id
int64
0
6k
code
stringlengths
4k
8k
code_compressed
null
400
# -*- coding: utf-8 -*- from PySide2.QtCore import Qt from PySide2.QtWidgets import QDialogButtonBox, QMessageBox, QWidget from activity_browser.ui.widgets import ( BiosphereUpdater, SwitchComboBox, CutoffMenu, ForceInputDialog, parameter_save_errorbox, simple_warning_box ) # NOTE: No way of testing the BiosphereUpdater class without causing the # ab_app fixture to flip its lid and fail to clean itself up. def test_comparison_switch_empty(qtbot): parent = QWidget() parent.has_scenarios = False qtbot.addWidget(parent) box = SwitchComboBox(parent) box.configure(False, False) size = box.count() assert size == 0 assert not box.isVisible() def test_comparison_switch_no_scenarios(qtbot): parent = QWidget() parent.has_scenarios = False qtbot.addWidget(parent) box = SwitchComboBox(parent) box.configure() size = box.count() assert size == 2 # assert box.isVisible() # Box fails to be visible, except it definitely is? def METHOD_NAME(qtbot): parent = QWidget() parent.has_scenarios = True qtbot.addWidget(parent) box = SwitchComboBox(parent) box.configure() size = box.count() assert size == 3 # assert box.isVisible() # Box fails to be visible, except it definitely is? #Outdated doesnt work with the new update # def test_cutoff_menu_relative(qtbot): # """ Simple check of all the slots on the CutoffMenu class # """ # slider = CutoffMenu() # qtbot.addWidget(slider) # assert slider.cutoff_value == 0.01 # assert slider.is_relative # # assert slider.sliders.relative.value() == 20 # assert slider.sliders.relative.log_value == 1.8 # qtbot.mouseClick(slider.cutoff_slider_lft_btn, Qt.LeftButton) # assert slider.sliders.relative.value() == 21 # assert slider.sliders.relative.log_value == 2.0 # qtbot.mouseClick(slider.cutoff_slider_rght_btn, Qt.LeftButton) # assert slider.sliders.relative.value() == 20 # assert slider.sliders.relative.log_value == 1.8 # # with qtbot.waitSignal(slider.slider_change, timeout=1600): # slider.cutoff_slider_line.setText("0.1") # assert slider.sliders.relative.value() == 40 # assert slider.sliders.relative.log_value == 10 def test_cutoff_slider_toggle(qtbot): slider = CutoffMenu() qtbot.addWidget(slider) with qtbot.waitSignal(slider.buttons.topx.toggled, timeout=800): slider.buttons.topx.click() assert not slider.is_relative assert slider.limit_type == "number" # def test_cutoff_slider_top(qtbot): # slider = CutoffMenu() # qtbot.addWidget(slider) # slider.buttons.topx.click() # # assert slider.sliders.topx.value() == 1 # qtbot.mouseClick(slider.cutoff_slider_rght_btn, Qt.LeftButton) # assert slider.sliders.topx.value() == 2 # qtbot.mouseClick(slider.cutoff_slider_lft_btn, Qt.LeftButton) # assert slider.sliders.topx.value() == 1 # # with qtbot.waitSignal(slider.slider_change, timeout=1600): # slider.cutoff_slider_line.setText("15") # assert slider.sliders.topx.value() == 15 def test_input_dialog(qtbot): """ Test the various thing about the dialog widget. """ parent = QWidget() qtbot.addWidget(parent) dialog = ForceInputDialog.get_text( parent, "Early in the morning", "What should we do with a drunken sailor" ) assert dialog.output == "" assert not dialog.buttons.button(QDialogButtonBox.Ok).isEnabled() existing = ForceInputDialog.get_text( parent, "Existence", "is a nightmare", "and here is why" ) assert existing.output == "and here is why" # Text in dialog MUST be changed before Ok button is enabled. assert not dialog.buttons.button(QDialogButtonBox.Ok).isEnabled() with qtbot.waitSignal(dialog.input.textChanged, timeout=100): dialog.input.setText("Now it works.") assert dialog.buttons.button(QDialogButtonBox.Ok).isEnabled() def test_parameter_errorbox(qtbot, monkeypatch): """ Not truly used anymore in favour of not saving invalid values. """ parent = QWidget() qtbot.addWidget(parent) monkeypatch.setattr(QMessageBox, "exec_", lambda *args: QMessageBox.Cancel) result = parameter_save_errorbox(parent, "got an error") assert result == QMessageBox.Cancel def test_simple_warning_box(qtbot, monkeypatch): parent = QWidget() qtbot.addWidget(parent) monkeypatch.setattr(QMessageBox, "warning", lambda *args: QMessageBox.Ok) result = simple_warning_box(parent, "Warning title", "This is a warning") assert result == QMessageBox.Ok
null
401
# coding=utf-8 # Copyright 2023 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Script utils for generating datasets figures and dataframes.""" import concurrent.futures import functools import itertools import multiprocessing import os import traceback from typing import Any, Callable, List, Optional, TypeVar from absl import app from absl import logging import tensorflow_datasets as tfds from tensorflow_datasets.core.utils.lazy_imports_utils import tensorflow as tf # pylint: disable=logging-format-interpolation,logging-not-lazy,logging-fstring-interpolation T = TypeVar('T') _WORKER_COUNT_DATASETS = 10 def _log_exception(fn): """Logs the exceptions from a `ThreadPoolExecutor`.""" @functools.wraps(fn) def decorated(*args, **kwargs): try: return fn(*args, **kwargs) except Exception: # pylint: disable=broad-except err_str = traceback.format_exc() logging.error(f'Exception occurred for {args}, {kwargs}:\n' + err_str) raise return decorated @_log_exception def generate_and_save_artifact( full_name: str, *, dst_dir: tfds.typing.PathLike, overwrite: bool, file_extension: str, get_artifact_fn: Callable[[tf.data.Dataset, tfds.core.DatasetInfo], T], save_artifact_fn: Callable[[str, T], None], ) -> None: """Builds and saves the generated artifact for the dataset in dst_dir. Args: full_name: Name of the dataset to build `dataset`, `dataset/config`. dst_dir: Destination where the dataset will be saved (as `dataset-config-version`) overwrite: If True, recompute the image even if it exists. file_extension: File extension of the artifact (e.g. `.png`) get_artifact_fn: Function which extracts the dataset artifact to save. save_artifact_fn: Function which save the extracted artifact. """ dst_filename = full_name.replace('/', '-') + file_extension dst_path = os.path.join(dst_dir, dst_filename) # If the file already exists, skip the generation if not overwrite and tf.io.gfile.exists(dst_path): logging.info(f'Skipping generation for {full_name} (already exists)') return logging.info(f'Generating for {full_name}...') # Load the dataset. builder_name, _, version = full_name.rpartition('/') builder = tfds.builder(f'{builder_name}:{version}') split_names = list(builder.info.splits.keys()) if not split_names: logging.info(f'Dataset `{full_name}` not generated.') return elif 'train' in split_names: split = 'train' else: split = split_names[0] ds = builder.as_dataset(split=split, shuffle_files=False) if not tf.io.gfile.exists(dst_dir): tf.io.gfile.makedirs(dst_dir) try: artifact = get_artifact_fn(ds.take(10), builder.info) except Exception: # pylint: disable=broad-except logging.info(f'Generation not supported for dataset `{full_name}`') return save_artifact_fn(dst_path, artifact) def _get_full_names(datasets: Optional[List[str]] = None) -> List[str]: """Lists all builder names `ds/version` and `ds/config/version` to generate. Args: datasets: List of datasets from which get the builder names. Returns: builder_names: The builder names. """ if datasets is None: return tfds.core.load.list_full_names(current_version_only=True) else: builder_names = list( itertools.chain.from_iterable( [ tfds.core.load.single_full_names(builder_name) for builder_name in datasets ] ) ) return builder_names def multi_process_map( worker_fn: Callable[..., None], datasets: Optional[List[str]] = None, ) -> None: """Applies the function for each given datasets. Args: worker_fn: Function called on each dataset version. datasets: List of all `dataset` names to generate. If None, visualization for all available datasets will be generated. """ full_names = _get_full_names(datasets) logging.info(f'Generate figures for {len(full_names)} builders') with multiprocessing.Pool(_WORKER_COUNT_DATASETS) as tpool: list(tpool.map(worker_fn, full_names)) def METHOD_NAME( worker_fn: Callable[..., None], datasets: Optional[List[str]] = None, ) -> None: """Applies the function for each given datasets. Args: worker_fn: Function called on each dataset version. datasets: List of all `dataset` names to generate. If None, visualization for all available datasets will be generated. """ full_names = _get_full_names(datasets) with concurrent.futures.ThreadPoolExecutor( max_workers=_WORKER_COUNT_DATASETS, ) as executor: list(executor.map(worker_fn, full_names)) def multi_process_run(main: Callable[[Any], None]) -> None: """Same as `absl.app.run` but with special multiprocess flags.""" app.run(main)
null
402
# Copyright 2021 Sony Corporation. # Copyright 2021 Sony Group Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import cv2 import numpy as np import time from models.decode import ctdet_decode from utils.post_process import ctdet_post_process import nnabla as nn import nnabla.functions as F from .base_detector import BaseDetector class CtdetDetector(BaseDetector): def __init__(self, opt): super(CtdetDetector, self).__init__(opt) def METHOD_NAME(self, images): """ Apply detection to input images. Args: images (numpy.ndarray): Input images with "NCHW" format. Returns: tuple: containing the following items - outputs: Output of NN model. - dets: Detection results with the same format of dataset. - forward_time: Processing time. """ inputs = nn.Variable.from_numpy_array(images) outputs = self.model(inputs) hm = outputs['hm'] hm = F.sigmoid(hm) wh = outputs['wh'] reg = outputs['reg'] if self.opt.channel_last: hm = F.transpose(hm, (0, 3, 1, 2)) wh = F.transpose(wh, (0, 3, 1, 2)) reg = F.transpose(reg, (0, 3, 1, 2)) forward_time = time.time() dets = ctdet_decode(hm, wh, reg=reg, K=self.opt.K) return outputs, dets, forward_time def post_process(self, dets, meta, scale=1): dets = dets.reshape(1, -1, dets.shape[2]) dets = ctdet_post_process( dets.copy(), [meta['c']], [meta['s']], meta['out_height'], meta['out_width'], self.opt.num_classes, ) for j in range(1, self.opt.num_classes + 1): dets[0][j] = np.array(dets[0][j], dtype=np.float32).reshape(-1, 5) dets[0][j][:, :4] /= scale return dets[0] def merge_outputs(self, detections): """Merge detection results. Args: detections (list): List of detection results. Each 1-based detection result will be saved to dictionary. Returns: dict: Merged detection results. The keys will be [1, 2, ..., num_classes]. """ results = {} for j in range(1, self.opt.num_classes + 1): results[j] = np.concatenate( [detection[j] for detection in detections], axis=0 ).astype(np.float32) scores = np.hstack( [results[j][:, 4] for j in range(1, self.opt.num_classes + 1)] ) if len(scores) > self.max_per_image: kth = len(scores) - self.max_per_image thresh = np.partition(scores, kth)[kth] for j in range(1, self.opt.num_classes + 1): keep_inds = results[j][:, 4] >= thresh results[j] = results[j][keep_inds] return results def debug(self, debugger, images, dets, output, scale=1): detection = dets.copy() detection[:, :, :4] *= self.opt.down_ratio hm = output['hm'] hm = F.sigmoid(hm) if self.opt.channel_last: hm = F.transpose(hm, (0, 3, 1, 2)) for i in range(1): if self.opt.mixed_precision: # Removing pad from input image for drawing img = images[i][:, :, :3] if not self.opt.channel_last: img = images[i].transpose(1, 2, 0) img = ((img * self.std + self.mean) * 255).astype(np.uint8) pred = debugger.gen_colormap(hm[i].d) debugger.add_blend_img(img, pred, 'pred_hm_{:.1f}'.format(scale)) debugger.add_img(img, img_id='out_pred_{:.1f}'.format(scale)) for k in range(len(dets[i])): if detection[i, k, 4] > self.opt.vis_thresh: debugger.add_coco_bbox( detection[i, k, :4], detection[i, k, -1], detection[i, k, 4], img_id='out_pred_{:.1f}'.format(scale), ) for j in range(hm[i].shape[0]): hmap = hm[i][j].d hmap *= 255 hmap = hmap.astype('uint8') print("max at channel {}:".format(j), np.max(hmap)) hmap = cv2.applyColorMap(hmap, cv2.COLORMAP_JET) debugger.add_img( hmap, img_id='heatmap_{}_{:.1f}'.format(j, scale) ) def show_results(self, debugger, image, results): debugger.add_img(image, img_id='ctdet') for j in range(1, self.opt.num_classes + 1): for bbox in results[j]: if bbox[4] > self.opt.vis_thresh: debugger.add_coco_bbox( bbox[:4], j - 1, bbox[4], img_id='ctdet' ) debugger.show_all_imgs(path=self.opt.save_dir)
null
403
"""Handle omega (specimen rotation) metadata * OmegaWedges class specifies omega metadata in wedges """ import numpy as np from .baseclass import ImageSeries OMEGA_KEY = 'omega' class OmegaImageSeries(ImageSeries): """ImageSeries with omega metadata""" DFLT_TOL = 1.0e-6 TAU = 360 def __init__(self, ims): """This class is initialized with an existing imageseries""" # check for omega metadata if OMEGA_KEY in ims.metadata: self._omega = ims.metadata[OMEGA_KEY] if len(ims) != self._omega.shape[0]: msg = 'omega array mismatch: array has %s frames, expecting %s' msg = msg % (self._omega.shape[0], len(ims)) raise OmegaSeriesError(msg) else: raise OmegaSeriesError('Imageseries has no omega metadata') super(OmegaImageSeries, self).__init__(ims) self._make_wedges() def _make_wedges(self, tol=DFLT_TOL): nf = len(self) om = self.omega # find the frames where the wedges break starts = [0] delta = om[0, 1] - om[0, 0] omlast = om[0, 1] for f in range(1, nf): if delta <= 0: raise OmegaSeriesError('omega array must be increasing') # check whether delta changes or ranges not contiguous d = om[f,1] - om[f,0] if (np.abs(d - delta) > tol) or (np.abs(om[f,0] - omlast) > tol): starts.append(f) delta = d omlast = om[f, 1] starts.append(nf) nw = len(starts) - 1 nf0 = 0 self._wedge_om = np.zeros((nw, 3)) self._wedge_f = np.zeros((nw, 2), dtype=int) self._omegawedges = OmegaWedges(nf) for s in range(nw): ostart = om[starts[s], 0] ostop = om[starts[s + 1] - 1, 1] steps = starts[s+1] - starts[s] self._omegawedges.addwedge(ostart, ostop, steps) # delta = (ostop - ostart)/steps self._wedge_om[s, :] = (ostart, ostop, delta) self._wedge_f[s, 0] = nf0 self._wedge_f[s, 1] = steps nf0 += steps assert(nf0 == nf) @property def omega(self): """return omega range array (nframes, 2)""" return self._omega @property def omegawedges(self): return self._omegawedges @property def nwedges(self): return self.omegawedges.nwedges def wedge(self, i): """return i'th wedge as a dictionary""" d = self.omegawedges.METHOD_NAME[i] delta = (d['ostop'] - d['ostart'])/d['nsteps'] d.update(delta=delta) return d def omega_to_frame(self, om): """Return frame and wedge which includes given omega, -1 if not found""" f = -1 w = -1 for i in range(len(self._wedge_om)): omin = self._wedge_om[i, 0] omax = self._wedge_om[i, 1] omcheck = omin + np.mod(om - omin, self.TAU) if omcheck < omax: odel = self._wedge_om[i, 2] f = self._wedge_f[i,0] + int(np.floor((omcheck - omin)/odel)) w = i break return f, w def omegarange_to_frames(self, omin, omax): """Return list of frames for range of omegas""" noframes = () f0, w0 = self.omega_to_frame(omin) if w0 < 0: return noframes f1, w1 = self.omega_to_frame(omax) if w1 < 0: return noframes # if same wedge, require frames be increasing if (w0 == w1) and (f1 > f0): return list(range(f0, f1+1)) # case: adjacent wedges with 2pi jump in omega w0max = self._wedge_om[w0, 1] w1min = self._wedge_om[w1, 0] if np.mod(np.abs(w1min - w0max), self.TAU) < self.DFLT_TOL: r0 = list(range(f0, self._wedge_f[w0, 0] + self._wedge_f[w0, 1])) r1 = list(range(self._wedge_f[w1, 0], f1 + 1)) return r0 + r1 return noframes class OmegaWedges(object): """piecewise linear omega ranges""" def __init__(self, nframes): """Constructor for OmegaWedge""" self.nframes = nframes self._wedges = [] # # ============================== API # @property def omegas(self): """n x 2 array of omega values, one per frame""" if self.nframes != self.wframes: msg = "number of frames (%s) does not match "\ "number of wedge frames (%s)" %(self.nframes, self.wframes) raise OmegaSeriesError(msg) oa = np.zeros((self.nframes, 2)) wstart = 0 for w in self.METHOD_NAME: ns = w['nsteps'] wr = list(range(wstart, wstart + ns)) wa0 = np.linspace(w['ostart'], w['ostop'], ns + 1) oa[wr, 0] = wa0[:-1] oa[wr, 1] = wa0[1:] wstart += ns return oa @property def nwedges(self): """number of wedges""" return len(self._wedges) @property def METHOD_NAME(self): """list of wedges (dictionaries)""" return self._wedges def addwedge(self, ostart, ostop, nsteps, loc=None): """add wedge to list""" d = dict(ostart=ostart, ostop=ostop, nsteps=nsteps) if loc is None: loc = self.nwedges self.METHOD_NAME.insert(loc, d) def delwedge(self, i): """delete wedge number i""" self.METHOD_NAME.pop(i) @property def wframes(self): """number of frames in wedges""" wf = [w['nsteps'] for w in self.METHOD_NAME] return int(np.sum(wf)) def save_omegas(self, fname): """save omegas to text file""" np.save(fname, self.omegas) pass # end class class OmegaSeriesError(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value)
null
404
# Copyright (c) ZenML GmbH 2023. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing # permissions and limitations under the License. """Integration tests for step run models.""" import inspect import random import string from typing import TYPE_CHECKING from tests.integration.functional.conftest import step_with_logs from tests.integration.functional.zen_stores.utils import ( constant_int_output_test_step, int_plus_one_test_step, ) from zenml.enums import ExecutionStatus if TYPE_CHECKING: from zenml.client import Client from zenml.models.step_run_models import StepRunResponseModel from zenml.pipelines.base_pipeline import BasePipeline def test_step_run_linkage(clean_client: "Client", one_step_pipeline): """Integration test for `step.run` property.""" step_ = constant_int_output_test_step() pipe: "BasePipeline" = one_step_pipeline(step_) pipe.run() # Non-cached run pipeline_run = pipe.model.last_run step_run = pipeline_run.steps["step_"] assert step_run.run == pipeline_run # Cached run pipe.run() pipeline_run_2 = pipe.model.last_run step_run_2 = pipeline_run_2.steps["step_"] assert step_run_2.status == ExecutionStatus.CACHED def test_step_run_parent_steps_linkage( clean_client: "Client", connected_two_step_pipeline ): """Integration test for `step.parent_steps` property.""" pipeline_instance = connected_two_step_pipeline( step_1=constant_int_output_test_step(), step_2=int_plus_one_test_step(), ) pipeline_instance.run() pipeline_run = pipeline_instance.model.last_run step_1 = pipeline_run.steps["step_1"] step_2 = pipeline_run.steps["step_2"] assert step_1.parent_steps == [] assert step_2.parent_steps == [step_1] def test_step_run_has_source_code(clean_client, connected_two_step_pipeline): """Test that the step run has correct source code.""" pipeline_instance = connected_two_step_pipeline( step_1=constant_int_output_test_step(), step_2=int_plus_one_test_step(), ) pipeline_instance.run() pipeline_run = clean_client.get_pipeline( "connected_two_step_pipeline" ).runs[0] step_1 = pipeline_run.steps["step_1"] step_2 = pipeline_run.steps["step_2"] assert step_1.source_code == inspect.getsource( constant_int_output_test_step.entrypoint ) assert step_2.source_code == inspect.getsource( int_plus_one_test_step.entrypoint ) def test_step_run_with_too_long_source_code_is_truncated( clean_client, connected_two_step_pipeline, mocker ): """Test that the step source code gets truncated if it is too long.""" random_source = "".join(random.choices(string.ascii_uppercase, k=1000000)) mocker.patch("zenml.steps.base_step.BaseStep.source_code", random_source) pipeline_instance = connected_two_step_pipeline( step_1=constant_int_output_test_step(), step_2=int_plus_one_test_step(), ) pipeline_instance.run() pipeline_run = clean_client.get_pipeline( "connected_two_step_pipeline" ).runs[0] step_1 = pipeline_run.steps["step_1"] step_2 = pipeline_run.steps["step_2"] assert step_1.source_code == random_source[:1000] + "..." assert step_2.source_code == random_source[:1000] + "..." def test_step_run_has_docstring(clean_client, connected_two_step_pipeline): """Test that the step run has correct docstring.""" pipeline_instance = connected_two_step_pipeline( step_1=constant_int_output_test_step(), step_2=int_plus_one_test_step(), ) pipeline_instance.run() pipeline_run = clean_client.get_pipeline( "connected_two_step_pipeline" ).runs[0] step_1 = pipeline_run.steps["step_1"] step_2 = pipeline_run.steps["step_2"] assert step_1.docstring == constant_int_output_test_step.entrypoint.__doc__ assert step_2.docstring == int_plus_one_test_step.entrypoint.__doc__ def test_step_run_with_too_long_docstring_is_truncated( clean_client, connected_two_step_pipeline, mocker ): """Test that the step docstring gets truncated if it is too long.""" random_docstring = "".join( random.choices(string.ascii_uppercase, k=1000000) ) mocker.patch("zenml.steps.base_step.BaseStep.docstring", random_docstring) pipeline_instance = connected_two_step_pipeline( step_1=constant_int_output_test_step(), step_2=int_plus_one_test_step(), ) pipeline_instance.run() pipeline_run = clean_client.get_pipeline( "connected_two_step_pipeline" ).runs[0] step_1 = pipeline_run.steps["step_1"] step_2 = pipeline_run.steps["step_2"] assert step_1.docstring == random_docstring[:1000] + "..." assert step_2.docstring == random_docstring[:1000] + "..." def test_disabling_step_logs(clean_client: "Client", one_step_pipeline): """Test that disabling step logs works.""" # By default, step logs should be enabled step_ = step_with_logs() pipe: "BasePipeline" = one_step_pipeline(step_) pipe.configure(enable_cache=False) pipe.run() _assert_step_logs_enabled(pipe) # Test disabling step logs on pipeline level pipe.configure(enable_step_logs=False) pipe.run() _assert_step_logs_disabled(pipe) pipe.configure(enable_step_logs=True) pipe.run() _assert_step_logs_enabled(pipe) # Test disabling step logs on step level # This should override the pipeline level setting step_.configure(enable_step_logs=False) pipe.run() _assert_step_logs_disabled(pipe) step_.configure(enable_step_logs=True) pipe.run() _assert_step_logs_enabled(pipe) # Test disabling step logs on run level # This should override both the pipeline and step level setting pipe.run(enable_step_logs=False) _assert_step_logs_disabled(pipe) pipe.configure(enable_step_logs=False) step_.configure(enable_step_logs=False) pipe.run(enable_step_logs=True) _assert_step_logs_enabled(pipe) def _assert_step_logs_enabled(pipe: "BasePipeline"): """Assert that step logs were enabled in the last run.""" assert METHOD_NAME(pipe).logs def _assert_step_logs_disabled(pipe: "BasePipeline"): """Assert that step logs were disabled in the last run.""" assert not METHOD_NAME(pipe).logs def METHOD_NAME( pipe: "BasePipeline", ) -> "StepRunResponseModel": """Get the output of the last run.""" return pipe.model.last_run.steps["step_"]
null
