {
|
124 |
+
"phrases_path": None,
|
125 |
+
"labels_path": None,
|
126 |
+
"tokens_path": None,
|
127 |
+
"trees_path": None,
|
128 |
+
"splits_path": None,
|
129 |
+
"sentences_path": None,
|
130 |
+
"ptb_filepath": os.path.join(ptb_dir, "trees/" + ptb_split + ".txt"),
|
131 |
+
"split_id": None,
|
132 |
+
}
|
133 |
+
|
134 |
+
if self.config.name == "default":
|
135 |
+
return [
|
136 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=file_paths[1]),
|
137 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs=file_paths[3]),
|
138 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=file_paths[2]),
|
139 |
+
]
|
140 |
+
elif self.config.name == "dictionary":
|
141 |
+
return [datasets.SplitGenerator(name="dictionary", gen_kwargs=file_paths[0])]
|
142 |
+
else:
|
143 |
+
return [
|
144 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs=ptb_file_paths["train"]),
|
145 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs=ptb_file_paths["dev"]),
|
146 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs=ptb_file_paths["test"]),
|
147 |
+
]
|
148 |
+
|
149 |
+
def _generate_examples(
|
150 |
+
self, phrases_path, labels_path, tokens_path, trees_path, splits_path, sentences_path, split_id, ptb_filepath
|
151 |
+
):
|
152 |
+
|
153 |
+
if self.config.name == "ptb":
|
154 |
+
with open(ptb_filepath, encoding="utf-8") as fp:
|
155 |
+
ptb_reader = csv.reader(fp, delimiter="\t", quoting=csv.QUOTE_NONE)
|
156 |
+
for id_, row in enumerate(ptb_reader):
|
157 |
+
yield id_, {"ptb_tree": row[0]}
|
158 |
+
else:
|
159 |
+
labels = {}
|
160 |
+
phrases = {}
|
161 |
+
with open(labels_path, encoding="utf-8") as g, open(phrases_path, encoding="utf-8") as f:
|
162 |
+
label_reader = csv.DictReader(g, delimiter="|", quoting=csv.QUOTE_NONE)
|
163 |
+
for row in label_reader:
|
164 |
+
labels[row["phrase ids"]] = float(row["sentiment values"])
|
165 |
+
|
166 |
+
phrase_reader = csv.reader(f, delimiter="|", quoting=csv.QUOTE_NONE)
|
167 |
+
if self.config.name == "dictionary":
|
168 |
+
for id_, row in enumerate(phrase_reader):
|
169 |
+
yield id_, {"phrase": row[0], "label": labels[row[1]]}
|
170 |
+
else:
|
171 |
+
for row in phrase_reader:
|
172 |
+
phrases[row[0]] = labels[row[1]]
|
173 |
+
|
174 |
+
# Case config=="default"
|
175 |
+
# Read parse trees for each complete sentence
|
176 |
+
trees = {}
|
177 |
+
with open(tokens_path, encoding="utf-8") as tok, open(trees_path, encoding="utf-8") as tr:
|
178 |
+
tok_reader = csv.reader(tok, delimiter="\t", quoting=csv.QUOTE_NONE)
|
179 |
+
tree_reader = csv.reader(tr, delimiter="\t", quoting=csv.QUOTE_NONE)
|
180 |
+
for i, row in enumerate(tok_reader, start=1):
|
181 |
+
trees[i] = {}
|
182 |
+
trees[i]["tokens"] = row[0]
|
183 |
+
for i, row in enumerate(tree_reader, start=1):
|
184 |
+
trees[i]["tree"] = row[0]
|
185 |
+
|
186 |
+
with open(splits_path, encoding="utf-8") as spl, open(sentences_path, encoding="utf-8") as snt:
|
187 |
+
splits_reader = csv.DictReader(spl, delimiter=",", quoting=csv.QUOTE_NONE)
|
188 |
+
splits = {row["sentence_index"]: row["splitset_label"] for row in splits_reader}
|
189 |
+
|
190 |
+
sentence_reader = csv.DictReader(snt, delimiter="\t", quoting=csv.QUOTE_NONE)
|
191 |
+
for id_, row in enumerate(sentence_reader):
|
192 |
+
# fix encoding, see https://github.com/huggingface/datasets/pull/1961#discussion_r585969890
|
193 |
+
row["sentence"] = (
|
194 |
+
row["sentence"]
|
195 |
+
.encode("utf-8")
|
196 |
+
.replace(b"\xc3\x83\xc2", b"\xc3")
|
197 |
+
.replace(b"\xc3\x82\xc2", b"\xc2")
|
198 |
+
.decode("utf-8")
|
199 |
+
)
|
200 |
+
row["sentence"] = row["sentence"].replace("-LRB-", "(").replace("-RRB-", ")")
|
201 |
+
if splits[row["sentence_index"]] == split_id:
|
202 |
+
tokens = trees[int(row["sentence_index"])]["tokens"]
|
203 |
+
parse_tree = trees[int(row["sentence_index"])]["tree"]
|
204 |
+
yield id_, {
|
205 |
+
"sentence": row["sentence"],
|
206 |
+
"label": phrases[row["sentence"]],
|
207 |
+
"tokens": tokens,
|
208 |
+
"tree": parse_tree,
|
209 |
+
}
|