405
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkclickhouse.endpoint import endpoint_data class OperateLogHubRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'clickhouse', '2019-11-11', 'OperateLogHub') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_ResourceOwnerId(self): # Long return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self, ResourceOwnerId): # Long self.add_query_param('ResourceOwnerId', ResourceOwnerId) def get_Description(self): # String return self.get_query_params().get('Description') def set_Description(self, Description): # String self.add_query_param('Description', Description) def get_UseLorne(self): # Boolean return self.get_query_params().get('UseLorne') def set_UseLorne(self, UseLorne): # Boolean self.add_query_param('UseLorne', UseLorne) def get_DeliverName(self): # String return self.get_query_params().get('DeliverName') def set_DeliverName(self, DeliverName): # String self.add_query_param('DeliverName', DeliverName) def get_DeliverTime(self): # String return self.get_query_params().get('DeliverTime') def set_DeliverTime(self, DeliverTime): # String self.add_query_param('DeliverTime', DeliverTime) def get_DomainUrl(self): # String return self.get_query_params().get('DomainUrl') def set_DomainUrl(self, DomainUrl): # String self.add_query_param('DomainUrl', DomainUrl) def get_Password(self): # String return self.get_query_params().get('Password') def set_Password(self, Password): # String self.add_query_param('Password', Password) def get_AccessKey(self): # String return self.get_query_params().get('AccessKey') def set_AccessKey(self, AccessKey): # String self.add_query_param('AccessKey', AccessKey) def get_Create(self): # Boolean return self.get_query_params().get('Create') def set_Create(self, Create): # Boolean self.add_query_param('Create', Create) def get_TableName(self): # String return self.get_query_params().get('TableName') def set_TableName(self, TableName): # String self.add_query_param('TableName', TableName) def get_TaskId(self): # String return self.get_query_params().get('TaskId') def set_TaskId(self, TaskId): # String self.add_query_param('TaskId', TaskId) def get_ProjectName(self): # String return self.get_query_params().get('ProjectName') def set_ProjectName(self, ProjectName): # String self.add_query_param('ProjectName', ProjectName) def get_SchemaName(self): # String return self.get_query_params().get('SchemaName') def set_SchemaName(self, SchemaName): # String self.add_query_param('SchemaName', SchemaName) def get_AccessSecret(self): # String return self.get_query_params().get('AccessSecret') def set_AccessSecret(self, AccessSecret): # String self.add_query_param('AccessSecret', AccessSecret) def get_LogStoreName(self): # String return self.get_query_params().get('LogStoreName') def set_LogStoreName(self, LogStoreName): # String self.add_query_param('LogStoreName', LogStoreName) def get_ResourceOwnerAccount(self): # String return self.get_query_params().get('ResourceOwnerAccount') def set_ResourceOwnerAccount(self, ResourceOwnerAccount): # String self.add_query_param('ResourceOwnerAccount', ResourceOwnerAccount) def get_DBClusterId(self): # String return self.get_query_params().get('DBClusterId') def set_DBClusterId(self, DBClusterId): # String self.add_query_param('DBClusterId', DBClusterId) def get_OwnerAccount(self): # String return self.get_query_params().get('OwnerAccount') def set_OwnerAccount(self, OwnerAccount): # String self.add_query_param('OwnerAccount', OwnerAccount) def get_OwnerId(self): # Long return self.get_query_params().get('OwnerId') def set_OwnerId(self, OwnerId): # Long self.add_query_param('OwnerId', OwnerId) def get_LogHubStoress(self): # RepeatList return self.get_query_params().get('LogHubStores') def set_LogHubStoress(self, LogHubStores): # RepeatList for depth1 in range(len(LogHubStores)): if LogHubStores[depth1].get('LogKey') is not None: self.add_query_param('LogHubStores.' + str(depth1 + 1) + '.LogKey', LogHubStores[depth1].get('LogKey')) if LogHubStores[depth1].get('FieldKey') is not None: self.add_query_param('LogHubStores.' + str(depth1 + 1) + '.FieldKey', LogHubStores[depth1].get('FieldKey')) if LogHubStores[depth1].get('Type') is not None: self.add_query_param('LogHubStores.' + str(depth1 + 1) + '.Type', LogHubStores[depth1].get('Type')) def METHOD_NAME(self): # Boolean return self.get_query_params().get('FilterDirtyData') def set_FilterDirtyData(self, FilterDirtyData): # Boolean self.add_query_param('FilterDirtyData', FilterDirtyData) def get_UserName(self): # String return self.get_query_params().get('UserName') def set_UserName(self, UserName): # String self.add_query_param('UserName', UserName)
null
406
# Copyright 2021 Sony Corporation. # Copyright 2021 Sony Group Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import functools import nnabla as nn import nnabla.functions as F import nnabla.parametric_functions as PF def GLU(h): nc = h.shape[1] nc = nc // 2 return h[:, :nc] * F.sigmoid(h[:, nc:]) def Upsample(h, nmap_out, scope_name, scale=2): with nn.parameter_scope(scope_name): def sn_w(w): return PF.spectral_norm(w, dim=0) h = F.interpolate(h, scale=(scale, scale), mode="nearest") h = PF.convolution(h, nmap_out*2, (3, 3), pad=(1, 1), apply_w=sn_w, with_bias=False, name="conv1") h = PF.batch_normalization(h) h = GLU(h) return h def Downsample(h, nmap_out, scope_name): with nn.parameter_scope(scope_name): def sn_w(w): return PF.spectral_norm(w, dim=0) h = PF.convolution(h, nmap_out, (4, 4), stride=( 2, 2), pad=(1, 1), apply_w=sn_w, with_bias=False) h = PF.batch_normalization(h) h = F.leaky_relu(h, 0.2) return h def DownsampleComp(h, nmap_out, scope_name): with nn.parameter_scope(scope_name): def sn_w(w): return PF.spectral_norm(w, dim=0) # Main h0 = PF.convolution(h, nmap_out, (4, 4), stride=(2, 2), pad=( 1, 1), apply_w=sn_w, with_bias=False, name="main_conv1") h0 = PF.batch_normalization(h0, name="bn_main1") h0 = F.leaky_relu(h0, 0.2) h0 = PF.convolution(h0, nmap_out, (3, 3), pad=( 1, 1), apply_w=sn_w, with_bias=False, name="main_conv2") h0 = PF.batch_normalization(h0, name="bn_main2") h0 = F.leaky_relu(h0, 0.2) # Direct h1 = F.average_pooling(h, (2, 2), stride=(2, 2)) h1 = PF.convolution(h1, nmap_out, (1, 1), apply_w=sn_w, with_bias=False, name="direct_conv1") h1 = PF.batch_normalization(h1, name="direct_bn1") h1 = F.leaky_relu(h1, 0.2) return (h0 + h1) / 2.0 def SLE(f_large, f_small, scope_name): with nn.parameter_scope(scope_name): def sn_w(w): return PF.spectral_norm(w, dim=0) ada_pool_size = f_small.shape[2] // 4 h = F.average_pooling(f_small, (ada_pool_size, ada_pool_size), stride=( ada_pool_size, ada_pool_size)) h = PF.convolution( h, f_large.shape[1], (4, 4), apply_w=sn_w, with_bias=False, name="conv1") # Following the official implementation, this implementation uses swish instead of LeakyReLU here. h = h * F.sigmoid(h) h = PF.convolution( h, f_large.shape[1], (1, 1), apply_w=sn_w, with_bias=False, name="conv2") h = F.sigmoid(h) h = f_large * h return h def SimpleDecoder(fea, scope_name): # Get number of channels nfc_multi = {4: 16, 8: 8, 16: 4, 32: 2, 64: 2, 128: 1, 256: 0.5, 512: 0.25, 1024: 0.125} nfc = {} for k, v in nfc_multi.items(): nfc[k] = int(v*32) with nn.parameter_scope(scope_name): def sn_w(w): return PF.spectral_norm(w, dim=0) h = Upsample(fea, nfc[16], "up8->16") h = Upsample(h, nfc[32], "up16->32") h = Upsample(h, nfc[64], "up32->64") h = Upsample(h, nfc[128], "up64->128") h = PF.convolution(h, 3, (3, 3), pad=( 1, 1), apply_w=sn_w, with_bias=False, name="conv1") img = F.tanh(h) return img def METHOD_NAME(img, label="real", scope_name="Discriminator", ndf=64): with nn.parameter_scope(scope_name): if type(img) is not list: img_small = F.interpolate(img, output_size=(128, 128)) else: img_small = img[1] img = img[0] def sn_w(w): return PF.spectral_norm(w, dim=0) # InitLayer: -> 256x256 with nn.parameter_scope("init"): h = img if img.shape[2] == 1024: h = PF.convolution(h, ndf//8, (4, 4), stride=(2, 2), pad=(1, 1), apply_w=sn_w, with_bias=False, name="conv1") h = F.leaky_relu(h, 0.2) h = PF.convolution(h, ndf//4, (4, 4), stride=(2, 2), pad=(1, 1), apply_w=sn_w, with_bias=False, name="conv2") h = PF.batch_normalization(h) h = F.leaky_relu(h, 0.2) elif img.shape[2] == 512: h = PF.convolution(h, ndf//4, (4, 4), stride=(2, 2), pad=(1, 1), apply_w=sn_w, with_bias=False, name="conv2") h = F.leaky_relu(h, 0.2) else: h = PF.convolution(h, ndf//4, (3, 3), pad=(1, 1), apply_w=sn_w, with_bias=False, name="conv3") h = F.leaky_relu(h, 0.2) # Calc base features f_256 = h f_128 = DownsampleComp(f_256, ndf//2, "down256->128") f_64 = DownsampleComp(f_128, ndf*1, "down128->64") f_32 = DownsampleComp(f_64, ndf*2, "down64->32") # Apply SLE f_32 = SLE(f_32, f_256, "sle256->32") f_16 = DownsampleComp(f_32, ndf*4, "down32->16") f_16 = SLE(f_16, f_128, "sle128->16") f_8 = DownsampleComp(f_16, ndf*16, "down16->8") f_8 = SLE(f_8, f_64, "sle64->8") # Conv + BN + LeakyRely + Conv -> logits (5x5) with nn.parameter_scope("last"): h = PF.convolution(f_8, ndf*16, (1, 1), apply_w=sn_w, with_bias=False, name="conv1") h = PF.batch_normalization(h) h = F.leaky_relu(h, 0.2) logit_large = PF.convolution( h, 1, (4, 4), apply_w=sn_w, with_bias=False, name="conv2") # Another path: "down_from_small" in the official code with nn.parameter_scope("down_from_small"): h_s = PF.convolution(img_small, ndf//2, (4, 4), stride=(2, 2), pad=(1, 1), apply_w=sn_w, with_bias=False, name="conv1") h_s = F.leaky_relu(h_s, 0.2) h_s = Downsample(h_s, ndf*1, "dfs64->32") h_s = Downsample(h_s, ndf*2, "dfs32->16") h_s = Downsample(h_s, ndf*4, "dfs16->8") fea_dec_small = h_s logit_small = PF.convolution( h_s, 1, (4, 4), apply_w=sn_w, with_bias=False, name="conv2") # Concatenate logits logits = F.concatenate(logit_large, logit_small, axis=1) # Reconstruct images rec_img_big = SimpleDecoder(f_8, "dec_big") rec_img_small = SimpleDecoder(fea_dec_small, "dec_small") part_ax2 = F.rand(shape=(img.shape[0],)) part_ax3 = F.rand(shape=(img.shape[0],)) f_16_ax2 = F.where(F.greater_scalar(part_ax2, 0.5), f_16[:, :, :8, :], f_16[:, :, 8:, :]) f_16_part = F.where(F.greater_scalar(part_ax3, 0.5), f_16_ax2[:, :, :, :8], f_16_ax2[:, :, :, 8:]) rec_img_part = SimpleDecoder(f_16_part, "dec_part") if label == "real": return logits, [rec_img_big, rec_img_small, rec_img_part], [part_ax2, part_ax3] else: return logits
null
407
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License # """Entity implementing the glue between the policy engine and the rest of the system.""" import traceback from typing import TYPE_CHECKING from .policy_local import PolicyLocal from ..dispatch import LogAdapter, LOG_INFO, LOG_DEBUG, LOG_ERROR, LOG_WARNING if TYPE_CHECKING: from ..management.agent import Agent class PolicyManager: """ """ def __init__(self, agent: 'Agent') -> None: """ """ self._agent = agent self._policy_local = PolicyLocal(self) self.log_adapter = LogAdapter("POLICY") self._use_hostname_patterns = False def log(self, level, text): info = traceback.extract_stack(limit=2)[0] # Caller frame info self.log_adapter.log(level, text, info[0], info[1]) def _log(self, level: int, text: str) -> None: info = traceback.extract_stack(limit=3)[0] # Caller's caller frame info self.log_adapter.log(level, text, info[0], info[1]) def log_debug(self, text): self._log(LOG_DEBUG, text) def log_info(self, text: str) -> None: self._log(LOG_INFO, text) def log_error(self, text): self._log(LOG_ERROR, text) def log_warning(self, text): self._log(LOG_WARNING, text) def get_agent(self): return self._agent def get_use_hostname_patterns(self): return self._use_hostname_patterns def set_use_hostname_patterns(self, v: bool) -> None: self._use_hostname_patterns = v self._policy_local.use_hostname_patterns = v # # Management interface to create a ruleset # def create_ruleset(self, attributes): """ Create named policy ruleset @param[in] attributes: from config """ self._policy_local.create_ruleset(attributes) # # Management interface to delete a ruleset # def delete_ruleset(self, id): """ Delete named policy ruleset @param[in] id: ruleset name """ self._policy_local.policy_delete(id) # # Management interface to update a ruleset # def update_ruleset(self, attributes): """ Update named policy ruleset @param[in] id: ruleset name """ self._policy_local.create_ruleset(attributes) # # Management interface to set the default vhost # def set_default_vhost(self, name: str) -> None: """ Set default application @param name: @return: """ self._policy_local.set_default_vhost(name) # # Runtime query interface # def lookup_vhost_alias(self, vhost_in): """ Resolve given vhost name to vhost settings name. If the incoming name is a vhost hostname then return the same name. If the incoming name is a vhost alias hostname then return the containing vhost name. If a default vhost is defined then return its name. :param vhost_in: vhost name to test :return: name of policy settings vhost to be applied. Or blank if not defined. """ return self._policy_local.lookup_vhost_alias(vhost_in) def lookup_user(self, user, rhost, vhost, conn_name, conn_id): """ Lookup function called from C. Determine if a user on host accessing app through AMQP Open is allowed according to the policy access rules. If allowed then return the policy settings name @param[in] user connection authId @param[in] rhost connection remote host numeric IP address as string @param[in] vhost application user is accessing @param[in] conn_name connection name for accounting purposes @param[in] conn_id internal connection id @return settings user-group name if allowed; "" if not allowed """ return self._policy_local.lookup_user(user, rhost, vhost, conn_name, conn_id) def lookup_settings(self, vhost, name, upolicy): """ Given a settings name, return the aggregated policy blob. @param[in] vhost: vhost user is accessing @param[in] name: user group name @param[out] upolicy: map that receives the settings @return settings were retrieved or not """ return self._policy_local.lookup_settings(vhost, name, upolicy) def close_connection(self, conn_id): """ The connection identifed is closing. Remove it from the connection accounting tables. @param facts: @return: none """ self._policy_local.close_connection(conn_id) def METHOD_NAME(self, size: int) -> None: """ Policy has set global maxMessageSize. :param size: :return: none """ self._policy_local.METHOD_NAME(size) # # # def policy_lookup_vhost_alias(mgr, vhost): """ Look up a vhost in the policy database Called by C code @param mgr: policy_manager @param vhost: Incoming vhost from an AMQP Open @return: name of policy settings vhost to be applied or blank if lookup failed. """ return mgr.lookup_vhost_alias(vhost) # # # def policy_lookup_user(mgr, user, rhost, vhost, conn_name, conn_id): """ Look up a user in the policy database Called by C code @param mgr: @param user: @param rhost: @param vhost: @param conn_name: @return: """ return mgr.lookup_user(user, rhost, vhost, conn_name, conn_id) # # # def policy_close_connection(mgr, conn_id): """ Close the connection. Called by C code @param mgr: @param conn_id: @return: """ mgr.close_connection(conn_id) # # # def policy_lookup_settings(mgr, vhost, name, upolicy): """ Return settings for <vhost, usergroup> in upolicy map @param mgr: @param vhost: @param name: @param upolicy: @return: """ return mgr.lookup_settings(vhost, name, upolicy)
null
408
from __future__ import print_function import IMP import IMP.test import sys import IMP.em import IMP.multifit import os try: from time import process_time # needs python 3.3 or later except ImportError: from time import clock as process_time class Tests(IMP.test.TestCase): """Tests for sampled density maps""" def METHOD_NAME(self): """initialize IMP environment create particles""" IMP.test.TestCase.METHOD_NAME(self) # init IMP model ( the environment) self.mdl = IMP.Model() self.sel = IMP.atom.CAlphaPDBSelector() self.mhs = IMP.atom.Hierarchies() self.mhs.append( IMP.atom.read_pdb(self.get_input_file_name("1z5s_A.pdb"), self.mdl, self.sel)) self.mhs.append( IMP.atom.read_pdb(self.get_input_file_name("1z5s_C1.pdb"), self.mdl, self.sel)) self.voxel_size = 1. self.rbs = [] for mh in self.mhs: IMP.atom.add_radii(mh) IMP.multifit.add_surface_index(mh, self.voxel_size) self.rbs.append(IMP.atom.create_rigid_body(mh)) restraints = [] # set the restraint hub = IMP.core.HarmonicUpperBound(0, 1) sdps = IMP.core.SphereDistancePairScore(hub) rdps = IMP.core.RigidBodyDistancePairScore(sdps, IMP.multifit.RigidLeavesRefiner()) lsc = IMP.container.ListSingletonContainer(self.mdl, self.rbs) self.c_r = IMP.core.ConnectivityRestraint(rdps, lsc) restraints.append(self.c_r) self.sf = IMP.core.RestraintsScoringFunction(restraints) print("going to evaluate 2") self.sf.evaluate(False) self.wev_r = IMP.multifit.create_weighted_excluded_volume_restraint( self.rbs[0], self.rbs[1]) restraints.append(self.wev_r) self.sf = IMP.core.RestraintsScoringFunction(restraints) print("going to evaluate 1") self.sf.evaluate(False) print("end setup") def test_weighted_excluded_volume_restraint(self): """Check that weighted excluded volume restraint works""" # IMP.set_log_level(IMP.VERBOSE) rotations = [[0.960739, 0.177613, -0.196201, 0.0833023], [0.98373, -0.0268444, -0.115434, -0.135015], [0.995413, 0.0545123, -0.0635521, 0.0462946], [0.99739, 0.0503421, -0.000272958, -0.0517479], [0.953478, 0.148336, -0.198021, 0.17223], [0.994239, 0.0570374, -0.0140131, 0.089658], [0.98401, 0.148801, -0.00937242, 0.0974403], [0.864194, -0.251682, 0.325705, -0.28938], [0.952222, -0.155235, -0.253447, -0.0702893], [0.881024, -0.405223, 0.154964, -0.188619]] translations = [IMP.algebra.Vector3D(7.37269, -32.1143, -68.123), IMP.algebra.Vector3D(-26.968, 30.7037, -18.9437), IMP.algebra.Vector3D(-0.990538, -13.8685, -18.359), IMP.algebra.Vector3D(-4.79513, 3.45006, -9.39788), IMP.algebra.Vector3D(18.2439, -40.6508, -62.0047), IMP.algebra.Vector3D(10.7605, -26.9859, -11.0509), IMP.algebra.Vector3D(13.1573, -34.8041, -26.6549), IMP.algebra.Vector3D(46.1903, 87.4569, 58.9899), IMP.algebra.Vector3D(-32.0694, 24.0887, -33.828), IMP.algebra.Vector3D(20.1398, 111.715, 60.5263)] # move chain A and calculate weighted excluded volume ps1 = IMP.core.get_leaves(self.mhs[0]) IMP.set_log_level(IMP.SILENT) # VERBOSE) for i in range(10): t = IMP.algebra.Transformation3D( IMP.algebra.Rotation3D( rotations[i][0], rotations[i][1], rotations[i][2], rotations[i][3]), translations[i]) xyz = IMP.core.XYZ(self.rbs[0].get_particle()) xyz.set_coordinates(t.get_transformed(xyz.get_coordinates())) # check that when the proteins are not connected (self.c_r>0) the excluded volume # restraint is bigger than 0 start = process_time() # to make sure the coordinates were transformed self.mdl.update() end = process_time() print("Time elapsed for PairRestraint evaluation = ", end - start, "seconds") conn_r = self.c_r.evaluate(False) w_exc_vol_r = self.wev_r.evaluate(False) self.assertTrue( ((conn_r == 0.)and(w_exc_vol_r > 0.))or( (conn_r > 0.)and(w_exc_vol_r == 0.)), "inconsistency between connectivity and excluded volume restraint") # print "connectivity "+str(conn_r) + " | excluded-volume " + # str(w_exc_vol_r) xyz.set_coordinates( t.get_inverse().get_transformed(xyz.get_coordinates())) if __name__ == '__main__': IMP.test.main()
null
409
# -*- coding: utf-8 -*- import os import math import codecs import torch import pyonmttok from onmt.constants import DefaultTokens from onmt.transforms import TransformPipe class IterOnDevice(torch.utils.data.IterableDataset): """Sent items from `iterable` on `device_id` and yield.""" def __init__(self, iterable, device_id): super(IterOnDevice).__init__() self.iterable = iterable self.device_id = device_id # temporary as long as translation_server and scoring_preparator still use lists if hasattr(iterable, "transforms"): self.transform = TransformPipe.build_from( [iterable.transforms[name] for name in iterable.transforms] ) @staticmethod def batch_to_device(tensor_batch, device_id): """Move `batch` to `device_id`, cpu if `device_id` < 0.""" device = torch.device(device_id) if device_id >= 0 else torch.device("cpu") for key in tensor_batch.keys(): if key != "src_ex_vocab": tensor_batch[key] = tensor_batch[key].to(device) def __iter__(self): for tensor_batch in self.iterable: self.batch_to_device(tensor_batch, self.device_id) yield tensor_batch def build_vocab(opt, specials): """Build vocabs dict to be stored in the checkpoint based on vocab files having each line [token, count] Args: opt: src_vocab, tgt_vocab, n_src_feats Return: vocabs: {'src': pyonmttok.Vocab, 'tgt': pyonmttok.Vocab, 'src_feats' : [pyonmttok.Vocab, ...]}, 'data_task': seq2seq or lm 'decoder_start_token': DefaultTokens.BOS } """ def _pad_vocab_to_multiple(vocab, multiple): vocab_size = len(vocab) if vocab_size % multiple == 0: return vocab target_size = int(math.ceil(vocab_size / multiple)) * multiple for i in range(target_size - vocab_size): vocab.add_token(DefaultTokens.VOCAB_PAD + str(i)) return vocab default_specials = opt.default_specials vocabs = {} src_vocab = _read_vocab_file(opt.src_vocab, opt.src_words_min_frequency) src_specials = [ item for item in (default_specials + specials["src"]) if item not in src_vocab ] if DefaultTokens.SEP in src_specials and ( "<0x0A>" in src_vocab or "Ċ" in src_vocab ): # this is hack: if the special separator ⦅newline⦆is returned because of the # "docify" transform.get_specials we don't add it if the corresponding newline code # is already included in the sentencepiece or BPE-with-gpt2-pretok. src_specials.remove(DefaultTokens.SEP) src_vocab = pyonmttok.build_vocab_from_tokens( src_vocab, maximum_size=opt.src_vocab_size, special_tokens=src_specials ) src_vocab.default_id = src_vocab[DefaultTokens.UNK] if opt.vocab_size_multiple > 1: src_vocab = _pad_vocab_to_multiple(src_vocab, opt.vocab_size_multiple) vocabs["src"] = src_vocab if opt.share_vocab: vocabs["tgt"] = src_vocab else: tgt_vocab = _read_vocab_file(opt.tgt_vocab, opt.tgt_words_min_frequency) tgt_specials = [ item for item in (default_specials + specials["tgt"]) if item not in tgt_vocab ] if DefaultTokens.SEP in tgt_specials and ( "<0x0A>" in tgt_vocab or "Ċ" in src_vocab ): tgt_specials.remove(DefaultTokens.SEP) tgt_vocab = pyonmttok.build_vocab_from_tokens( tgt_vocab, maximum_size=opt.tgt_vocab_size, special_tokens=tgt_specials ) tgt_vocab.default_id = tgt_vocab[DefaultTokens.UNK] if opt.vocab_size_multiple > 1: tgt_vocab = _pad_vocab_to_multiple(tgt_vocab, opt.vocab_size_multiple) vocabs["tgt"] = tgt_vocab if opt.n_src_feats > 0: src_feats_vocabs = [] for i in range(opt.n_src_feats): src_f_vocab = _read_vocab_file(f"{opt.src_vocab}_feat{i}", 1) src_f_vocab = pyonmttok.build_vocab_from_tokens( src_f_vocab, maximum_size=0, minimum_frequency=1, special_tokens=default_specials, ) src_f_vocab.default_id = src_f_vocab[DefaultTokens.UNK] if opt.vocab_size_multiple > 1: src_f_vocab = _pad_vocab_to_multiple( src_f_vocab, opt.vocab_size_multiple ) src_feats_vocabs.append(src_f_vocab) vocabs["src_feats"] = src_feats_vocabs vocabs["data_task"] = opt.data_task vocabs["decoder_start_token"] = opt.decoder_start_token return vocabs def _read_vocab_file(vocab_path, min_count): """Loads a vocabulary from the given path. Args: vocab_path (str): Path to utf-8 text file containing vocabulary. Each token should be on a line, may followed with a count number seperate by space if `with_count`. No extra whitespace is allowed. min_count (int): retains only tokens with min_count frequency. """ if not os.path.exists(vocab_path): raise RuntimeError("Vocabulary not found at {}".format(vocab_path)) else: with codecs.open(vocab_path, "rb", "utf-8") as f: lines = [line.strip("\n") for line in f if line.strip("\n")] first_line = lines[0].split(None, 1) has_count = len(first_line) == 2 and first_line[-1].isdigit() if has_count: vocab = [] for line in lines: if int(line.split(None, 1)[1]) >= min_count: vocab.append(line.split(None, 1)[0]) else: vocab = lines return vocab def METHOD_NAME(vocabs): """ Convert a dict of pyonmttok vocabs into a plain text dict to be saved in the checkpoint """ vocabs_dict = {} vocabs_dict["src"] = vocabs["src"].ids_to_tokens vocabs_dict["tgt"] = vocabs["tgt"].ids_to_tokens if "src_feats" in vocabs.keys(): vocabs_dict["src_feats"] = [ feat_vocab.ids_to_tokens for feat_vocab in vocabs["src_feats"] ] vocabs_dict["data_task"] = vocabs["data_task"] if "decoder_start_token" in vocabs.keys(): vocabs_dict["decoder_start_token"] = vocabs["decoder_start_token"] else: vocabs_dict["decoder_start_token"] = DefaultTokens.BOS return vocabs_dict def dict_to_vocabs(vocabs_dict): """ Convert a dict formatted vocabs (as stored in a checkpoint) into a dict of pyonmttok vocabs objects. """ vocabs = {} vocabs["data_task"] = vocabs_dict["data_task"] if "decoder_start_token" in vocabs_dict.keys(): vocabs["decoder_start_token"] = vocabs_dict["decoder_start_token"] else: vocabs["decoder_start_token"] = DefaultTokens.BOS vocabs["src"] = pyonmttok.build_vocab_from_tokens(vocabs_dict["src"]) if vocabs_dict["src"] == vocabs_dict["tgt"]: vocabs["tgt"] = vocabs["src"] else: vocabs["tgt"] = pyonmttok.build_vocab_from_tokens(vocabs_dict["tgt"]) if "src_feats" in vocabs_dict.keys(): vocabs["src_feats"] = [] for feat_vocab in vocabs_dict["src_feats"]: vocabs["src_feats"].append(pyonmttok.build_vocab_from_tokens(feat_vocab)) return vocabs
null
410
from pyrokinetics.gk_code import GKOutputReaderGENE from pyrokinetics.gk_code.gk_output import GKOutput from pyrokinetics import template_dir from pyrokinetics.normalisation import SimulationNormalisation as Normalisation from pathlib import Path import numpy as np import pytest import subprocess import shutil from .utils import array_similar # TODO mock output tests, similar to GS2 @pytest.fixture(scope="module") def METHOD_NAME(tmp_path_factory): tmp_dir = tmp_path_factory.mktemp("test_gk_output_reader_gene") return tmp_dir @pytest.fixture def reader(): return GKOutputReaderGENE() @pytest.fixture def gene_output_dir(METHOD_NAME): mock_dir = METHOD_NAME / "mock_dir" mock_dir.mkdir() subprocess.run( ["cp", str(template_dir / "input.gene"), str(mock_dir / "parameters_0000")] ) return mock_dir @pytest.fixture def gene_output_dir_missing_parameters(METHOD_NAME): mock_dir = METHOD_NAME / "broken_mock_dir" mock_dir.mkdir() for f in [mock_dir / f for f in ["nrg_0000", "field_0000"]]: with open(f, "w") as _: pass return mock_dir @pytest.fixture def empty_gene_dir(METHOD_NAME): mock_dir = METHOD_NAME / "empty_dir" mock_dir.mkdir() return mock_dir @pytest.fixture def not_gene_file(METHOD_NAME): mock_dir = METHOD_NAME / "nongene_dir" mock_dir.mkdir() filename = mock_dir / "hello_world.txt" with open(filename, "w") as file: file.write("hello world!") return filename def test_verify_gene_output(reader, gene_output_dir): # Expect exception to be raised if this fails reader.verify_file_type(gene_output_dir) def test_verify_gene_missing_parameters(reader, gene_output_dir_missing_parameters): with pytest.raises(Exception): reader.verify_file_type(gene_output_dir_missing_parameters) def test_verify_not_gene_dir(reader, empty_gene_dir): with pytest.raises(Exception): reader.verify_file_type(empty_gene_dir) def test_verify_not_gene_file(reader, not_gene_file): with pytest.raises(Exception): reader.verify_file_type(not_gene_file) @pytest.mark.parametrize( "input_path", [ Path("dir/to/parameters_0003"), Path("dir/to/nrg_0017"), Path("dir/to/input_file"), Path("dir_0001/to_5102/parameters_0005"), ], ) def test_infer_path_from_input_file_gene(input_path): output_path = GKOutputReaderGENE.infer_path_from_input_file(input_path) # If the last four chars are digits, expect to find "parameters_####". # Otherwise, get the dir last_4_chars = str(input_path)[-4:] if last_4_chars.isdigit(): assert output_path == input_path.parent / f"parameters_{last_4_chars}" else: assert output_path == input_path.parent # Golden answer tests # Compares against results obtained using GKCode methods from commit 7d551eaa # Update: Commit 9eae331 accounts for last time step (7d551eaa-2nd last step) # Update: Commit 3974780 accounts for correct frequency sign # Update: Commit d3da468c accounts for new gkoutput structure # This data was gathered from templates/outputs/GENE_linear reference_data_commit_hash = "d3da468c" @pytest.fixture(scope="class") def golden_answer_reference_data(request): this_dir = Path(__file__).parent cdf_path = ( this_dir / "golden_answers" / f"gene_linear_output_{reference_data_commit_hash}.netcdf4" ) # ds = get_golden_answer_data(cdf_path) request.cls.reference_data = GKOutput.from_netcdf(cdf_path) @pytest.fixture(scope="class") def golden_answer_data(request): path = template_dir / "outputs" / "GENE_linear" / "parameters_0001" norm = Normalisation("test_gk_output_gene") request.cls.data = GKOutputReaderGENE().read_from_file(path, norm=norm) @pytest.mark.usefixtures("golden_answer_reference_data", "golden_answer_data") class TestGENEGoldenAnswers: def test_coords(self): """ Ensure that all reference coords are present in data """ for c in self.reference_data.coords: dtype = self.reference_data[c].dtype if dtype == "float64" or dtype == "complex128": assert array_similar(self.reference_data[c], self.data[c]) else: assert np.array_equal(self.reference_data[c], self.data[c]) @pytest.mark.parametrize( "var", [ "phi", "particle", "momentum", "heat", "eigenvalues", "eigenfunctions", "growth_rate", "mode_frequency", ], ) def test_data_vars(self, var): assert array_similar(self.reference_data[var], self.data[var]) @pytest.mark.parametrize( "attr", [ "linear", "gk_code", "input_file", "attribute_units", "title", "growth_rate_tolerance", ], ) def test_data_attrs(self, attr): if isinstance(getattr(self.reference_data, attr), float): assert np.isclose( getattr(self.reference_data, attr), getattr(self.data, attr) ) else: assert getattr(self.reference_data, attr) == getattr(self.data, attr) def test_gene_read_omega_file(tmp_path): """Can we read growth rate/frequency from `omega` text file""" shutil.copytree(template_dir / "outputs/GENE_linear", tmp_path, dirs_exist_ok=True) fields_file = tmp_path / "field_0001" fields_file.unlink() norm = Normalisation("test_gk_output_gene") data = GKOutputReaderGENE().read_from_file(tmp_path / "parameters_0001", norm=norm) assert np.allclose( data["growth_rate"].isel(time=-1, ky=0, kx=0).data.magnitude, 1.848 ) assert np.allclose( data["mode_frequency"].isel(time=-1, ky=0, kx=0).data.magnitude, 12.207 )
null
411
from __future__ import absolute_import import unittest from simulation import action from simulation import event from simulation.avatar.avatar_manager import AvatarManager from simulation.direction import EAST from simulation.game_state import GameState from simulation.interactables.pickups.artefacts import YellowOrbArtefact from simulation.location import Location from .dummy_avatar import MoveDummy from .maps import InfiniteMap, EmptyMap, AvatarMap, PickupMap ORIGIN = Location(x=0, y=0) EAST_OF_ORIGIN = Location(x=1, y=0) NORTH_OF_ORIGIN = Location(x=0, y=1) class TestAction(unittest.TestCase): def setUp(self): self.avatar = MoveDummy(1, ORIGIN, EAST) self.other_avatar = MoveDummy(2, EAST_OF_ORIGIN, EAST) self.avatar_manager = AvatarManager() def test_successful_move_action(self): # Move north game_state = GameState(InfiniteMap(), self.avatar_manager) action.MoveAction(self.avatar, {"x": 0, "y": 1}).process(game_state.world_map) target_cell = game_state.world_map.get_cell(NORTH_OF_ORIGIN) assert self.avatar.location == NORTH_OF_ORIGIN assert self.avatar == target_cell.avatar assert self.avatar.events == [event.MovedEvent(ORIGIN, NORTH_OF_ORIGIN)] # Move east self.setUp() game_state = GameState(InfiniteMap(), self.avatar_manager) action.MoveAction(self.avatar, {"x": 1, "y": 0}).process(game_state.world_map) assert self.avatar.location == EAST_OF_ORIGIN assert self.avatar.events == [event.MovedEvent(ORIGIN, EAST_OF_ORIGIN)] def test_successful_move_east_twice_action(self): game_state = GameState(InfiniteMap(), self.avatar_manager) action.MoveAction(self.avatar, {"x": 1, "y": 0}).process(game_state.world_map) action.MoveAction(self.avatar, {"x": 1, "y": 0}).process(game_state.world_map) assert self.avatar.location == Location(2, 0) def test_failed_move_action(self): game_state = GameState(EmptyMap(), self.avatar_manager) action.MoveAction(self.avatar, {"x": 0, "y": 1}).process(game_state.world_map) assert self.avatar.location == ORIGIN assert self.avatar.events == [event.FailedMoveEvent(ORIGIN, NORTH_OF_ORIGIN)] def test_failed_move_towards_action(self): game_state = GameState(EmptyMap(), self.avatar_manager) action.MoveTowardsAction(self.avatar, {"x": 0, "y": 1}).process(game_state.world_map) assert self.avatar.location == ORIGIN assert self.avatar.events == [event.FailedMoveEvent(ORIGIN, NORTH_OF_ORIGIN)] assert self.avatar.logs[-1] == action.MoveTowardsAction.REJECT_MESSAGE def test_successful_attack_action(self): game_state = GameState(AvatarMap(self.other_avatar), self.avatar_manager) action.AttackAction(self.avatar, {"x": 0, "y": 1}).process(game_state.world_map) target_location = NORTH_OF_ORIGIN damage_dealt = 1 assert self.avatar.location == ORIGIN assert self.other_avatar.location == EAST_OF_ORIGIN assert self.other_avatar.times_died == 0 assert self.other_avatar.health == 4 assert self.avatar.events == [event.PerformedAttackEvent(self.other_avatar, target_location, damage_dealt)] assert self.other_avatar.events == [event.ReceivedAttackEvent(self.avatar, damage_dealt)] def test_successful_multiple_attack_actions(self): game_state = GameState(AvatarMap(self.other_avatar), self.avatar_manager) action.AttackAction(self.avatar, {"x": 0, "y": 1}).process(game_state.world_map) assert self.other_avatar.events == [event.ReceivedAttackEvent(self.avatar, 1)] action.AttackAction(self.avatar, {"x": 0, "y": 1}).process(game_state.world_map) assert self.other_avatar.events == [ event.ReceivedAttackEvent(self.avatar, 1), event.ReceivedAttackEvent(self.avatar, 1), ] assert self.avatar.location == ORIGIN assert self.other_avatar.location == EAST_OF_ORIGIN assert self.other_avatar.times_died == 0 assert self.other_avatar.health == 3 def test_failed_attack_action(self): game_state = GameState(InfiniteMap(), self.avatar_manager) action.AttackAction(self.avatar, {"x": 0, "y": 1}).process(game_state.world_map) target_location = NORTH_OF_ORIGIN assert self.avatar.location == ORIGIN assert self.other_avatar.location == EAST_OF_ORIGIN assert self.avatar.events == [event.FailedAttackEvent(target_location)] assert self.other_avatar.events == [] def test_avatar_dies(self): self.other_avatar.health = 1 game_state = GameState(AvatarMap(self.other_avatar), self.avatar_manager) action.AttackAction(self.avatar, {"x": 0, "y": 1}).process(game_state.world_map) target_location = NORTH_OF_ORIGIN damage_dealt = 1 assert self.avatar.events == [event.PerformedAttackEvent(self.other_avatar, target_location, damage_dealt)] assert self.other_avatar.events == [event.ReceivedAttackEvent(self.avatar, damage_dealt)] assert self.avatar.location == ORIGIN assert self.other_avatar.health == 0 assert self.other_avatar.times_died == 1 assert self.other_avatar.location == Location(10, 10) def METHOD_NAME(self): game_state = GameState(InfiniteMap(), self.avatar_manager) action.WaitAction(self.avatar).process(game_state.world_map) assert self.avatar.location == ORIGIN def test_successful_pickup_action(self): game_state = GameState(PickupMap(YellowOrbArtefact), self.avatar_manager) game_state.world_map.setup_cell(self.avatar.location) artefact = game_state.world_map.get_cell(self.avatar.location).interactable assert artefact.in_backpack == False action.PickupAction(self.avatar).process(game_state.world_map) assert self.avatar.events == [event.PickedUpEvent({"type": "yellow_orb"})] assert artefact.in_backpack == True def test_failed_pickup_action(self): game_state = GameState(InfiniteMap(), self.avatar_manager) action.PickupAction(self.avatar).process(game_state.world_map) assert self.avatar.events == [event.FailedPickupEvent()] def test_failed_pickup_action_if_backpack_full(self): game_state = GameState(PickupMap(YellowOrbArtefact), self.avatar_manager) game_state.world_map.setup_cell(self.avatar.location) artefact = game_state.world_map.get_cell(self.avatar.location).interactable self.avatar.backpack = [YellowOrbArtefact for _ in range(self.avatar.BACKPACK_SIZE)] action.PickupAction(self.avatar).process(game_state.world_map) assert self.avatar.events == [event.FailedPickupEvent()] assert artefact.in_backpack == False def test_successful_drop_action(self): game_state = GameState(PickupMap(YellowOrbArtefact), self.avatar_manager) game_state.world_map.setup_cell(self.avatar.location) artefact = game_state.world_map.get_cell(self.avatar.location).interactable self.avatar.backpack = [artefact] action.DropAction(self.avatar, 0).process(game_state.world_map) assert self.avatar.events == [event.DroppedEvent(index=0)] def test_failed_drop_action(self): game_state = GameState(InfiniteMap(), self.avatar_manager) action.DropAction(self.avatar, 0).process(game_state.world_map) assert self.avatar.events == [event.FailedDropEvent()]
null
412
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from abc import abstractmethod from typing import List import numpy as np from overrides import EnforceOverrides from archai.discrete_search.api.archai_model import ArchaiModel class DiscreteSearchSpace(EnforceOverrides): """Abstract class for discrete search spaces. This class serves as a base for implementing search spaces. The class enforces implementation of five methods: `save_arch`, `load_arch`, `save_model_weights`, `load_model_weights` and `random_sample`. Note: This class is inherited from `EnforceOverrides` and any overridden methods in the subclass should be decorated with `@overrides` to ensure they are properly overridden. Examples: >>> class MyDiscreteSearchSpace(DiscreteSearchSpace): >>> def __init__(self) -> None: >>> super().__init__() >>> >>> @overrides >>> def save_arch(self, arch, file_path) -> None: >>> torch.save(arch, file_path) >>> >>> @overrides >>> def load_arch(self, file_path) -> ArchaiModel: >>> return torch.load(file_path) >>> >>> @overrides >>> def save_model_weights(self, model, file_path) -> None: >>> torch.save(model.state_dict(), file_path) >>> >>> @overrides >>> def load_model_weights(self, model, file_path) -> None: >>> model.load_state_dict(torch.load(file_path)) >>> >>> @overrides >>> def random_sample(self, config) -> ArchaiModel: >>> return ArchaiModel(config) """ @abstractmethod def save_arch(self, model: ArchaiModel, file_path: str) -> None: """Save an architecture to a file without saving the weights. Args: model: Model's architecture to save. file_path: File path to save the architecture. """ pass @abstractmethod def load_arch(self, file_path: str) -> ArchaiModel: """Load from a file an architecture that was saved using `SearchSpace.save_arch()`. Args: file_path: File path to load the architecture. Returns: Loaded model. """ pass @abstractmethod def save_model_weights(self, model: ArchaiModel, file_path: str) -> None: """Save the weights of a model. Args: model: Model to save the weights. file_path: File path to save the weights. """ pass @abstractmethod def METHOD_NAME(self, model: ArchaiModel, file_path: str) -> None: """Load the weights (created with `SearchSpace.save_model_weights()`) into a model of the same architecture. Args: model: Model to load the weights. file_path: File path to load the weights. """ pass @abstractmethod def random_sample(self) -> ArchaiModel: """Randomly sample an architecture from the search spaces. Returns: Sampled architecture. """ pass class EvolutionarySearchSpace(DiscreteSearchSpace, EnforceOverrides): """Abstract class for discrete search spaces compatible with evolutionary algorithms. The class enforces implementation of two methods: `mutate` and `crossover`. Note: This class is inherited from `EnforceOverrides` and any overridden methods in the subclass should be decorated with `@overrides` to ensure they are properly overridden. """ @abstractmethod def mutate(self, arch: ArchaiModel) -> ArchaiModel: """Mutate an architecture from the search space. This method should not alter the base model architecture directly, only generate a new one. Args: arch: Base model. Returns: Mutated model. """ pass @abstractmethod def crossover(self, arch_list: List[ArchaiModel]) -> ArchaiModel: """Combine a list of architectures into a new one. Args: arch_list: List of architectures. Returns: Resulting model. """ pass class BayesOptSearchSpace(DiscreteSearchSpace, EnforceOverrides): """Abstract class for discrete search spaces compatible with Bayesian Optimization algorithms. The class enforces implementation of a single method: `encode`. Note: This class is inherited from `EnforceOverrides` and any overridden methods in the subclass should be decorated with `@overrides` to ensure they are properly overridden. """ @abstractmethod def encode(self, arch: ArchaiModel) -> np.ndarray: """Encode an architecture into a fixed-length vector representation. Args: arch: Model from the search space. Returns: Fixed-length vector representation of `arch`. """ pass
null
413
import datetime as dt from random import random from django.core.management.base import BaseCommand from osf.metrics import ( PreprintView, PreprintDownload, ) from osf.models import Preprint """ This management command can be run to populate impact with fake preprints metrics data. All flags are optional with the script defaulting to 3 preprints from your local database with metrics for the past 7 days and an average count of 25 for preprint views/downloads per day. --preprints: Specify preprint guids --num_preprints: Specify the number of preprint to use from the database (if preprint guids aren't specified) --days: Specify the number of days to write metrics data for --group_counts: Indicates that metric counts should be grouped in a single record per preprint per day --avg_counts: The average number of view/download counts to write for each preprint per day Example: docker-compose run --rm web python3 manage.py populate_impact_preprint_metrics --num_preprints 1 --days 5 --group_counts --avg_counts 50 """ def METHOD_NAME(preprints, dates, avg_counts, group_counts=False): for date in dates: for preprint in preprints: preprint_view_count = int((avg_counts * 2) * random()) preprint_download_count = int((avg_counts * 2) * random()) if group_counts: PreprintView.record_for_preprint( preprint=preprint, path=preprint.primary_file.path, timestamp=date, count=preprint_view_count ) PreprintDownload.record_for_preprint( preprint=preprint, path=preprint.primary_file.path, timestamp=date, count=preprint_download_count ) else: for count in range(preprint_view_count): PreprintView.record_for_preprint( preprint=preprint, path=preprint.primary_file.path, timestamp=date ) for count in range(preprint_download_count): PreprintDownload.record_for_preprint( preprint=preprint, path=preprint.primary_file.path, timestamp=date ) class Command(BaseCommand): def add_arguments(self, parser): super(Command, self).add_arguments(parser) parser.add_argument( '--preprints', nargs='*', help='Specify preprints guids' ) parser.add_argument( '--num_preprints', type=int, default=3, help='Specify number of preprints to use if not specifying preprints' ) parser.add_argument( '--days', type=int, default=7, help='Specify number of past days to write metrics data for' ) parser.add_argument( '--group_counts', action='store_true', help='Group counts in metric records for fewer ES requests' ) parser.add_argument( '--avg_counts', type=int, default=25, help='Average number of counts to write per day per preprint' ) def handle(self, *args, **options): days = options.get('days') num_preprints = options.get('num_preprints') group_counts = options.get('group_counts') avg_counts = options.get('avg_counts') if options.get('preprints'): preprints = Preprint.objects.filter(guids___id__in=options.get('preprints')) else: preprints = Preprint.objects.all()[:num_preprints] today = dt.datetime.today() last_x_days = [(today - dt.timedelta(days=num_days)) for num_days in range(0, days)] METHOD_NAME(preprints, last_x_days, avg_counts, group_counts)
null
414
#!/usr/bin/env python3 # # Copyright (c) 2015 - 2023, Intel Corporation # SPDX-License-Identifier: BSD-3-Clause # import os import sys import unittest import shlex import subprocess import io import json import geopmpy.io import geopmdpy.topo import geopmdpy.pio from integration.test import geopm_test_launcher from integration.test import util def getSystemConfig(): settings = {} for option in ["--config-default", "--config-override"]: try: proc = subprocess.Popen(shlex.split("geopmadmin {}".format(option)), stdout=subprocess.PIPE, stderr=subprocess.STDOUT) proc.wait() with proc.stdout: config_file = proc.stdout.readline().decode() with open(config_file.strip(), "r") as infile: settings.update(json.load(infile)) except IOError: # config_file may not exist and will cause Popen to fail pass return settings def METHOD_NAME(): ret = '' try: ret = getSystemConfig()['GEOPM_AGENT'] except LookupError: pass return ret def getSystemConfigPolicy(): geopm_system_config = getSystemConfig() policy = {} with open(geopm_system_config['GEOPM_POLICY'], 'r') as infile: policy = json.load(infile) return policy def skip_if_geopmadmin_check_fails(): try: subprocess.check_call(shlex.split("geopmadmin"), stdout=subprocess.PIPE, stderr=subprocess.STDOUT) except: return unittest.skip("geopmadmin check failed, there is an issue with the site configuration.") return lambda func: func def skip_unless_freq_agent(): agent = '' try: agent = METHOD_NAME() except BaseException as ex: return unittest.skip('geopmadmin check failed: {}'.format(ex)) if agent not in ['frequency_map']: return unittest.skip('Requires environment default/override to be configured to cap frequency.') return lambda func: func def skip_unless_power_agent(): agent = '' try: agent = METHOD_NAME() except BaseException as ex: return unittest.skip('geopmadmin check failed: {}'.format(ex)) if agent not in ['power_governor', 'power_balancer']: return unittest.skip('Requires environment default/override to be configured to cap power.') return lambda func: func @util.skip_unless_batch() @skip_if_geopmadmin_check_fails() class TestIntegrationPluginStaticPolicy(unittest.TestCase): """Test the static policy enforcement feature of the currently configured RM plugin. """ @classmethod def setUpClass(cls): cls._tmp_files = [] cls._geopmadminagent = METHOD_NAME() cls._geopmadminagentpolicy = getSystemConfigPolicy() @skip_unless_freq_agent() def test_frequency_cap_enforced(self): policy_name = None if self._geopmadminagent == 'frequency_map': policy_name = 'FREQ_MAX' try: test_freq = self._geopmadminagentpolicy[policy_name] current_freq = geopmdpy.pio.read_signal("MSR::PERF_CTL:FREQ", "board", 0) self.assertEqual(test_freq, current_freq) except KeyError: self.skipTest('Expected frequency cap "{}" for agent missing from policy'.format(policy_name)) @skip_unless_power_agent() def test_power_cap_enforced(self): num_pkg = geopmdpy.topo.num_domain('package') policy_name = 'CPU_POWER_LIMIT' try: test_power = self._geopmadminagentpolicy[policy_name] / num_pkg for pkg in range(num_pkg): current_power = geopmdpy.pio.read_signal("MSR::PKG_POWER_LIMIT:PL1_POWER_LIMIT", "package", pkg) self.assertEqual(test_power, current_power) except KeyError: self.skipTest('Expected power cap "{}" for agent missing from policy'.format(policy_name)) if __name__ == '__main__': unittest.main()
null
415
################################################################################ # Creme is a free/open-source Customer Relationship Management software # Copyright (C) 2009-2022 Hybird # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. ################################################################################ from __future__ import annotations import logging from typing import TYPE_CHECKING from django.conf import settings from django.db import models from django.urls import reverse from django.utils.translation import gettext_lazy as _ from django.utils.translation import pgettext_lazy from creme.creme_core.auth.entity_credentials import EntityCredentials from creme.creme_core.models import CremeEntity, InstanceBrickConfigItem from .. import constants from ..core.graph import ( AbscissaInfo, OrdinateInfo, abscissa_constraints, ordinate_constraints, ) from ..graph_fetcher_registry import graph_fetcher_registry if TYPE_CHECKING: from ..core.graph import ReportGraphHand logger = logging.getLogger(__name__) class AbstractReportGraph(CremeEntity): Group = constants.AbscissaGroup Aggregator = constants.OrdinateAggregator name = models.CharField( pgettext_lazy('reports-graphs', 'Name of the graph'), max_length=100, ) linked_report = models.ForeignKey( settings.REPORTS_REPORT_MODEL, editable=False, on_delete=models.CASCADE, ) # TODO: string IDs instead of integer ? abscissa_type = models.PositiveIntegerField( _('X axis (grouping)'), editable=False, choices=Group.choices, ) abscissa_cell_value = models.CharField( _('X axis (field)'), max_length=100, editable=False, ) abscissa_parameter = models.TextField( _('X axis parameter'), null=True, editable=False, ) ordinate_type = models.CharField( _('Y axis (type)'), max_length=100, editable=False, choices=Aggregator.choices, default='', ) ordinate_cell_key = models.CharField( _('Y axis (field)'), max_length=100, editable=False, default='', ) chart = models.CharField(_('Chart type'), max_length=100, null=True) asc = models.BooleanField('ASC order', default=True, editable=False) # TODO: not viewable ? creation_label = _("Create a report's graph") save_label = pgettext_lazy('reports-graphs', 'Save the graph') abscissa_constraints = abscissa_constraints ordinate_constraints = ordinate_constraints fetcher_registry = graph_fetcher_registry _hand: ReportGraphHand | None = None class Meta: abstract = True app_label = 'reports' verbose_name = _("Report's graph") verbose_name_plural = _("Reports' graphs") ordering = ['name'] def __str__(self): return self.name def get_absolute_url(self): return reverse('reports__view_graph', args=(self.id,)) def get_related_entity(self): return self.linked_report def delete(self, *args, **kwargs): # NB: we call InstanceBrickConfigItem.delete() explicitly to delete # related BrickDetailviewLocation/BrickHomeLocation/... instances for ibci in InstanceBrickConfigItem.objects.filter(entity=self.id): ibci.delete() super().delete(*args, **kwargs) @property def abscissa_info(self) -> AbscissaInfo | None: report = self.linked_report assert report is not None model = report.ct.model_class() abscissa_constraint = self.abscissa_constraints.get_constraint_by_rgraph_type( model=model, rgraph_type=self.abscissa_type, ) if not abscissa_constraint: logger.warning( 'AbstractReportGraph.abscissa_info: ' 'invalid abscissa info (model=<%s> rgraph_type=%s)', model, self.abscissa_type, ) return None return AbscissaInfo( cell=abscissa_constraint.cell_class.build( model, self.abscissa_cell_value, ), graph_type=self.abscissa_type, parameter=self.abscissa_parameter, ) @abscissa_info.setter def abscissa_info(self, abs_info: AbscissaInfo): assert abs_info.cell is not None self.abscissa_cell_value = abs_info.cell.value self.abscissa_type = abs_info.graph_type self.abscissa_parameter = abs_info.parameter @property def ordinate_info(self) -> OrdinateInfo | None: report = self.linked_report assert report is not None aggr_id = self.ordinate_type model = report.ct.model_class() ordinate_constraint = self.ordinate_constraints.get_constraint_by_aggr_id( model=model, aggr_id=aggr_id, ) if not ordinate_constraint: logger.warning( 'AbstractReportGraph.ordinate_info: invalid ordinate info (model=<%s> aggr_id=%s)', model, aggr_id, ) return None return OrdinateInfo( aggr_id=aggr_id, cell=ordinate_constraint.get_cell(self.ordinate_cell_key, check=False), ) @ordinate_info.setter def ordinate_info(self, ord_info: OrdinateInfo): self.ordinate_type = ord_info.aggr_id cell = ord_info.cell self.ordinate_cell_key = cell.key if cell else '' # TODO: use creme_core.utils.meta.Order def fetch(self, user, extra_q: models.Q | None = None, order: str = 'ASC', ) -> tuple[list[str], list]: assert order == 'ASC' or order == 'DESC' report = self.linked_report entities = EntityCredentials.filter( user=user, queryset=report.ct.get_all_objects_for_this_type(is_deleted=False), ) if report.filter is not None: entities = report.filter.filter(entities) return self.hand.fetch(entities=entities, order=order, user=user, extra_q=extra_q) @property def hand(self) -> ReportGraphHand: from ..core.graph import RGRAPH_HANDS_MAP # Lazy loading hand = self._hand if hand is None: self._hand = hand = RGRAPH_HANDS_MAP[self.abscissa_type](self) return hand @property def model(self) -> type[CremeEntity]: return self.linked_report.ct.model_class() def verbose_abscissa(self): output = self.hand.verbose_abscissa if self.abscissa_type: output += f' - {self.hand.verbose_name}' if self.abscissa_parameter: output += f' {self.abscissa_parameter}' return output def METHOD_NAME(self): aggregator = self.hand.ordinate if aggregator.cell: return f'{aggregator.cell} - {aggregator.verbose_name}' return aggregator.verbose_name class ReportGraph(AbstractReportGraph): class Meta(AbstractReportGraph.Meta): swappable = 'REPORTS_GRAPH_MODEL'
null
416
# Copyright 2017-2022 EPAM Systems, Inc. (https://www.epam.com/) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import datetime import tempfile import time import xml.etree.ElementTree as ET from pipeline.api import PipelineAPI, TaskStatus from pipeline.log import Logger def get_int_run_param(env_var_name, default_value): return int(os.getenv(env_var_name, default_value)) HCS_PROCESSING_TASK_NAME = 'HCS processing' HCS_ACTIVE_PROCESSING_TIMEOUT_MIN = get_int_run_param('HCS_PARSING_ACTIVE_PROCESSING_TIMEOUT_MIN', 360) HCS_CLOUD_FILES_SCHEMA = os.getenv('HCS_PARSING_CLOUD_FILES_SCHEMA', 's3') HCS_PROCESSING_OUTPUT_FOLDER = os.getenv('HCS_PARSING_OUTPUT_FOLDER') HCS_INDEX_FILE_NAME = os.getenv('HCS_PARSING_INDEX_FILE_NAME', 'Index.xml') HCS_IMAGE_DIR_NAME = os.getenv('HCS_PARSING_IMAGE_DIR_NAME', 'Images') def get_list_run_param(env_var_name, delimiter=','): param_elements = os.getenv(env_var_name, '').split(delimiter) return filter(lambda string: string is not None and len(string.strip()) > 0, param_elements) def get_bool_run_param(env_var_name, default='false'): return os.getenv(env_var_name, default) == 'true' def METHOD_NAME(message): log_run_info(message, status=TaskStatus.SUCCESS) def log_run_info(message, status=TaskStatus.RUNNING): Logger.log_task_event(HCS_PROCESSING_TASK_NAME, message, status) class HcsFileLogger: def __init__(self, file_path): self.file_path = file_path def log_info(self, message, status=TaskStatus.RUNNING): log_run_info('[{}] {}'.format(self.file_path, message), status) class HcsParsingUtils: @staticmethod def extract_xml_schema(xml_info_root): full_schema = xml_info_root.tag return full_schema[:full_schema.rindex('}') + 1] @staticmethod def get_file_without_extension(file_path): return os.path.splitext(file_path)[0] @staticmethod def get_basename_without_extension(file_path): return HcsParsingUtils.get_file_without_extension(os.path.basename(file_path)) @staticmethod def get_file_last_modification_time(file_path): return int(os.stat(file_path).st_mtime) @staticmethod def extract_plate_from_hcs_xml(hcs_xml_info_root, hcs_schema_prefix=None): if not hcs_schema_prefix: hcs_schema_prefix = HcsParsingUtils.extract_xml_schema(hcs_xml_info_root) plates_list = hcs_xml_info_root.find(hcs_schema_prefix + 'Plates') plate = plates_list.find(hcs_schema_prefix + 'Plate') return plate @staticmethod def build_preview_file_path(hcs_root_folder_path, with_id=False): file_name = HcsParsingUtils.build_preview_file_name(hcs_root_folder_path) if with_id: file_name = file_name + '.' + hcs_root_folder_path.split('/')[-1] preview_file_basename = HcsParsingUtils.replace_special_chars(file_name) + '.hcs' parent_folder = HCS_PROCESSING_OUTPUT_FOLDER \ if HCS_PROCESSING_OUTPUT_FOLDER is not None \ else os.path.dirname(hcs_root_folder_path) return os.path.join(parent_folder, preview_file_basename) @staticmethod def build_preview_file_name(hcs_root_folder_path): index_file_abs_path = os.path.join(HcsParsingUtils.get_file_without_extension(hcs_root_folder_path), HCS_IMAGE_DIR_NAME, HCS_INDEX_FILE_NAME) hcs_xml_info_root = ET.parse(index_file_abs_path).getroot() hcs_schema_prefix = HcsParsingUtils.extract_xml_schema(hcs_xml_info_root) file_name = HcsParsingUtils.get_file_without_extension(hcs_root_folder_path) name_xml_element = HcsParsingUtils.extract_plate_from_hcs_xml(hcs_xml_info_root, hcs_schema_prefix) \ .find(hcs_schema_prefix + 'Name') if name_xml_element is not None: file_pretty_name = name_xml_element.text if file_pretty_name is not None: file_name = file_pretty_name return file_name @staticmethod def get_stat_active_file_name(hcs_img_path): return HcsParsingUtils._get_service_file_name(hcs_img_path, 'hcsparser.inprog') @staticmethod def get_stat_file_name(hcs_img_path): return HcsParsingUtils._get_service_file_name(hcs_img_path, 'hcsparser') @staticmethod def get_service_directory(hcs_img_path): name_without_extension = HcsParsingUtils.get_basename_without_extension(hcs_img_path) parent_dir = HCS_PROCESSING_OUTPUT_FOLDER \ if HCS_PROCESSING_OUTPUT_FOLDER is not None \ else os.path.dirname(hcs_img_path) return os.path.join(parent_dir, '.hcsparser', name_without_extension) @staticmethod def generate_local_service_directory(hcs_img_path): name_without_extension = HcsParsingUtils.get_basename_without_extension(hcs_img_path) return tempfile.mkdtemp(prefix=name_without_extension + '.hcsparser.') @staticmethod def create_service_dir_if_not_exist(hcs_img_path): directory = HcsParsingUtils.get_service_directory(hcs_img_path) if not os.path.exists(directory): os.makedirs(directory) @staticmethod def _get_service_file_name(hcs_img_path, suffix): parent_dir = HcsParsingUtils.get_service_directory(hcs_img_path) parser_flag_file = '.stat.{}'.format(suffix) return os.path.join(parent_dir, parser_flag_file) @staticmethod def active_processing_exceed_timeout(active_stat_file): processing_stat_file_modification_date = HcsParsingUtils.get_file_last_modification_time(active_stat_file) processing_deadline = datetime.datetime.now() - datetime.timedelta(minutes=HCS_ACTIVE_PROCESSING_TIMEOUT_MIN) return (processing_stat_file_modification_date - time.mktime(processing_deadline.timetuple())) < 0 @staticmethod def extract_cloud_path(file_path, cloud_scheme=HCS_CLOUD_FILES_SCHEMA): path_chunks = file_path.split('/cloud-data/', 1) if len(path_chunks) != 2: raise RuntimeError('Unable to determine cloud path of [{}]'.format(file_path)) return '{}://{}'.format(cloud_scheme, path_chunks[1]) @staticmethod def quote_string(string): return '"{}"'.format(string) @staticmethod def replace_special_chars(file_path): return file_path.replace('/', '|') @staticmethod def find_in_xml(element, name): if element is None: return None else: return element.find(name) @staticmethod def find_all_in_xml(element, name): if element is None: return [] else: return element.findall(name) @staticmethod def get_hcs_image_folder(): return HCS_IMAGE_DIR_NAME
null
417
from typing import Any, Dict, List, Optional, Union from geoalchemy2.shape import from_shape, to_shape from shapely.geometry import Polygon from sqlalchemy.ext.asyncio import AsyncSession from sqlalchemy.future import select from shapely import Point from src.core.security import get_password_hash, verify_password from src.crud.base import CRUDBase from src.db import models from src.schemas.user import UserCreate, UserUpdate from src.schemas.isochrone import IsochroneStartingPointCoord class CRUDUser(CRUDBase[models.User, UserCreate, UserUpdate]): async def create(self, db: AsyncSession, *, obj_in: UserCreate) -> models.User: db_obj = models.User.from_orm(obj_in) db_obj.hashed_password = get_password_hash(obj_in.password) roles = await db.execute(select(models.Role).filter(models.Role.name.in_(obj_in.roles))) db_obj.roles = roles.scalars().all() # combine study_area_ids with active_study_area_id user_study_area_ids = set() if obj_in.active_study_area_id: user_study_area_ids.add(obj_in.active_study_area_id) user_study_area_ids.update(obj_in.study_areas) study_areas = await db.execute( select(models.StudyArea).filter(models.StudyArea.id.in_(user_study_area_ids)) ) db_obj.study_areas = study_areas.scalars().all() db.add(db_obj) await db.commit() await db.refresh(db_obj) return db_obj async def update( self, db: AsyncSession, *, db_obj: models.User, obj_in: Union[UserUpdate, Dict[str, Any]] ) -> models.User: if isinstance(obj_in, dict): update_data = obj_in else: update_data = obj_in.dict(exclude_unset=True) if update_data.get("password"): hashed_password = get_password_hash(update_data["password"]) del update_data["password"] update_data["hashed_password"] = hashed_password if update_data.get("roles") or update_data.get("roles") == []: roles = await db.execute( select(models.Role).filter(models.Role.name.in_(obj_in.roles)) ) db_obj.roles = roles.scalars().all() del update_data["roles"] if update_data.get("study_areas") or update_data.get("study_areas") == []: study_areas = await db.execute( select(models.StudyArea).filter(models.StudyArea.id.in_(obj_in.study_areas)) ) db_obj.study_areas = study_areas.scalars().all() del update_data["study_areas"] return await super().update(db, db_obj=db_obj, obj_in=update_data) async def METHOD_NAME( self, db: AsyncSession, *, email: str, password: str ) -> Optional[models.User]: user = await self.get_by_key(db, key="email", value=email) if not user or len(user) == 0: return None else: user = user[0] if not verify_password(password, user.hashed_password): return None return user async def get_active_study_area(self, db: AsyncSession, user: models.User): study_area = await CRUDBase(models.StudyArea).get(db, id=user.active_study_area_id) world_extent = Polygon([[-180, 85], [-180, -85], [180, -85], [180, 85], [-180, 85]]) study_area_geom = to_shape(study_area.geom) buffer_geom_heatmap = to_shape(study_area.buffer_geom_heatmap) study_area_crop = world_extent.difference(study_area_geom) study_area.geom = from_shape(study_area_crop) study_area_dict = dict(study_area) study_area_dict["bounds"] = buffer_geom_heatmap.bounds return study_area_dict def is_active(self, user: models.User) -> bool: return user.is_active def is_superuser(self, user: models.User) -> bool: role = [r for r in user.roles if r.name == "superuser"] if len(role) > 0: return True return False user = CRUDUser(models.User)
null
418
import logging from typing import TYPE_CHECKING from galaxy.tools.actions import ( DefaultToolAction, OutputCollections, ToolExecutionCache, ) if TYPE_CHECKING: from galaxy.managers.context import ProvidesUserContext log = logging.getLogger(__name__) class ModelOperationToolAction(DefaultToolAction): produces_real_jobs = False def check_inputs_ready(self, tool, trans, incoming, history, execution_cache=None, collection_info=None): if execution_cache is None: execution_cache = ToolExecutionCache(trans) current_user_roles = execution_cache.current_user_roles history, inp_data, inp_dataset_collections, _, _, _ = self._collect_inputs( tool, trans, incoming, history, current_user_roles, collection_info ) tool.check_inputs_ready(inp_data, inp_dataset_collections) def METHOD_NAME( self, tool, trans, incoming=None, set_output_hid=False, overwrite=True, history=None, job_params=None, execution_cache=None, collection_info=None, job_callback=None, skip=False, **kwargs, ): incoming = incoming or {} trans.check_user_activation() if execution_cache is None: execution_cache = ToolExecutionCache(trans) current_user_roles = execution_cache.current_user_roles ( history, inp_data, inp_dataset_collections, preserved_tags, preserved_hdca_tags, all_permissions, ) = self._collect_inputs(tool, trans, incoming, history, current_user_roles, collection_info) # Build name for output datasets based on tool name and input names on_text = self._get_on_text(inp_data) # wrapped params are used by change_format action and by output.label; only perform this wrapping once, as needed wrapped_params = self._wrapped_params(trans, tool, incoming) out_data = {} input_collections = {k: v[0][0] for k, v in inp_dataset_collections.items()} output_collections = OutputCollections( trans, history, tool=tool, tool_action=self, input_collections=input_collections, dataset_collection_elements=kwargs.get("dataset_collection_elements", None), on_text=on_text, incoming=incoming, params=wrapped_params.params, job_params=job_params, tags=preserved_tags, hdca_tags=preserved_hdca_tags, ) # # Create job. # job, galaxy_session = self._new_job_for_session(trans, tool, history) self._produce_outputs( trans, tool, out_data, output_collections, incoming=incoming, history=history, tags=preserved_tags, hdca_tags=preserved_hdca_tags, skip=skip, ) self._record_inputs(trans, tool, job, incoming, inp_data, inp_dataset_collections) self._record_outputs(job, out_data, output_collections) if job_callback: job_callback(job) if skip: job.state = job.states.SKIPPED else: job.state = job.states.OK trans.sa_session.add(job) # Queue the job for execution # trans.app.job_manager.job_queue.put( job.id, tool.id ) # trans.log_event( "Added database job action to the job queue, id: %s" % str(job.id), tool_id=job.tool_id ) log.info(f"Calling produce_outputs, tool is {tool}") return job, out_data, history def _produce_outputs( self, trans: "ProvidesUserContext", tool, out_data, output_collections, incoming, history, tags, hdca_tags, skip ): tag_handler = trans.tag_handler tool.produce_outputs( trans, out_data, output_collections, incoming, history=history, tags=tags, hdca_tags=hdca_tags, tag_handler=tag_handler, ) mapped_over_elements = output_collections.dataset_collection_elements if mapped_over_elements: for name, value in out_data.items(): if name in mapped_over_elements: value.visible = False mapped_over_elements[name].hda = value # We probably need to mark all outputs as skipped, not just the outputs of whatever the database op tools do ? # This is probably not exactly right, but it might also work in most cases if skip: for output_collection in output_collections.out_collections.values(): output_collection.mark_as_populated() for hdca in output_collections.out_collection_instances.values(): hdca.visible = False # Would we also need to replace the datasets with skipped datasets? trans.sa_session.add_all(out_data.values())
null
419
# The pharmpy visualization module # Since the python visualization and plotting landscape is rapidly # evolving and there are many different modules to choose from # all visualization API calls should be made from this module so # that we could start using another API more easily. # Design conciderations: # We would like to be able to have interactive plots which currently # means to select a package that can render to html. The two main # contenders that can do this are the altair and the bokeh libraries. # Bokeh seems to have a larger community, but the strength in altair # is its use of the standard vega-lite format, which decouples the # creation of a plot from the rendering. Altair plots (or rather vega # plots) can be changed from the html directly via the online vega # editor. So using altair for now, but expecting to revisit this # decision shortly. # Will provide base functions for creating different types of plots # or other types of visualizations from pharmpy.deps import altair as alt from pharmpy.deps import pandas as pd _chart_width = 500 _chart_height = 500 def scatter_plot_correlation(df, x, y, tooltip_columns=None, title=""): if tooltip_columns is None: tooltip_columns = [] chart = ( alt.Chart(df, width=_chart_width, height=_chart_height) .mark_circle(size=100) .encode(alt.X(x), alt.Y(y), tooltip=[x, y] + tooltip_columns) .properties( title=title, ) .interactive() ) line = ( alt.Chart(pd.DataFrame({x: [min(df[x]), max(df[x])], y: [min(df[y]), max(df[y])]})) .mark_line() .encode( alt.X(x), alt.Y(y), ) .interactive() ) plot = chart + line plot = plot.configure_title(fontSize=16) plot = plot.configure_axis(labelFontSize=12, titleFontSize=14) return plot def scatter_matrix(df): """Scatter matrix plot Each column will be scatter plotted against all columns. """ base = ( alt.Chart(df) .transform_fold(list(df.columns), as_=['key_x', 'value_x']) .transform_fold(list(df.columns), as_=['key_y', 'value_y']) .encode( x=alt.X('value_y:Q', title=None, scale=alt.Scale(zero=False)), y=alt.Y('value_x:Q', title=None, scale=alt.Scale(zero=False)), ) .properties(width=150, height=150) ) plot = ( alt.layer( base.mark_circle(), base.transform_regression('value_y', 'value_x', method='poly', order=4).mark_line( color='red' ), ) .facet( column=alt.Column('key_x:N', sort=list(df.columns), title=None), row=alt.Row('key_y:N', sort=list(reversed(df.columns)), title=None), ) .resolve_scale(x='independent', y='independent') .configure_header(labelFontStyle='bold') ) return plot def line_plot(df, x, title='', xlabel='', ylabel='', legend_title=''): """Line plot for multiple lines Parameters ---------- df : pd.DataFrame DataFrame with one x column and multiple columns with y values x Name of the x column title : str Plot title xlabel : str Label of the x-axis ylabel : str Label of the y-axis legend_title : str Title of the legend """ df = df.melt(id_vars=[x]) plot = ( alt.Chart(df) .mark_line() .encode( alt.X(f'{x}:Q', title=xlabel), alt.Y('value:Q', title=ylabel), color=alt.Color( 'variable:N', legend=alt.Legend( title=legend_title, orient='top-left', fillColor='#EEEEEE', padding=10, cornerRadius=10, ), ), ) .properties( title=title, width=800, height=300, ) .configure_legend(labelLimit=0) ) return plot def histogram(values, title=""): """Histogram with percentage on y and a rule at mean slider for reducing the number of values used. """ df = pd.DataFrame({values.name: values, 'num': list(range(1, len(values) + 1))}) slider = alt.binding_range(min=1, max=len(values), step=1, name='Number of samples: ') selection = alt.selection_point( bind=slider, fields=['num'], name="num", value=len(values), ) base = alt.Chart(df).transform_filter('datum.num <= num_num') plot = ( base.transform_joinaggregate(total='count(*)') .transform_calculate(pct='1 / datum.total') .mark_bar() .encode(alt.X(f'{values.name}:Q', bin=True), alt.Y('sum(pct):Q', axis=alt.Axis(format='%'))) .add_params(selection) .properties(title=title) ) rule = base.mark_rule(color='red').encode(x=f'mean({values.name}):Q', size=alt.value(5)) return plot + rule def METHOD_NAME(df): """Facet of one histogram per column with cross filter interaction""" brush = alt.selection_interval(encodings=['x']) base = ( alt.Chart() .mark_bar() .encode( x=alt.X(alt.repeat('column'), type='quantitative', bin=alt.Bin(maxbins=20)), y=alt.Y('count()', axis=alt.Axis(title='')), ) .properties(width=200, height=150) ) background = base.encode(color=alt.value('#ddd')).add_params(brush) highlight = base.transform_filter(brush) chart = alt.layer(background, highlight, data=df).repeat(column=list(df.columns)) return chart
null
420
# Standard Python modules import os import unittest # External modules from baseclasses import BaseRegTest import numpy as np # First party modules from pygeo import DVConstraints, DVGeometry, geo_utils class RegTestPyGeo(unittest.TestCase): N_PROCS = 1 def setUp(self): # Store the path where this current script lives # This all paths in the script are relative to this path # This is needed to support testflo running directories and files as inputs self.base_path = os.path.dirname(os.path.abspath(__file__)) def make_cylinder_mesh(self, radius=1.0, height=2.0): Nazimuth = 1000 Nextrude = 100 Npts = Nazimuth * Nextrude theta = np.linspace(0, 2 * np.pi, Nazimuth) z = np.linspace(0, height, Nextrude) pts = np.zeros((Npts, 3)) # First populate the points for i in range(Nextrude): for j in range(Nazimuth): x = radius * np.cos(theta[j]) y = radius * np.sin(theta[j]) k = i * Nazimuth + j pts[k] = [x, y, z[i]] p0 = [] v1 = [] v2 = [] # Now create the triangulation for i in range(Nextrude - 1): for j in range(Nazimuth - 1): cur_level = i * Nazimuth next_level = (i + 1) * Nazimuth pA = pts[cur_level + j] pB = pts[cur_level + j + 1] pC = pts[next_level + j] pD = pts[next_level + j + 1] # Triangle 1 p0.append(pA) v1.append(pB - pA) v2.append(pD - pA) # Triangle 2 p0.append(pA) v1.append(pC - pA) v2.append(pD - pA) p0 = np.vstack(p0) v1 = np.vstack(v1) v2 = np.vstack(v2) return [p0, v1, v2] def METHOD_NAME(self, file_name, radius=1.0, height=2.0): # Write duplicate of outerbox FFD axes = ["i", "k", "j"] r = radius h = height dh = 0.01 slices = np.array( [ # Slice 1 [[[-r, -r, -dh], [r, -r, -dh]], [[-r, r, -dh], [r, r, -dh]]], # Slice 2 [[[-r, -r, h + dh], [r, -r, h + dh]], [[-r, r, h + dh], [r, r, h + dh]]], ] ) N0 = [5] N1 = [2] N2 = [2] geo_utils.write_wing_FFD_file(file_name, slices, N0, N1, N2, axes=axes) def train_1(self, train=True, refDeriv=True): self.test_1(train=train, refDeriv=refDeriv) def test_1(self, train=False, refDeriv=False): refFile = os.path.join(self.base_path, "ref/test_Cylinder_01.ref") with BaseRegTest(refFile, train=train) as handler: handler.root_print("Test 1: Basic FFD, global DVs") radius = 1.0 height = 10.0 DVCon = DVConstraints() surf = self.make_cylinder_mesh(radius, height) DVCon.setSurface(surf) # DVCon.writeSurfaceTecplot('cylinder_surface.dat') ffd_name = os.path.join(self.base_path, "../../input_files/cylinder_ffd.xyz") self.METHOD_NAME(ffd_name, radius, height) DVGeo = DVGeometry(ffd_name) nAxPts = DVGeo.addRefAxis("thru", xFraction=0.5, alignIndex="i", raySize=1.0) def scale_circle(val, geo): for i in range(nAxPts): geo.scale["thru"].coef[i] = val[0] DVGeo.addGlobalDV("scale_circle", func=scale_circle, value=[1]) DVCon.setDVGeo(DVGeo) leList = [[0, 0, 0], [-radius / 2, 0, height]] xAxis = [-1, 0, 0] yAxis = [0, 1, 0] DVCon.addLERadiusConstraints(leList, nSpan=5, axis=yAxis, chordDir=xAxis, scaled=False) # DVCon.writeTecplot('cylinder_constraints.dat') funcs = {} DVCon.evalFunctions(funcs) print(funcs) handler.root_add_dict("funcs1", funcs, rtol=1e-6, atol=1e-6) DVGeo.setDesignVars({"scale_circle": 0.5}) funcs = {} DVCon.evalFunctions(funcs) handler.root_add_dict("funcs2", funcs, rtol=1e-6, atol=1e-6) print(funcs) funcsSens = {} DVCon.evalFunctionsSens(funcsSens) print(funcsSens) handler.root_add_dict("funcsSens", funcsSens, rtol=1e-6, atol=1e-6) print(funcsSens) def train_spanwise_dvs(self, train=True, refDeriv=True): self.test_spanwise_dvs(train=train, refDeriv=refDeriv) def test_spanwise_dvs(self, train=False, refDeriv=False): refFile = os.path.join(self.base_path, "ref/test_Cylinder_spanwise_dvs.ref") with BaseRegTest(refFile, train=train) as handler: handler.root_print("Test 1: Basic FFD, global DVs") radius = 1.0 height = 10.0 DVCon = DVConstraints() surf = self.make_cylinder_mesh(radius, height) DVCon.setSurface(surf) # DVCon.writeSurfaceTecplot('cylinder_surface.dat') ffd_name = os.path.join(self.base_path, "../../input_files/cylinder_ffd.xyz") self.METHOD_NAME(ffd_name, radius, height) DVGeo = DVGeometry(ffd_name) DVGeo.addSpanwiseLocalDV("shape", "i", lower=-0.5, upper=0.5, axis="y", scale=1.0) size = DVGeo._getNDVSpanwiseLocal() DVCon.setDVGeo(DVGeo) leList = [[0, 0, 0], [-radius / 2, 0, height]] xAxis = [-1, 0, 0] yAxis = [0, 1, 0] DVCon.addLERadiusConstraints(leList, nSpan=5, axis=yAxis, chordDir=xAxis, scaled=False) # DVCon.writeTecplot('cylinder_constraints.dat') funcs = {} DVCon.evalFunctions(funcs) print(funcs) handler.root_add_dict("funcs1", funcs, rtol=1e-6, atol=1e-6) np.random.seed(0) DVGeo.setDesignVars({"shape": (np.random.rand(size) - 0.5)}) funcs = {} DVCon.evalFunctions(funcs) handler.root_add_dict("funcs2", funcs, rtol=1e-6, atol=1e-6) print(funcs) funcsSens = {} DVCon.evalFunctionsSens(funcsSens) print(funcsSens) handler.root_add_dict("funcsSens", funcsSens, rtol=1e-6, atol=1e-6) print(funcsSens) if __name__ == "__main__": unittest.main()
null
421
from shared.database.common import * import random import string from shared.database.action.action import Action TIME_WINDOW_SECONDS_MAPPER = { '1_minute': 1 * 60, '5_minutes': 5 * 60, '10_minutes': 10 * 60, '30_minutes': 30 * 60, '1_hours': 60 * 60, '4_hours': 60 * 60 * 4, '12_hours': 60 * 60 * 12, '1_days': 60 * 60 * 24, } class Workflow(Base): """ Group of actions. Ie a user creates a flow where an Action A then Action B happens """ __tablename__ = 'workflow' id = Column(Integer, primary_key = True) name = Column(String()) string_id = Column(String()) time_window = Column(String()) active = Column(Boolean) # Running / not running archived = Column(Boolean, default = False) # Hide from list is_new = Column(Boolean, default = True) kind = Column(String()) trigger_type = Column(String()) # Reference types from ActionFlowTriggerEventQueue count_events = Column(Integer) # New Jun 18 2019 foreign key not added yet directory_id = Column(Integer, ForeignKey('working_dir.id')) directory = relationship("WorkingDir", foreign_keys = [directory_id]) first_action_id = Column(BIGINT, ForeignKey('action.id')) first_action = relationship(Action, foreign_keys = [first_action_id]) last_action_id = Column(BIGINT, ForeignKey('action.id')) last_action = relationship(Action, foreign_keys = [last_action_id]) project_id = Column(Integer, ForeignKey('project.id')) project = relationship("Project") org_id = Column(Integer, ForeignKey('org.id')) org = relationship("Org", foreign_keys = [org_id]) member_created_id = Column(Integer, ForeignKey('member.id')) member_created = relationship("Member", foreign_keys = [member_created_id]) member_updated_id = Column(Integer, ForeignKey('member.id')) member_updated = relationship("Member", foreign_keys = [member_updated_id]) time_created = Column(DateTime, default = datetime.datetime.utcnow) time_updated = Column(DateTime, onupdate = datetime.datetime.utcnow) @staticmethod def new( session, project, org, name, member, trigger_type = None, time_window = None, ): # Else create a new one workflow = Workflow( active = False, project = project, org = org, name = name, trigger_type = trigger_type, time_window = time_window, member_created = member) Workflow.update_string_id( session = session, workflow = workflow) session.add(workflow) session.flush() return workflow def has_time_trigger(self, session) -> bool: first_action = self.METHOD_NAME(session = session) return first_action and first_action.trigger_data.get('event_name') == 'time_trigger' and first_action.trigger_data.get('cron_expression') def get_existing_unmodified_flow( session, project, member ): """ Concept that it gets a new flow that exists instead of creating new one (if unedited) relies on setting is_new to False by update methods this could cause issues but it seems so silly to keep recreating blank ones member so if two people created same one in same project... """ return session.query(Workflow).filter( Workflow.is_new == True, Workflow.member_created == member, Workflow.project == project).first() def serialize(self): # Include project id or? return { 'id': self.id, 'string_id': self.string_id, 'name': self.name, 'trigger_type': self.trigger_type, 'time_window': self.time_window, 'active': self.active, 'time_updated': self.time_updated } @staticmethod def get(session, workflow_id: int): """ Gets a single workflow by ID. :param session: :param workflow_id: :return: """ return session.query(Workflow).filter(Workflow.id == workflow_id).first() @staticmethod def get_by_id(session, id, project_id = None): """ Must include project id for security check (This assumes untrusted source)... """ return session.query(Workflow).filter( Workflow.id == id, Workflow.project_id == project_id).first() def get_by_string_id( session, string_id): return session.query(Workflow).filter( Workflow.string_id == string_id).first() @staticmethod def list( session, project_id, active_only = None, archived = False, trigger_type = None, limit = 100, return_kind = "objects" ): """ """ query = session.query(Workflow).filter( Workflow.archived == False, Workflow.project_id == project_id) if active_only is True: query = query.filter(Workflow.active == True) if trigger_type is not None: query = query.filter(Workflow.trigger_type == trigger_type) if return_kind == "count": return query.limit(limit).count() if return_kind == "objects": return query.order_by(Workflow.time_created).limit(limit).all() @staticmethod def update_string_id( session, workflow): # Not super happy with this here... if workflow.name is None: workflow.name = "Untitled flow" workflow.string_id = safe_name(workflow.name) workflow.string_id += f"_{create_random_string(length=20)}" def serialize_with_actions(self, session): data = self.serialize() actions = Action.list( session = session, flow_id = self.id, project_id = self.project_id, limit = None ) data['actions_list'] = [a.serialize() for a in actions] return data def METHOD_NAME(self, session) -> Action: action = session.query(Action).filter( Action.workflow_id == self.id, Action.ordinal == 0, Action.archived == False).first() return action # 'abcdefghijklmnopqrstuvwxyz0123456789' # can add chars in front if needed ie "." etc. valid_chars = f"{string.ascii_letters}{string.digits}" def safe_name(name, character_limit = 10): # TODO review using unicdoe normalize ie # https://gist.github.com/wassname/1393c4a57cfcbf03641dbc31886123b8 name = name[:character_limit] name = name.lower() # Email safe no upper case # Want to preserve user capitilized things though safe_name = "" for char in name: if char in valid_chars: safe_name += char return safe_name # see auth_api_new copied from there def create_random_string(length): # Email safe, so no upper case return ''.join(random.choice( string.ascii_lowercase + string.digits) for x in range(length))
null
422
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest class CreateHybridMonitorTaskRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Cms', '2019-01-01', 'CreateHybridMonitorTask','cms') self.set_method('POST') def get_Description(self): # String return self.get_query_params().get('Description') def set_Description(self, Description): # String self.add_query_param('Description', Description) def get_TaskName(self): # String return self.get_query_params().get('TaskName') def set_TaskName(self, TaskName): # String self.add_query_param('TaskName', TaskName) def get_CollectInterval(self): # String return self.get_query_params().get('CollectInterval') def METHOD_NAME(self, CollectInterval): # String self.add_query_param('CollectInterval', CollectInterval) def get_TargetUserId(self): # String return self.get_query_params().get('TargetUserId') def set_TargetUserId(self, TargetUserId): # String self.add_query_param('TargetUserId', TargetUserId) def get_CollectTargetType(self): # String return self.get_query_params().get('CollectTargetType') def set_CollectTargetType(self, CollectTargetType): # String self.add_query_param('CollectTargetType', CollectTargetType) def get_AttachLabelss(self): # RepeatList return self.get_query_params().get('AttachLabels') def set_AttachLabelss(self, AttachLabels): # RepeatList for depth1 in range(len(AttachLabels)): if AttachLabels[depth1].get('Name') is not None: self.add_query_param('AttachLabels.' + str(depth1 + 1) + '.Name', AttachLabels[depth1].get('Name')) if AttachLabels[depth1].get('Value') is not None: self.add_query_param('AttachLabels.' + str(depth1 + 1) + '.Value', AttachLabels[depth1].get('Value')) def get_TaskType(self): # String return self.get_query_params().get('TaskType') def set_TaskType(self, TaskType): # String self.add_query_param('TaskType', TaskType) def get_GroupId(self): # String return self.get_query_params().get('GroupId') def set_GroupId(self, GroupId): # String self.add_query_param('GroupId', GroupId) def get_TargetUserIdList(self): # String return self.get_query_params().get('TargetUserIdList') def set_TargetUserIdList(self, TargetUserIdList): # String self.add_query_param('TargetUserIdList', TargetUserIdList) def get_YARMConfig(self): # String return self.get_query_params().get('YARMConfig') def set_YARMConfig(self, YARMConfig): # String self.add_query_param('YARMConfig', YARMConfig) def get_Namespace(self): # String return self.get_query_params().get('Namespace') def set_Namespace(self, Namespace): # String self.add_query_param('Namespace', Namespace) def get_SLSProcessConfig(self): # Struct return self.get_query_params().get('SLSProcessConfig') def set_SLSProcessConfig(self, SLSProcessConfig): # Struct if SLSProcessConfig.get('Filter') is not None: if SLSProcessConfig.get('Filter').get('Filters') is not None: for index1, value1 in enumerate(SLSProcessConfig.get('Filter').get('Filters')): if value1.get('SLSKeyName') is not None: self.add_query_param('SLSProcessConfig.Filter.Filters.' + str(index1 + 1) + '.SLSKeyName', value1.get('SLSKeyName')) if value1.get('Value') is not None: self.add_query_param('SLSProcessConfig.Filter.Filters.' + str(index1 + 1) + '.Value', value1.get('Value')) if value1.get('Operator') is not None: self.add_query_param('SLSProcessConfig.Filter.Filters.' + str(index1 + 1) + '.Operator', value1.get('Operator')) if SLSProcessConfig.get('Filter').get('Relation') is not None: self.add_query_param('SLSProcessConfig.Filter.Relation', SLSProcessConfig.get('Filter').get('Relation')) if SLSProcessConfig.get('Express') is not None: for index1, value1 in enumerate(SLSProcessConfig.get('Express')): if value1.get('Alias') is not None: self.add_query_param('SLSProcessConfig.Express.' + str(index1 + 1) + '.Alias', value1.get('Alias')) if value1.get('Express') is not None: self.add_query_param('SLSProcessConfig.Express.' + str(index1 + 1) + '.Express', value1.get('Express')) if SLSProcessConfig.get('GroupBy') is not None: for index1, value1 in enumerate(SLSProcessConfig.get('GroupBy')): if value1.get('SLSKeyName') is not None: self.add_query_param('SLSProcessConfig.GroupBy.' + str(index1 + 1) + '.SLSKeyName', value1.get('SLSKeyName')) if value1.get('Alias') is not None: self.add_query_param('SLSProcessConfig.GroupBy.' + str(index1 + 1) + '.Alias', value1.get('Alias')) if SLSProcessConfig.get('Statistics') is not None: for index1, value1 in enumerate(SLSProcessConfig.get('Statistics')): if value1.get('SLSKeyName') is not None: self.add_query_param('SLSProcessConfig.Statistics.' + str(index1 + 1) + '.SLSKeyName', value1.get('SLSKeyName')) if value1.get('Function') is not None: self.add_query_param('SLSProcessConfig.Statistics.' + str(index1 + 1) + '.Function', value1.get('Function')) if value1.get('Alias') is not None: self.add_query_param('SLSProcessConfig.Statistics.' + str(index1 + 1) + '.Alias', value1.get('Alias')) if value1.get('Parameter2') is not None: self.add_query_param('SLSProcessConfig.Statistics.' + str(index1 + 1) + '.Parameter2', value1.get('Parameter2')) if value1.get('Parameter1') is not None: self.add_query_param('SLSProcessConfig.Statistics.' + str(index1 + 1) + '.Parameter1', value1.get('Parameter1'))
null
423
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from typing import Optional, Tuple import torch from overrides import EnforceOverrides from torch import Tensor, nn from torch.utils.data import DataLoader from archai.common import ml_utils from archai.common.apex_utils import ApexUtils from archai.common.config import Config from archai.common.ordered_dict_logger import get_global_logger from archai.supergraph.utils.metrics import Metrics logger = get_global_logger() class Tester(EnforceOverrides): def __init__(self, conf_val:Config, model:nn.Module, apex:ApexUtils)->None: self._title = conf_val['title'] self._logger_freq = conf_val['logger_freq'] conf_lossfn = conf_val['lossfn'] self.batch_chunks = conf_val['batch_chunks'] self._apex = apex self.model = model self._lossfn = ml_utils.get_lossfn(conf_lossfn).to(apex.device) self._metrics = None def test(self, test_dl: DataLoader)->Metrics: logger.pushd(self._title) self._metrics = self._create_metrics() # recreate metrics for this run self._pre_test() self._test_epoch(test_dl) self._post_test() logger.popd() return self.get_metrics() # type: ignore def _test_epoch(self, test_dl: DataLoader)->None: self._metrics.pre_epoch() self.model.eval() steps = len(test_dl) with torch.no_grad(), logger.pushd('steps'): for step, (x, y) in enumerate(test_dl): # derived class might alter the mode through pre/post hooks assert not self.model.training logger.pushd(step) self._pre_step(x, y, self._metrics) # pyright: ignore[reportGeneralTypeIssues] # divide batch in to chunks if needed so it fits in GPU RAM if self.batch_chunks > 1: x_chunks, y_chunks = torch.chunk(x, self.batch_chunks), torch.chunk(y, self.batch_chunks) else: x_chunks, y_chunks = (x,), (y,) logits_chunks = [] loss_sum, loss_count = 0.0, 0 for xc, yc in zip(x_chunks, y_chunks): xc, yc = xc.to(self.METHOD_NAME(), non_blocking=True), yc.to(self.METHOD_NAME(), non_blocking=True) logits_c = self.model(xc) tupled_out = isinstance(logits_c, Tuple) and len(logits_c) >=2 if tupled_out: logits_c = logits_c[0] loss_c = self._lossfn(logits_c, yc) loss_sum += loss_c.item() * len(logits_c) loss_count += len(logits_c) logits_chunks.append(logits_c.detach().cpu()) # pyright: ignore[reportGeneralTypeIssues] self._post_step(x, y, ml_utils.join_chunks(logits_chunks), torch.tensor(loss_sum/loss_count), steps, self._metrics) # pyright: ignore[reportGeneralTypeIssues] # TODO: we possibly need to sync so all replicas are upto date self._apex.sync_devices() logger.popd() self._metrics.post_epoch() # no "val" dataset for the test phase def get_metrics(self)->Optional[Metrics]: return self._metrics def state_dict(self)->dict: return { 'metrics': self._metrics.state_dict() } def METHOD_NAME(self): return self._apex.device def load_state_dict(self, state_dict:dict)->None: self._metrics.load_state_dict(state_dict['metrics']) def _pre_test(self)->None: self._metrics.pre_run() def _post_test(self)->None: self._metrics.post_run() def _pre_step(self, x:Tensor, y:Tensor, metrics:Metrics)->None: metrics.pre_step(x, y) def _post_step(self, x:Tensor, y:Tensor, logits:Tensor, loss:Tensor, steps:int, metrics:Metrics)->None: metrics.post_step(x, y, logits, loss, steps) def _create_metrics(self)->Metrics: return Metrics(self._title, self._apex, logger_freq=self._logger_freq)
null
424
import asyncio import unittest from decimal import Decimal from hummingbot.connector.gateway.gateway_in_flight_order import GatewayInFlightOrder from hummingbot.core.data_type.common import OrderType, TradeType from hummingbot.core.data_type.in_flight_order import OrderState, OrderUpdate s_decimal_0 = Decimal("0") class GatewayInFlightOrderUnitTests(unittest.TestCase): @classmethod def setUpClass(cls) -> None: super().setUpClass() cls.ev_loop = asyncio.get_event_loop() cls.base_asset = "COINALPHA" cls.quote_asset = "HBOT" cls.trading_pair = f"{cls.base_asset}-{cls.quote_asset}" cls.client_order_id = "someClientOrderId" cls.exchange_order_id = "someTxHash" cls.nonce = 1 def test_order_life_cycle_of_token_approval_requests(self): order: GatewayInFlightOrder = GatewayInFlightOrder( client_order_id=self.client_order_id, trading_pair=self.quote_asset, order_type=OrderType.LIMIT, trade_type=TradeType.BUY, creation_timestamp=1652324823, initial_state=OrderState.PENDING_APPROVAL, ) # Assert that order is in fact a Approval Request self.assertTrue(order.is_approval_request) self.assertTrue(order.is_pending_approval) order_update: OrderUpdate = OrderUpdate( trading_pair=order.trading_pair, update_timestamp=1652324824, new_state=OrderState.APPROVED, client_order_id=order.client_order_id, exchange_order_id=self.exchange_order_id, ) order.update_with_order_update(order_update=order_update) self.assertFalse(order.is_pending_approval) def METHOD_NAME(self): order: GatewayInFlightOrder = GatewayInFlightOrder( client_order_id=self.client_order_id, trading_pair=self.quote_asset, order_type=OrderType.LIMIT, trade_type=TradeType.BUY, price=Decimal("1"), amount=Decimal("1000"), creation_timestamp=1652324823, initial_state=OrderState.PENDING_CREATE, ) # Nonce is not provided upon creation self.assertEqual(order.nonce, -1) # Exchange Order Id for GatewayInFlightOrder is only assigned after a TradeUpdate self.assertIsNone(order.exchange_order_id) # CancelTxHash is not initialized on creation self.assertIsNone(order.cancel_tx_hash) def test_update_creation_transaction_hash_with_order_update(self): order: GatewayInFlightOrder = GatewayInFlightOrder( client_order_id=self.client_order_id, trading_pair=self.quote_asset, order_type=OrderType.LIMIT, trade_type=TradeType.BUY, price=Decimal("1"), amount=Decimal("1000"), creation_timestamp=1652324823, initial_state=OrderState.PENDING_CREATE, creation_transaction_hash=None, ) self.assertIsNone(order.creation_transaction_hash) desired_creation_transaction_hash = "someTransactionHash" order_update = OrderUpdate( trading_pair=self.trading_pair, update_timestamp=1652324823 + 1, new_state=OrderState.OPEN, client_order_id=self.client_order_id, exchange_order_id="someExchangeOrderID", misc_updates={ "creation_transaction_hash": desired_creation_transaction_hash, } ) order.update_with_order_update(order_update=order_update) self.assertEqual(desired_creation_transaction_hash, order.creation_transaction_hash) def test_update_cancelation_transaction_hash_with_order_update(self): order: GatewayInFlightOrder = GatewayInFlightOrder( client_order_id=self.client_order_id, trading_pair=self.quote_asset, order_type=OrderType.LIMIT, trade_type=TradeType.BUY, price=Decimal("1"), amount=Decimal("1000"), creation_timestamp=1652324823, initial_state=OrderState.PENDING_CREATE, ) self.assertIsNone(order.creation_transaction_hash) desired_cancelation_transaction_hash = "someTransactionHash" order_update = OrderUpdate( trading_pair=self.trading_pair, update_timestamp=1652324823 + 1, new_state=OrderState.OPEN, client_order_id=self.client_order_id, exchange_order_id="someExchangeOrderID", misc_updates={ "cancelation_transaction_hash": desired_cancelation_transaction_hash, } ) order.update_with_order_update(order_update=order_update) self.assertEqual(desired_cancelation_transaction_hash, order.cancel_tx_hash) def test_to_and_from_json(self): base_order = GatewayInFlightOrder( client_order_id=self.client_order_id, trading_pair=self.quote_asset, order_type=OrderType.LIMIT, trade_type=TradeType.BUY, price=Decimal("1"), amount=Decimal("1000"), creation_timestamp=1652324823, initial_state=OrderState.PENDING_CREATE, ) base_order.last_update_timestamp = 1652324824 order_json = base_order.to_json() derived_order = GatewayInFlightOrder.from_json(order_json) self.assertEqual(base_order, derived_order)
null
425
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkvpc.endpoint import endpoint_data class AllocateEipAddressRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Vpc', '2016-04-28', 'AllocateEipAddress','vpc') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def METHOD_NAME(self): # String return self.get_query_params().get('IpAddress') def set_IpAddress(self, IpAddress): # String self.add_query_param('IpAddress', IpAddress) def get_ResourceOwnerId(self): # Long return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self, ResourceOwnerId): # Long self.add_query_param('ResourceOwnerId', ResourceOwnerId) def get_PublicIpAddressPoolId(self): # String return self.get_query_params().get('PublicIpAddressPoolId') def set_PublicIpAddressPoolId(self, PublicIpAddressPoolId): # String self.add_query_param('PublicIpAddressPoolId', PublicIpAddressPoolId) def get_ClientToken(self): # String return self.get_query_params().get('ClientToken') def set_ClientToken(self, ClientToken): # String self.add_query_param('ClientToken', ClientToken) def get_ISP(self): # String return self.get_query_params().get('ISP') def set_ISP(self, ISP): # String self.add_query_param('ISP', ISP) def get_Description(self): # String return self.get_query_params().get('Description') def set_Description(self, Description): # String self.add_query_param('Description', Description) def get_ResourceGroupId(self): # String return self.get_query_params().get('ResourceGroupId') def set_ResourceGroupId(self, ResourceGroupId): # String self.add_query_param('ResourceGroupId', ResourceGroupId) def get_Zone(self): # String return self.get_query_params().get('Zone') def set_Zone(self, Zone): # String self.add_query_param('Zone', Zone) def get_Netmode(self): # String return self.get_query_params().get('Netmode') def set_Netmode(self, Netmode): # String self.add_query_param('Netmode', Netmode) def get_InstanceChargeType(self): # String return self.get_query_params().get('InstanceChargeType') def set_InstanceChargeType(self, InstanceChargeType): # String self.add_query_param('InstanceChargeType', InstanceChargeType) def get_Period(self): # Integer return self.get_query_params().get('Period') def set_Period(self, Period): # Integer self.add_query_param('Period', Period) def get_AutoPay(self): # Boolean return self.get_query_params().get('AutoPay') def set_AutoPay(self, AutoPay): # Boolean self.add_query_param('AutoPay', AutoPay) def get_ResourceOwnerAccount(self): # String return self.get_query_params().get('ResourceOwnerAccount') def set_ResourceOwnerAccount(self, ResourceOwnerAccount): # String self.add_query_param('ResourceOwnerAccount', ResourceOwnerAccount) def get_Bandwidth(self): # String return self.get_query_params().get('Bandwidth') def set_Bandwidth(self, Bandwidth): # String self.add_query_param('Bandwidth', Bandwidth) def get_OwnerAccount(self): # String return self.get_query_params().get('OwnerAccount') def set_OwnerAccount(self, OwnerAccount): # String self.add_query_param('OwnerAccount', OwnerAccount) def get_OwnerId(self): # Long return self.get_query_params().get('OwnerId') def set_OwnerId(self, OwnerId): # Long self.add_query_param('OwnerId', OwnerId) def get_ActivityId(self): # Long return self.get_query_params().get('ActivityId') def set_ActivityId(self, ActivityId): # Long self.add_query_param('ActivityId', ActivityId) def get_InstanceId(self): # String return self.get_query_params().get('InstanceId') def set_InstanceId(self, InstanceId): # String self.add_query_param('InstanceId', InstanceId) def get_InternetChargeType(self): # String return self.get_query_params().get('InternetChargeType') def set_InternetChargeType(self, InternetChargeType): # String self.add_query_param('InternetChargeType', InternetChargeType) def get_Name(self): # String return self.get_query_params().get('Name') def set_Name(self, Name): # String self.add_query_param('Name', Name) def get_SecurityProtectionTypess(self): # RepeatList return self.get_query_params().get('SecurityProtectionTypes') def set_SecurityProtectionTypess(self, SecurityProtectionTypes): # RepeatList for depth1 in range(len(SecurityProtectionTypes)): self.add_query_param('SecurityProtectionTypes.' + str(depth1 + 1), SecurityProtectionTypes[depth1]) def get_PricingCycle(self): # String return self.get_query_params().get('PricingCycle') def set_PricingCycle(self, PricingCycle): # String self.add_query_param('PricingCycle', PricingCycle)
null
426
import pytest from osf.management.commands.populate_initial_schema_responses import populate_initial_schema_responses from osf.models import SchemaResponse, SchemaResponseBlock from osf.utils.workflows import ApprovalStates, RegistrationModerationStates as RegStates from osf_tests.factories import ProjectFactory, RegistrationFactory from osf_tests.utils import get_default_test_schema DEFAULT_RESPONSES = { 'q1': 'An answer', 'q2': 'Another answer', 'q3': 'A', 'q4': ['E'], 'q5': '', 'q6': [], } @pytest.fixture def control_registration(): return RegistrationFactory() @pytest.fixture def test_registration(): registration = RegistrationFactory(schema=get_default_test_schema()) registration.schema_responses.clear() registration.registration_responses = dict(DEFAULT_RESPONSES) registration.save() return registration @pytest.fixture def nested_registration(test_registration): registration = RegistrationFactory( project=ProjectFactory(parent=test_registration.registered_from), parent=test_registration ) registration.schema_responses.clear() return registration @pytest.mark.django_db class TestPopulateInitialSchemaResponses: def test_schema_response_created(self, test_registration): assert not test_registration.schema_responses.exists() count = populate_initial_schema_responses() assert count == 1 assert test_registration.schema_responses.count() == 1 schema_response = test_registration.schema_responses.get() assert schema_response.schema == test_registration.registration_schema assert schema_response.all_responses == test_registration.registration_responses @pytest.mark.parametrize( 'registration_state, schema_response_state', [ (RegStates.INITIAL, ApprovalStates.UNAPPROVED), (RegStates.PENDING, ApprovalStates.PENDING_MODERATION), (RegStates.ACCEPTED, ApprovalStates.APPROVED), (RegStates.EMBARGO, ApprovalStates.APPROVED), (RegStates.PENDING_EMBARGO_TERMINATION, ApprovalStates.APPROVED), (RegStates.PENDING_WITHDRAW_REQUEST, ApprovalStates.APPROVED), (RegStates.PENDING_WITHDRAW, ApprovalStates.APPROVED), (RegStates.WITHDRAWN, ApprovalStates.APPROVED), (RegStates.REVERTED, ApprovalStates.UNAPPROVED), (RegStates.REJECTED, ApprovalStates.PENDING_MODERATION), ] ) def test_schema_response_state( self, test_registration, registration_state, schema_response_state): test_registration.moderation_state = registration_state.db_name test_registration.save() populate_initial_schema_responses() schema_response = test_registration.schema_responses.get() assert schema_response.state == schema_response_state def test_errors_from_invalid_keys_are_ignored(self, test_registration): test_registration.registration_responses.update({'invalid_key': 'lolol'}) test_registration.save() populate_initial_schema_responses() schema_response = test_registration.schema_responses.get() assert schema_response.all_responses == DEFAULT_RESPONSES def test_populate_responses_is_atomic_per_registration(self, test_registration): invalid_registration = RegistrationFactory() invalid_registration.schema_responses.clear() invalid_registration.registered_schema.clear() count = populate_initial_schema_responses() assert count == 1 assert test_registration.schema_responses.exists() assert not invalid_registration.schema_responses.exists() def test_dry_run(self, test_registration): # donfirm that the delete works even if the schema_response isn't IN_PROGRESS test_registration.moderation_state = RegStates.ACCEPTED.db_name test_registration.save() with pytest.raises(RuntimeError): populate_initial_schema_responses(dry_run=True) assert not test_registration.schema_responses.exists() assert not SchemaResponse.objects.exists() assert not SchemaResponseBlock.objects.exists() def test_batch_size(self): for _ in range(5): r = RegistrationFactory() r.schema_responses.clear() assert not SchemaResponse.objects.exists() count = populate_initial_schema_responses(batch_size=3) assert count == 3 assert SchemaResponse.objects.count() == 3 def test_schema_response_not_created_for_registration_with_response(self, control_registration): control_registration_response = control_registration.schema_responses.get() count = populate_initial_schema_responses() assert count == 0 assert control_registration.schema_responses.get() == control_registration_response def METHOD_NAME(self, nested_registration): count = populate_initial_schema_responses() assert count == 1 # parent registration assert not nested_registration.schema_responses.exists()
null
427
import os from datetime import datetime from tempfile import NamedTemporaryFile from xlrd import XLRDError from creme.creme_core.tests.base import CremeTestCase from creme.creme_core.utils.xlrd_utils import XlrdReader from creme.creme_core.utils.xlwt_utils import XlwtWriter class XLSUtilsTestCase(CremeTestCase): files = ('data-xls5.0-95.xls', 'data-xls97-2003.xls', 'data-xlsx.xlsx' ) current_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data') data = [ ['Prénom', 'Nom', 'Taille1', 'Taille2', 'Send_Date'], ['Gérard', 'Bouchard', 0.5, 0.5, datetime(2014, 8, 6, 20, 57, 32)], ['Hugo', 'Smett', 122, 122, ''], ['Rémy', 'Rakic', 12, 12, datetime(2014, 8, 6, 19, 48, 32)], ['Florian', 'Fabre', 0.004, 0.004, '51/08/2014 00:00:00'], ['Jean-Michel', 'Armand', 42, 42, datetime(2014, 8, 6, 19, 48, 32)], ['Guillaume', 'Englert', 50, 50, datetime(2014, 8, 6, 19, 48, 32)], ['Jonathan', 'Caruana', -50, -50, datetime(2014, 8, 6, 20, 57, 32)], ] def get_file_path(self, filename): return os.path.join(self.current_path, filename) def test_unknown_filename(self): with self.assertRaises(IOError): XlrdReader(filedata=self.get_file_path('unknown.xls')) def METHOD_NAME(self): with self.assertRaises(XLRDError) as error: XlrdReader(filedata=self.get_file_path('data-invalid.xls')) self.assertEqual( str(error.exception), "Unsupported format, or corrupt file: Expected BOF record; found b'this is '" ) def test_sheet(self): rd = XlrdReader(filedata=self.get_file_path(self.files[0])) self.assertIsNotNone(rd.book) self.assertIsNotNone(rd.sheet) self.assertEqual(rd.sheet.nrows, len(self.data)) def test_read_next(self): for filename in self.files: rd = XlrdReader(filedata=self.get_file_path(filename)) for element in self.data: self.assertEqual(element, next(rd)) def test_as_list(self): for filename in self.files: rd = XlrdReader(filedata=self.get_file_path(filename)) self.assertListEqual(self.data, [*rd]) def test_open_file(self): for filename in self.files: with open(self.get_file_path(filename), mode='rb') as file_obj: file_content = file_obj.read() rd = XlrdReader(file_contents=file_content) self.assertEqual([*rd], self.data) def test_write_and_read(self): file = NamedTemporaryFile(suffix=".xls") wt = XlwtWriter() writerow = wt.writerow for element in self.data: writerow(element) wt.save(file.name) rd = XlrdReader(filedata=file.name) self.assertEqual([*rd], self.data) with open(file.name, mode='rb') as file_obj: file_content = file_obj.read() rd = XlrdReader(file_contents=file_content) self.assertEqual([*rd], self.data) def test_truncate(self): content = """Lôrèm ipsum dolor sit amet, consectetur adipiscing elit. Proin ac odio libero. Praesent sollicitudin, mauris non sagittis tincidunt, magna libero malesuada lectus, sit amet dictum nulla mi ac justo. Vivamus laoreet metus eu purus tincidunt, et consectetur justo mattis. Phasellus egestas a lacus nec pulvinar. Sed a lectus eleifend, hendrerit ligula nec, aliquet sem. Quisque nec tortor nec ante pharetra cursus sed facilisis lorem. Praesent blandit pharetra nulla, id ultrices diam molestie sed. """ * 100 self.assertGreater(len(content), 32767) file = NamedTemporaryFile(suffix='.xls') wt = XlwtWriter() wt.writerow([content]) with self.assertNoException(): wt.save(file.name) row = self.get_alone_element(XlrdReader(filedata=file.name)) elt = self.get_alone_element(row) self.assertEqual(32767, len(elt))
null
428
from shared.database.common import * from sqlalchemy_serializer import SerializerMixin from sqlalchemy import desc from sqlalchemy import nullslast from shared.shared_logger import get_shared_logger logger = get_shared_logger() from sqlalchemy.dialects.postgresql import JSONB class UI_Schema(Base, SerializerMixin): """ """ __tablename__ = 'ui_schema' id = Column(BIGINT, primary_key = True) name = Column(String) note = Column(String) version = Column(Integer, default = 0) created_time = Column(DateTime, default = datetime.datetime.utcnow) last_updated_time = Column(DateTime, onupdate = datetime.datetime.utcnow) client_created_time = Column(DateTime, nullable = True) creation_ref_id = Column(String(), nullable = True) deleted_time = Column(DateTime, nullable = True) archived = Column(Boolean) is_visible = Column(Boolean, default=True) is_public = Column(Boolean, default=False) deletion_type = Column(String, nullable = True) change_source = Column(String, nullable = True) project_id = Column(Integer, ForeignKey('project.id'), index=True) project = relationship("Project") member_created_id = Column(Integer, ForeignKey('member.id')) member_created = relationship("Member", foreign_keys = [member_created_id]) member_updated_id = Column(Integer, ForeignKey('member.id')) member_updated = relationship("Member", foreign_keys = [member_updated_id]) allowed_instance_type_list = Column(ARRAY(String())) allowed_instance_template_id_list = Column(ARRAY(Integer())) # {visible: bool, # url: example, # style: example} global_theme = Column(MutableDict.as_mutable(JSONB)) logo = Column(MutableDict.as_mutable(JSONB)) home = Column(MutableDict.as_mutable(JSONB)) task_list = Column(MutableDict.as_mutable(JSONB)) undo = Column(MutableDict.as_mutable(JSONB)) redo = Column(MutableDict.as_mutable(JSONB)) complete = Column(MutableDict.as_mutable(JSONB)) defer = Column(MutableDict.as_mutable(JSONB)) zoom = Column(MutableDict.as_mutable(JSONB)) label_selector = Column(MutableDict.as_mutable(JSONB)) instance_selector = Column(MutableDict.as_mutable(JSONB)) edit_instance_template = Column(MutableDict.as_mutable(JSONB)) draw_edit = Column(MutableDict.as_mutable(JSONB)) save = Column(MutableDict.as_mutable(JSONB)) next_task = Column(MutableDict.as_mutable(JSONB)) previous_task = Column(MutableDict.as_mutable(JSONB)) guide = Column(MutableDict.as_mutable(JSONB)) brightness_contrast_filters = Column(MutableDict.as_mutable(JSONB)) hotkeys = Column(MutableDict.as_mutable(JSONB)) overflow_menu = Column(MutableDict.as_mutable(JSONB)) settings = Column(MutableDict.as_mutable(JSONB)) attributes = Column(MutableDict.as_mutable(JSONB)) instances = Column(MutableDict.as_mutable(JSONB)) userscripts = Column(MutableDict.as_mutable(JSONB)) nav_bar = Column(MutableDict.as_mutable(JSONB)) left_bar = Column(MutableDict.as_mutable(JSONB)) main_canvas = Column(MutableDict.as_mutable(JSONB)) label_settings = Column(MutableDict.as_mutable(JSONB)) allow_actions = Column(MutableDict.as_mutable(JSONB)) block_actions = Column(MutableDict.as_mutable(JSONB)) time_tracking = Column(MutableDict.as_mutable(JSONB)) custom_buttons = Column(MutableDict.as_mutable(JSONB)) # example actions #allow_instance_delete #allow_instance_move #allow_new_instance_creation #allow_new_instance_creation #allow_label_change #allow_attribute_change #allow_copy_paste #allow_new_template_creation #allow_history_access #allow_edit_of_complete_task = Column(Boolean) # These should be rolled into label settings maybe? #default_to_view_only_mode #default_to_qa_slideshow def serialize(self): # https://github.com/n0nSmoker/SQLAlchemy-serializer return self.to_dict(rules=( '-member_created', '-member_updated', '-project')) @staticmethod def get_by_id(session, id: int): return session.query(UI_Schema).filter( UI_Schema.id == id).first() @staticmethod def get(session, id: int, project_id: int): query = session.query(UI_Schema) query = query.filter(UI_Schema.id == id) query = query.filter(or_( UI_Schema.project_id == project_id, UI_Schema.is_public == True )) return query.first() @staticmethod def METHOD_NAME( session, project_id=None, org=None, limit=100, return_kind="objects", archived = False, date_to = None, # datetime date_from = None, # datetime date_to_string: str = None, date_from_string: str = None, name: str = None, name_match_type: str = "ilike", # substring and helps if case Aa is off order_by_class_and_attribute = None, order_by_direction = desc, public_only = False ): """ """ query = session.query(UI_Schema) # Assume we must either have public or project id if public_only is True: query = query.filter(UI_Schema.is_public == True) else: query = query.filter(UI_Schema.project_id == project_id) if name: if name_match_type == "ilike": name_search = f"%{name}%" query = query.filter(UI_Schema.name.ilike(name_search)) else: query = query.filter(UI_Schema.name == name) if date_from or date_to: if date_from: query = query.filter(UI_Schema.created_time >= date_from) if date_to: query = query.filter(UI_Schema.created_time <= date_to) elif date_from_string or date_to_string: query = regular_methods.regular_query( query=query, date_from_string=date_from_string, date_to_string=date_to_string, base_class=UI_Schema, created_time_string='last_updated_time' ) if archived is False: query = query.filter(or_( UI_Schema.archived == None, UI_Schema.archived == False)) if order_by_class_and_attribute: query = query.order_by( nullslast(order_by_direction(order_by_class_and_attribute))) if return_kind == "count": return query.limit(limit).count() if return_kind == "objects": return query.limit(limit).all() @staticmethod def new( member_created: 'Member' = None, project: 'Project' = None, client_created_time = None, creation_ref_id = None, name = None ) -> 'UI_Schema': return UI_Schema(**locals())
null
429
import logging import json from pymisp import MISPAttribute, MISPEvent, MISPTag, MISPObject from . import check_input_attribute, checking_error, standard_error_message from qintel_helper import search_qsentry logger = logging.getLogger('qintel_qsentry') logger.setLevel(logging.DEBUG) moduleinfo = { 'version': '1.0', 'author': 'Qintel, LLC', 'description': 'Query Qintel QSentry for ip intelligence', 'module-type': ['hover', 'expansion'] } moduleconfig = ['token', 'remote'] misperrors = {'error': 'Error'} mispattributes = { 'input': ['ip-src', 'ip-dst'], 'output': ['ip-src', 'ip-dst', 'AS', 'freetext'], 'format': 'misp_standard' } TAG_COLOR = { 'benign': '#27ae60', 'suspicious': '#e6a902', 'malicious': '#c0392b' } CLIENT_HEADERS = { 'User-Agent': f"MISP/{moduleinfo['version']}", } def _return_error(message): misperrors['error'] = message return misperrors def _make_tags(enriched_attr, result): for tag in result['tags']: color = TAG_COLOR['suspicious'] if tag == 'criminal': color = TAG_COLOR['malicious'] t = MISPTag() t.from_dict(**{ 'name': f'qintel:tag="{tag}"', 'colour': color }) enriched_attr.add_tag(**t) return enriched_attr def _make_enriched_attr(event, result, orig_attr): enriched_object = MISPObject('Qintel Threat Enrichment') enriched_object.add_reference(orig_attr.uuid, 'related-to') enriched_attr = MISPAttribute() enriched_attr.from_dict(**{ 'value': orig_attr.value, 'type': orig_attr.type, 'distribution': 0, 'object_relation': 'enriched-attr', 'to_ids': orig_attr.to_ids }) enriched_attr = _make_tags(enriched_attr, result) enriched_object.add_attribute(**enriched_attr) comment_attr = MISPAttribute() comment_attr.from_dict(**{ 'value': '\n'.join(result.get('descriptions', [])), 'type': 'text', 'object_relation': 'descriptions', 'distribution': 0 }) enriched_object.add_attribute(**comment_attr) last_seen = MISPAttribute() last_seen.from_dict(**{ 'value': result.get('last_seen'), 'type': 'datetime', 'object_relation': 'last-seen', 'distribution': 0 }) enriched_object.add_attribute(**last_seen) event.add_attribute(**orig_attr) event.add_object(**enriched_object) return event def _make_asn_attr(event, result, orig_attr): asn_object = MISPObject('asn') asn_object.add_reference(orig_attr.uuid, 'related-to') asn_attr = MISPAttribute() asn_attr.from_dict(**{ 'type': 'AS', 'value': result.get('asn'), 'object_relation': 'asn', 'distribution': 0 }) asn_object.add_attribute(**asn_attr) org_attr = MISPAttribute() org_attr.from_dict(**{ 'type': 'text', 'value': result.get('asn_name', 'unknown').title(), 'object_relation': 'description', 'distribution': 0 }) asn_object.add_attribute(**org_attr) event.add_object(**asn_object) return event def _format_hover(event, result): enriched_object = event.get_objects_by_name('Qintel Threat Enrichment')[0] tags = ', '.join(result.get('tags')) enriched_object.add_attribute('Tags', type='text', value=tags) return event def _format_result(attribute, result): event = MISPEvent() orig_attr = MISPAttribute() orig_attr.from_dict(**attribute) event = _make_enriched_attr(event, result, orig_attr) event = _make_asn_attr(event, result, orig_attr) return event def _check_config(config): if not config: return False if not isinstance(config, dict): return False if config.get('token', '') == '': return False return True def METHOD_NAME(request): if not request.get('attribute'): return f'{standard_error_message}, {checking_error}' check_reqs = ('type', 'value') if not check_input_attribute(request['attribute'], requirements=check_reqs): return f'{standard_error_message}, {checking_error}' if request['attribute']['type'] not in mispattributes['input']: return 'Unsupported attribute type' def handler(q=False): if not q: return False request = json.loads(q) config = request.get('config') if not _check_config(config): return _return_error('Missing Qintel token') check_request_error = METHOD_NAME(request) if check_request_error: return _return_error(check_request_error) search_args = { 'token': config['token'], 'remote': config.get('remote') } try: result = search_qsentry(request['attribute']['value'], **search_args) except Exception as e: return _return_error(str(e)) event = _format_result(request['attribute'], result) if not request.get('event_id'): event = _format_hover(event, result) event = json.loads(event.to_json()) ret_result = {key: event[key] for key in ('Attribute', 'Object') if key in event} return {'results': ret_result} def introspection(): return mispattributes def version(): moduleinfo['config'] = moduleconfig return moduleinfo
null
430
import mdp from mdp import PreserveDimNode, numx, VariadicCumulator import operator class ClassifierNode(PreserveDimNode): """A ClassifierNode can be used for classification tasks that should not interfere with the normal execution flow. A reason for that is that the labels used for classification do not form a vector space, and so they don't make much sense in a flow. """ def __init__(self, execute_method=None, input_dim=None, output_dim=None, dtype=None): """Initialize classifier. execute_method -- Set to string value 'label', 'rank', or 'prob' to force the corresponding classification method being used instead of the standard identity execution (which is used when execute_method has the default value None). This can be used when the node is last in a flow, the return value from Flow.execute will then consist of the classification results. """ self.execute_method = execute_method super(ClassifierNode, self).__init__(input_dim=input_dim, output_dim=output_dim, dtype=dtype) ### Methods to be implemented by the subclasses def _label(self, x, *args, **kargs): raise NotImplementedError def _prob(self, x, *args, **kargs): raise NotImplementedError ### User interface to the overwritten methods def METHOD_NAME(self, x, *args, **kwargs): """Returns an array with best class labels. By default, subclasses should overwrite _label to implement their label. The docstring of the '_label' method overwrites this docstring. """ self._pre_execution_checks(x) return self._label(self._refcast(x), *args, **kwargs) def prob(self, x, *args, **kwargs): """Returns the probability for each datapoint and label (e.g., [{1:0.1, 2:0.0, 3:0.9}, {1:1.0, 2:0.0, 3:0.0}, ...]) By default, subclasses should overwrite _prob to implement their prob. The docstring of the '_prob' method overwrites this docstring. """ self._pre_execution_checks(x) return self._prob(self._refcast(x), *args, **kwargs) def rank(self, x, threshold=None): """Returns ordered list with all labels ordered according to prob(x) (e.g., [[3 1 2], [2 1 3], ...]). The optional threshold parameter is used to exclude labels having equal or less probability. E.g. threshold=0 excludes all labels with zero probability. """ all_ranking = [] prob = self.prob(x) for p in prob: if threshold is None: ranking = list(p.items()) else: ranking = ((k, v) for k, v in list(p.items()) if v > threshold) result = [k for k, v in sorted(ranking, key=operator.itemgetter(1), reverse=True)] all_ranking.append(result) return all_ranking def _execute(self, x): if not self.execute_method: return x elif self.execute_method == "label": return self.METHOD_NAME(x) elif self.execute_method == "rank": return self.rank(x) elif self.execute_method == "prob": return self.prob(x) # XXX are the _train and _stop_training functions necessary anymore? class ClassifierCumulator(VariadicCumulator('data', 'labels'), ClassifierNode): """A ClassifierCumulator is a Node whose training phase simply collects all input data and labels. In this way it is possible to easily implement batch-mode learning. The data is accessible in the attribute 'self.data' after the beginning of the '_stop_training' phase. 'self.tlen' contains the number of data points collected. 'self.labels' contains the assigned label to each data point. """ def __init__(self, input_dim=None, output_dim=None, dtype=None): super(ClassifierCumulator, self).__init__(input_dim=input_dim, output_dim=output_dim, dtype=dtype) def _check_train_args(self, x, labels): super(ClassifierCumulator, self)._check_train_args(x, labels) if (isinstance(labels, (list, tuple, numx.ndarray)) and len(labels) != x.shape[0]): msg = ("The number of labels must be equal to the number of " "datapoints (%d != %d)" % (len(labels), x.shape[0])) raise mdp.TrainingException(msg) def _train(self, x, labels): """Cumulate all input data in a one dimensional list.""" self.tlen += x.shape[0] self.data.extend(x.ravel().tolist()) # if labels is a number, all x's belong to the same class if isinstance(labels, (list, tuple, numx.ndarray)): pass else: labels = [labels] * x.shape[0] self.labels.extend(labels.ravel().tolist()) def _stop_training(self, *args, **kwargs): """Transform the data and labels lists to array objects and reshape them.""" self.data = numx.array(self.data, dtype=self.dtype) self.data.shape = (self.tlen, self.input_dim) self.labels = numx.array(self.labels) self.labels.shape = (self.tlen)
null
431
#!/usr/bin/env python # Build the project on Travis CI. from __future__ import print_function import errno, os, shutil, subprocess, sys, urllib from subprocess import call, check_call, Popen, PIPE, STDOUT def rmtree_if_exists(dir): try: shutil.rmtree(dir) except OSError as e: if e.errno == errno.ENOENT: pass def makedirs_if_not_exist(dir): try: os.makedirs(dir) except OSError as e: if e.errno != errno.EEXIST: raise def METHOD_NAME(): branch = os.environ['TRAVIS_BRANCH'] if branch != 'master': print('Branch: ' + branch) exit(0) # Ignore non-master branches check_call('curl -s https://deb.nodesource.com/gpgkey/nodesource.gpg.key ' + '| sudo apt-key add -', shell=True) check_call('echo "deb https://deb.nodesource.com/node_0.10 precise main" ' + '| sudo tee /etc/apt/sources.list.d/nodesource.list', shell=True) check_call(['sudo', 'apt-get', 'update']) check_call(['sudo', 'apt-get', 'install', 'python-virtualenv', 'nodejs']) check_call(['sudo', 'npm', 'install', '-g', '[email protected]', 'less-plugin-clean-css']) deb_file = 'doxygen_1.8.6-2_amd64.deb' urllib.urlretrieve('http://mirrors.kernel.org/ubuntu/pool/main/d/doxygen/' + deb_file, deb_file) check_call(['sudo', 'dpkg', '-i', deb_file]) fmt_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) build = os.environ['BUILD'] if build == 'Doc': travis = 'TRAVIS' in os.environ if travis: METHOD_NAME() sys.path.insert(0, os.path.join(fmt_dir, 'doc')) import build build.create_build_env() html_dir = build.build_docs() repo = 'fmtlib.github.io' if travis and 'KEY' not in os.environ: # Don't update the repo if building on Travis from an account that # doesn't have push access. print('Skipping update of ' + repo) exit(0) # Clone the fmtlib.github.io repo. rmtree_if_exists(repo) git_url = 'https://github.com/' if travis else '[email protected]:' check_call(['git', 'clone', git_url + 'fmtlib/{}.git'.format(repo)]) # Copy docs to the repo. target_dir = os.path.join(repo, 'dev') rmtree_if_exists(target_dir) shutil.copytree(html_dir, target_dir, ignore=shutil.ignore_patterns('.*')) if travis: check_call(['git', 'config', '--global', 'user.name', 'amplbot']) check_call(['git', 'config', '--global', 'user.email', '[email protected]']) # Push docs to GitHub pages. check_call(['git', 'add', '--all'], cwd=repo) if call(['git', 'diff-index', '--quiet', 'HEAD'], cwd=repo): check_call(['git', 'commit', '-m', 'Update documentation'], cwd=repo) cmd = 'git push' if travis: cmd += ' https://[email protected]/fmtlib/fmtlib.github.io.git master' p = Popen(cmd, shell=True, stdout=PIPE, stderr=STDOUT, cwd=repo) # Print the output without the key. print(p.communicate()[0].replace(os.environ['KEY'], '$KEY')) if p.returncode != 0: raise subprocess.CalledProcessError(p.returncode, cmd) exit(0) standard = os.environ['STANDARD'] install_dir = os.path.join(fmt_dir, "_install") build_dir = os.path.join(fmt_dir, "_build") test_build_dir = os.path.join(fmt_dir, "_build_test") # Configure library. makedirs_if_not_exist(build_dir) cmake_flags = [ '-DCMAKE_INSTALL_PREFIX=' + install_dir, '-DCMAKE_BUILD_TYPE=' + build, '-DCMAKE_CXX_STANDARD=' + standard ] check_call(['cmake', '-DFMT_DOC=OFF', '-DFMT_PEDANTIC=ON', '-DFMT_WERROR=ON', fmt_dir] + cmake_flags, cwd=build_dir) # Build library. check_call(['make', '-j4'], cwd=build_dir) # Test library. env = os.environ.copy() env['CTEST_OUTPUT_ON_FAILURE'] = '1' if call(['make', 'test'], env=env, cwd=build_dir): with open(os.path.join(build_dir, 'Testing', 'Temporary', 'LastTest.log'), 'r') as f: print(f.read()) sys.exit(-1) # Install library. check_call(['make', 'install'], cwd=build_dir) # Test installation. makedirs_if_not_exist(test_build_dir) check_call(['cmake', os.path.join(fmt_dir, "test", "find-package-test")] + cmake_flags, cwd=test_build_dir) check_call(['make', '-j4'], cwd=test_build_dir)
null
432
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkr_kvstore.endpoint import endpoint_data class DescribeSlowLogRecordsRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'R-kvstore', '2015-01-01', 'DescribeSlowLogRecords','redisa') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_ResourceOwnerId(self): # Long return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self, ResourceOwnerId): # Long self.add_query_param('ResourceOwnerId', ResourceOwnerId) def get_StartTime(self): # String return self.get_query_params().get('StartTime') def set_StartTime(self, StartTime): # String self.add_query_param('StartTime', StartTime) def get_PageNumber(self): # Integer return self.get_query_params().get('PageNumber') def set_PageNumber(self, PageNumber): # Integer self.add_query_param('PageNumber', PageNumber) def get_SecurityToken(self): # String return self.get_query_params().get('SecurityToken') def METHOD_NAME(self, SecurityToken): # String self.add_query_param('SecurityToken', SecurityToken) def get_PageSize(self): # Integer return self.get_query_params().get('PageSize') def set_PageSize(self, PageSize): # Integer self.add_query_param('PageSize', PageSize) def get_NodeId(self): # String return self.get_query_params().get('NodeId') def set_NodeId(self, NodeId): # String self.add_query_param('NodeId', NodeId) def get_ResourceOwnerAccount(self): # String return self.get_query_params().get('ResourceOwnerAccount') def set_ResourceOwnerAccount(self, ResourceOwnerAccount): # String self.add_query_param('ResourceOwnerAccount', ResourceOwnerAccount) def get_OwnerAccount(self): # String return self.get_query_params().get('OwnerAccount') def set_OwnerAccount(self, OwnerAccount): # String self.add_query_param('OwnerAccount', OwnerAccount) def get_QueryKeyword(self): # String return self.get_query_params().get('QueryKeyword') def set_QueryKeyword(self, QueryKeyword): # String self.add_query_param('QueryKeyword', QueryKeyword) def get_EndTime(self): # String return self.get_query_params().get('EndTime') def set_EndTime(self, EndTime): # String self.add_query_param('EndTime', EndTime) def get_OrderBy(self): # String return self.get_query_params().get('OrderBy') def set_OrderBy(self, OrderBy): # String self.add_query_param('OrderBy', OrderBy) def get_OwnerId(self): # Long return self.get_query_params().get('OwnerId') def set_OwnerId(self, OwnerId): # Long self.add_query_param('OwnerId', OwnerId) def get_SlowLogRecordType(self): # String return self.get_query_params().get('SlowLogRecordType') def set_SlowLogRecordType(self, SlowLogRecordType): # String self.add_query_param('SlowLogRecordType', SlowLogRecordType) def get_InstanceId(self): # String return self.get_query_params().get('InstanceId') def set_InstanceId(self, InstanceId): # String self.add_query_param('InstanceId', InstanceId) def get_DBName(self): # String return self.get_query_params().get('DBName') def set_DBName(self, DBName): # String self.add_query_param('DBName', DBName) def get_OrderType(self): # String return self.get_query_params().get('OrderType') def set_OrderType(self, OrderType): # String self.add_query_param('OrderType', OrderType)
null
433
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkecs.endpoint import endpoint_data class DescribeSnapshotGroupsRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Ecs', '2014-05-26', 'DescribeSnapshotGroups','ecs') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_ResourceOwnerId(self): # Long return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self, ResourceOwnerId): # Long self.add_query_param('ResourceOwnerId', ResourceOwnerId) def get_ResourceGroupId(self): # String return self.get_query_params().get('ResourceGroupId') def set_ResourceGroupId(self, ResourceGroupId): # String self.add_query_param('ResourceGroupId', ResourceGroupId) def get_NextToken(self): # String return self.get_query_params().get('NextToken') def set_NextToken(self, NextToken): # String self.add_query_param('NextToken', NextToken) def get_Tags(self): # RepeatList return self.get_query_params().get('Tag') def set_Tags(self, Tag): # RepeatList for depth1 in range(len(Tag)): if Tag[depth1].get('Key') is not None: self.add_query_param('Tag.' + str(depth1 + 1) + '.Key', Tag[depth1].get('Key')) if Tag[depth1].get('Value') is not None: self.add_query_param('Tag.' + str(depth1 + 1) + '.Value', Tag[depth1].get('Value')) def get_ResourceOwnerAccount(self): # String return self.get_query_params().get('ResourceOwnerAccount') def set_ResourceOwnerAccount(self, ResourceOwnerAccount): # String self.add_query_param('ResourceOwnerAccount', ResourceOwnerAccount) def get_OwnerAccount(self): # String return self.get_query_params().get('OwnerAccount') def set_OwnerAccount(self, OwnerAccount): # String self.add_query_param('OwnerAccount', OwnerAccount) def get_SnapshotGroupIds(self): # RepeatList return self.get_query_params().get('SnapshotGroupId') def set_SnapshotGroupIds(self, SnapshotGroupId): # RepeatList for depth1 in range(len(SnapshotGroupId)): self.add_query_param('SnapshotGroupId.' + str(depth1 + 1), SnapshotGroupId[depth1]) def get_OwnerId(self): # Long return self.get_query_params().get('OwnerId') def set_OwnerId(self, OwnerId): # Long self.add_query_param('OwnerId', OwnerId) def get_AdditionalAttributess(self): # RepeatList return self.get_query_params().get('AdditionalAttributes') def set_AdditionalAttributess(self, AdditionalAttributes): # RepeatList for depth1 in range(len(AdditionalAttributes)): self.add_query_param('AdditionalAttributes.' + str(depth1 + 1), AdditionalAttributes[depth1]) def get_InstanceId(self): # String return self.get_query_params().get('InstanceId') def METHOD_NAME(self, InstanceId): # String self.add_query_param('InstanceId', InstanceId) def get_Name(self): # String return self.get_query_params().get('Name') def set_Name(self, Name): # String self.add_query_param('Name', Name) def get_MaxResults(self): # Integer return self.get_query_params().get('MaxResults') def set_MaxResults(self, MaxResults): # Integer self.add_query_param('MaxResults', MaxResults) def get_Statuss(self): # RepeatList return self.get_query_params().get('Status') def set_Statuss(self, Status): # RepeatList for depth1 in range(len(Status)): self.add_query_param('Status.' + str(depth1 + 1), Status[depth1])
null
434
# coding=utf-8 # Copyright 2023 The Uncertainty Baselines Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for pi_utils.""" from absl.testing import parameterized import tensorflow as tf import pi_utils # local file import from baselines.privileged_information class PiUtilsTest(parameterized.TestCase, tf.test.TestCase): num_dataset_annotators = 5 num_annotators_per_example = 3 annotator_feature_length = 2 num_classes = 10 batch_size = 4 @property def METHOD_NAME(self): return { 'pi_features': { 'annotator_ids': tf.random.uniform( [self.batch_size, self.num_annotators_per_example], minval=0, maxval=self.num_dataset_annotators, dtype=tf.int32), 'annotator_features': tf.random.normal([ self.batch_size, self.num_annotators_per_example, self.annotator_feature_length ]), 'annotator_confidences': tf.random.normal( [self.batch_size, self.num_annotators_per_example]), 'annotator_labels': tf.random.normal([ self.batch_size, self.num_annotators_per_example, self.num_classes ]), }, 'clean_labels': tf.range(self.batch_size) } @property def example_with_incorrect_labels(self): return { 'pi_features': { 'annotator_ids': tf.reshape(tf.range(4), [2, 2]), 'annotator_labels': tf.constant([[[0], [1]], [[0], [0]]]) }, 'clean_labels': tf.zeros((2,), dtype=tf.int32) } @parameterized.parameters( (('annotator_labels', 'annotator_ids', 'annotator_features', 'annotator_confidences'), ( 4, 3, (10 + 5 + 2 + 1), )), (('annotator_labels',), ( 4, 3, 10, )), ) def test_pi_generation(self, pi_subset, expected_pi_shape): def annotator_id_encoding_fn(example): return tf.one_hot(example['pi_features']['annotator_ids'], self.num_dataset_annotators) encoding_fn_dict = { 'annotator_ids': annotator_id_encoding_fn, 'annotator_features': lambda e: e['pi_features']['annotator_features'], 'annotator_confidences': lambda e: e['pi_features']['annotator_confidences'], 'annotator_labels': lambda e: e['pi_features']['annotator_labels'], } privileged_information_fn = pi_utils.get_privileged_information_fn( pi_subset=pi_subset, encoding_fn_dict=encoding_fn_dict) privileged_information = privileged_information_fn( self.METHOD_NAME) self.assertEqual(privileged_information.shape, expected_pi_shape) def test_feature_repetition(self): num_annotators_per_example = 2 labels = tf.constant([0, 1, 2]) repeated_labels = pi_utils.repeat_across_annotators( labels, num_annotators_per_example) self.assertAllEqual(repeated_labels, tf.constant([[[0], [0]], [[1], [1]], [[2], [2]]])) labels_one_hot = tf.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) repeated_labels = pi_utils.repeat_across_annotators( labels_one_hot, num_annotators_per_example) self.assertAllEqual( repeated_labels, tf.constant([[[1, 0, 0], [1, 0, 0]], [[0, 1, 0], [0, 1, 0]], [[0, 0, 1], [0, 0, 1]]])) def test_flatten_annotator_axis(self): annotator_labels = tf.constant([[[1, 0, 0], [1, 0, 0]], [[0, 1, 0], [0, 1, 0]], [[0, 0, 1], [0, 0, 1]]]) flattened_labels = pi_utils.flatten_annotator_axis(annotator_labels) self.assertAllEqual( flattened_labels, tf.constant([[1, 0, 0], [1, 0, 0], [0, 1, 0], [0, 1, 0], [0, 0, 1], [0, 0, 1]])) @parameterized.parameters(True, False) def test_find_noisy_annotators(self, flatten_annotators): example = { 'pi_features': { 'annotator_ids': tf.reshape(tf.range(4), [2, 2]), 'annotator_labels': tf.constant([[[0], [1]], [[0], [0]]]) }, 'clean_labels': tf.zeros((2,), dtype=tf.int32) } is_correct_mask = pi_utils.find_noisy_annotators(example, flatten_annotators) # The second annotator of the first example is wrong ground_truth = tf.constant([[0, 1], [0, 0]]) if flatten_annotators: ground_truth = tf.reshape(ground_truth, [-1]) self.assertAllEqual(is_correct_mask, ground_truth) def test_annotator_label_if_incorrect(self): annotator_label_if_incorrect = ( pi_utils.annotator_label_if_incorrect_encoding_fn( self.example_with_incorrect_labels, label_encoding_fn=None ) ) self.assertAllClose( tf.constant([[[-1], [1]], [[-1], [-1]]]), annotator_label_if_incorrect) def test_annotator_ids_encoding(self): annotator_ids = pi_utils.annotator_ids_encoding_fn( self.METHOD_NAME, num_dataset_annotators=self.num_dataset_annotators) self.assertAllEqual( tf.shape(annotator_ids), tf.constant([ self.batch_size, self.num_annotators_per_example, self.num_dataset_annotators ])) def test_clean_labels_encoding_fn(self): def label_encoding_fn(labels): return tf.one_hot( tf.cast(labels, dtype=tf.int32), self.num_classes, dtype=tf.float32) clean_labels = pi_utils.clean_labels_encoding_fn( self.METHOD_NAME, num_annotators_per_example=self.num_annotators_per_example, label_encoding_fn=label_encoding_fn) self.assertAllEqual( tf.shape(clean_labels), tf.constant([ self.batch_size, self.num_annotators_per_example, self.num_classes ])) if __name__ == '__main__': tf.test.main()
null
435
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkdomain.endpoint import endpoint_data class QueryAdvancedDomainListRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Domain', '2018-01-29', 'QueryAdvancedDomainList') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_ProductDomainType(self): # String return self.get_query_params().get('ProductDomainType') def set_ProductDomainType(self, ProductDomainType): # String self.add_query_param('ProductDomainType', ProductDomainType) def get_PageNum(self): # Integer return self.get_query_params().get('PageNum') def set_PageNum(self, PageNum): # Integer self.add_query_param('PageNum', PageNum) def get_Excluded(self): # String return self.get_query_params().get('Excluded') def set_Excluded(self, Excluded): # String self.add_query_param('Excluded', Excluded) def get_StartLength(self): # Integer return self.get_query_params().get('StartLength') def set_StartLength(self, StartLength): # Integer self.add_query_param('StartLength', StartLength) def get_ExcludedSuffix(self): # Boolean return self.get_query_params().get('ExcludedSuffix') def set_ExcludedSuffix(self, ExcludedSuffix): # Boolean self.add_query_param('ExcludedSuffix', ExcludedSuffix) def get_PageSize(self): # Integer return self.get_query_params().get('PageSize') def set_PageSize(self, PageSize): # Integer self.add_query_param('PageSize', PageSize) def get_Lang(self): # String return self.get_query_params().get('Lang') def set_Lang(self, Lang): # String self.add_query_param('Lang', Lang) def get_ExcludedPrefix(self): # Boolean return self.get_query_params().get('ExcludedPrefix') def set_ExcludedPrefix(self, ExcludedPrefix): # Boolean self.add_query_param('ExcludedPrefix', ExcludedPrefix) def get_KeyWord(self): # String return self.get_query_params().get('KeyWord') def set_KeyWord(self, KeyWord): # String self.add_query_param('KeyWord', KeyWord) def METHOD_NAME(self): # Boolean return self.get_query_params().get('ProductDomainTypeSort') def set_ProductDomainTypeSort(self, ProductDomainTypeSort): # Boolean self.add_query_param('ProductDomainTypeSort', ProductDomainTypeSort) def get_EndExpirationDate(self): # Long return self.get_query_params().get('EndExpirationDate') def set_EndExpirationDate(self, EndExpirationDate): # Long self.add_query_param('EndExpirationDate', EndExpirationDate) def get_Suffixs(self): # String return self.get_query_params().get('Suffixs') def set_Suffixs(self, Suffixs): # String self.add_query_param('Suffixs', Suffixs) def get_DomainNameSort(self): # Boolean return self.get_query_params().get('DomainNameSort') def set_DomainNameSort(self, DomainNameSort): # Boolean self.add_query_param('DomainNameSort', DomainNameSort) def get_ExpirationDateSort(self): # Boolean return self.get_query_params().get('ExpirationDateSort') def set_ExpirationDateSort(self, ExpirationDateSort): # Boolean self.add_query_param('ExpirationDateSort', ExpirationDateSort) def get_StartExpirationDate(self): # Long return self.get_query_params().get('StartExpirationDate') def set_StartExpirationDate(self, StartExpirationDate): # Long self.add_query_param('StartExpirationDate', StartExpirationDate) def get_DomainStatus(self): # Integer return self.get_query_params().get('DomainStatus') def set_DomainStatus(self, DomainStatus): # Integer self.add_query_param('DomainStatus', DomainStatus) def get_DomainGroupId(self): # Long return self.get_query_params().get('DomainGroupId') def set_DomainGroupId(self, DomainGroupId): # Long self.add_query_param('DomainGroupId', DomainGroupId) def get_KeyWordSuffix(self): # Boolean return self.get_query_params().get('KeyWordSuffix') def set_KeyWordSuffix(self, KeyWordSuffix): # Boolean self.add_query_param('KeyWordSuffix', KeyWordSuffix) def get_KeyWordPrefix(self): # Boolean return self.get_query_params().get('KeyWordPrefix') def set_KeyWordPrefix(self, KeyWordPrefix): # Boolean self.add_query_param('KeyWordPrefix', KeyWordPrefix) def get_TradeType(self): # Integer return self.get_query_params().get('TradeType') def set_TradeType(self, TradeType): # Integer self.add_query_param('TradeType', TradeType) def get_EndRegistrationDate(self): # Long return self.get_query_params().get('EndRegistrationDate') def set_EndRegistrationDate(self, EndRegistrationDate): # Long self.add_query_param('EndRegistrationDate', EndRegistrationDate) def get_Form(self): # Integer return self.get_query_params().get('Form') def set_Form(self, Form): # Integer self.add_query_param('Form', Form) def get_UserClientIp(self): # String return self.get_query_params().get('UserClientIp') def set_UserClientIp(self, UserClientIp): # String self.add_query_param('UserClientIp', UserClientIp) def get_RegistrationDateSort(self): # Boolean return self.get_query_params().get('RegistrationDateSort') def set_RegistrationDateSort(self, RegistrationDateSort): # Boolean self.add_query_param('RegistrationDateSort', RegistrationDateSort) def get_StartRegistrationDate(self): # Long return self.get_query_params().get('StartRegistrationDate') def set_StartRegistrationDate(self, StartRegistrationDate): # Long self.add_query_param('StartRegistrationDate', StartRegistrationDate) def get_EndLength(self): # Integer return self.get_query_params().get('EndLength') def set_EndLength(self, EndLength): # Integer self.add_query_param('EndLength', EndLength)
null
436
import os import pytest from puppetboard import docker_settings from importlib import reload as reload @pytest.fixture(scope='function') def cleanup_env(request): for env_var in dir(docker_settings): if (env_var.startswith('__') or env_var.startswith('_') or env_var.islower()): continue if env_var in os.environ: del os.environ[env_var] reload(docker_settings) return def test_default_host_port(cleanup_env): assert docker_settings.PUPPETDB_HOST == 'puppetdb' assert docker_settings.PUPPETDB_PORT == 8080 def test_set_host_port(cleanup_env): os.environ['PUPPETDB_HOST'] = 'puppetdb2' os.environ['PUPPETDB_PORT'] = '9081' reload(docker_settings) assert docker_settings.PUPPETDB_HOST == 'puppetdb2' assert docker_settings.PUPPETDB_PORT == 9081 def test_set_proto(cleanup_env): os.environ['PUPPETDB_PROTO'] = 'https' reload(docker_settings) assert docker_settings.PUPPETDB_PROTO == 'https' def test_cert_true_test(cleanup_env): os.environ['PUPPETDB_SSL_VERIFY'] = 'True' reload(docker_settings) assert docker_settings.PUPPETDB_SSL_VERIFY is True os.environ['PUPPETDB_SSL_VERIFY'] = 'true' reload(docker_settings) assert docker_settings.PUPPETDB_SSL_VERIFY is True def test_cert_false_test(cleanup_env): os.environ['PUPPETDB_SSL_VERIFY'] = 'False' reload(docker_settings) assert docker_settings.PUPPETDB_SSL_VERIFY is False os.environ['PUPPETDB_SSL_VERIFY'] = 'false' reload(docker_settings) assert docker_settings.PUPPETDB_SSL_VERIFY is False def test_cert_path(cleanup_env): ca_file = '/usr/ssl/path/ca.pem' os.environ['PUPPETDB_SSL_VERIFY'] = ca_file reload(docker_settings) assert docker_settings.PUPPETDB_SSL_VERIFY == ca_file def test_cert_to_file(cleanup_env): import tempfile cert_string = '-----BEGIN CERTIFICATE-----\nMIIFkjCCA3qgAwf' os.environ['PUPPETDB_KEY'] = cert_string reload(docker_settings) assert docker_settings.PUPPETDB_KEY.startswith(tempfile.gettempdir()) with open(docker_settings.PUPPETDB_KEY) as test_cert_file: assert test_cert_file.read() == '-----BEGIN CERTIFICATE-----\nMIIFkjCCA3qgAwf' # Clean up the generated file os.unlink(docker_settings.PUPPETDB_KEY) def test_cert_to_file_base64(cleanup_env): import tempfile cert_string = 'LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUZrakNDQTNxZ0F3SUI=' os.environ['PUPPETDB_KEY'] = cert_string reload(docker_settings) assert docker_settings.PUPPETDB_KEY.startswith(tempfile.gettempdir()) with open(docker_settings.PUPPETDB_KEY) as test_cert_file: assert test_cert_file.read() == '-----BEGIN CERTIFICATE-----\nMIIFkjCCA3qgAwIB' # Clean up the generated file os.unlink(docker_settings.PUPPETDB_KEY) def validate_facts(facts): assert isinstance(facts, list) assert len(facts) > 0 for map in facts: assert isinstance(map, tuple) assert len(map) == 2 def test_inventory_facts_default(cleanup_env): validate_facts(docker_settings.INVENTORY_FACTS) def test_invtory_facts_custom(cleanup_env): os.environ['INVENTORY_FACTS'] = "A, B, C, D" reload(docker_settings) validate_facts(docker_settings.INVENTORY_FACTS) def test_inventory_fact_tempaltes_default(cleanup_env): assert isinstance(docker_settings.INVENTORY_FACT_TEMPLATES, dict) assert len(docker_settings.INVENTORY_FACT_TEMPLATES) == 3 def test_inventory_fact_tempaltes_custom(cleanup_env): os.environ['INVENTORY_FACT_TEMPLATES'] = """{"os": "{{ fact_os_detection(value) }}"}""" reload(docker_settings) assert isinstance(docker_settings.INVENTORY_FACT_TEMPLATES, dict) assert len(docker_settings.INVENTORY_FACT_TEMPLATES) == 1 def test_graph_facts_defautl(cleanup_env): facts = docker_settings.GRAPH_FACTS assert isinstance(facts, list) assert 'puppetversion' in facts def test_graph_facts_custom(cleanup_env): os.environ['GRAPH_FACTS'] = "architecture, puppetversion, extra" reload(docker_settings) facts = docker_settings.GRAPH_FACTS assert isinstance(facts, list) assert len(facts) == 3 assert 'puppetversion' in facts assert 'architecture' in facts assert 'extra' in facts def test_default_table_selctor(cleanup_env): assert [10, 20, 50, 100, 500] == docker_settings.TABLE_COUNT_SELECTOR def test_env_table_selector(cleanup_env): os.environ['TABLE_COUNT_SELECTOR'] = '5,15,25' reload(docker_settings) assert [5, 15, 25] == docker_settings.TABLE_COUNT_SELECTOR def test_env_column_options(cleanup_env): os.environ['DISPLAYED_METRICS'] = 'resources.total, events.failure' reload(docker_settings) assert ['resources.total', 'events.failure'] == docker_settings.DISPLAYED_METRICS def test_enable_class_default(cleanup_env): assert False == docker_settings.ENABLE_CLASS def test_enable_class_true(cleanup_env): os.environ['ENABLE_CLASS'] = 'True' reload(docker_settings) assert docker_settings.ENABLE_CLASS is True os.environ['ENABLE_CLASS'] = 'true' reload(docker_settings) assert docker_settings.ENABLE_CLASS is True def test_enable_class_false(cleanup_env): os.environ['ENABLE_CLASS'] = 'False' reload(docker_settings) assert docker_settings.ENABLE_CLASS is False os.environ['ENABLE_CLASS'] = 'false' reload(docker_settings) assert docker_settings.ENABLE_CLASS is False def METHOD_NAME(cleanup_env): assert 3600 == docker_settings.CACHE_DEFAULT_TIMEOUT def test_cache_type_default(cleanup_env): assert 'SimpleCache' == docker_settings.CACHE_TYPE def test_cache_memcached_servers(cleanup_env): os.environ['CACHE_TYPE'] = 'MemcachedCache' reload(docker_settings) assert ['memcached:11211'] == docker_settings.CACHE_MEMCACHED_SERVERS def test_class_events_status_columns_default(cleanup_env): assert [('failure', 'Failure'), ('success', 'Success'), ('noop', 'Noop')] == docker_settings.CLASS_EVENTS_STATUS_COLUMNS def test_scheduler_enabled_true(cleanup_env): os.environ['SCHEDULER_ENABLED'] = 'True' reload(docker_settings) assert docker_settings.SCHEDULER_ENABLED is True os.environ['SCHEDULER_ENABLED'] = 'true' reload(docker_settings) assert docker_settings.SCHEDULER_ENABLED is True def test_scheduler_enabled_false(cleanup_env): os.environ['SCHEDULER_ENABLED'] = 'False' reload(docker_settings) assert docker_settings.SCHEDULER_ENABLED is False os.environ['SCHEDULER_ENABLED'] = 'false' reload(docker_settings) assert docker_settings.SCHEDULER_ENABLED is False def test_scheduler_jobs_default(cleanup_env): assert [{'func': 'puppetboard.schedulers.classes:build_async_cache', 'id': 'do_build_async_cache_1', 'seconds': 300, 'trigger': 'interval'}] == docker_settings.SCHEDULER_JOBS def test_scheduler_jobs_custom(cleanup_env): os.environ['SCHEDULER_JOBS'] = "id,do_build_async_cache_1,func,puppetboard.schedulers.classes:build_async_cache,trigger,interval,seconds,600" reload(docker_settings) jobs = docker_settings.SCHEDULER_JOBS assert isinstance(jobs, list) assert len(jobs) == 1 for job in jobs: assert isinstance(job, dict) assert len(job) == 4 assert 'id' in job assert 'func' in job assert 'trigger' in job assert 'seconds' in job assert 600 == job['seconds']
null
437
# coding: utf-8 """ Lightly API Lightly.ai enables you to do self-supervised learning in an easy and intuitive way. The lightly.ai OpenAPI spec defines how one can interact with our REST API to unleash the full potential of lightly.ai # noqa: E501 The version of the OpenAPI document: 1.0.0 Contact: [email protected] Generated by OpenAPI Generator (https://openapi-generator.tech) Do not edit the class manually. """ from __future__ import annotations import pprint import re # noqa: F401 import json from typing import Optional from pydantic import Extra, BaseModel, Field, constr, validator from lightly.openapi_generated.swagger_client.models.s3_region import S3Region class DatasourceConfigS3DelegatedAccessAllOf(BaseModel): """ DatasourceConfigS3DelegatedAccessAllOf """ s3_region: S3Region = Field(..., alias="s3Region") s3_external_id: constr(strict=True, min_length=10) = Field(..., alias="s3ExternalId", description="The external ID specified when creating the role.") s3_arn: constr(strict=True, min_length=12) = Field(..., alias="s3ARN", description="The ARN of the role you created") s3_server_side_encryption_kms_key: Optional[constr(strict=True, min_length=1)] = Field(None, alias="s3ServerSideEncryptionKMSKey", description="If set, Lightly Worker will automatically set the headers to use server side encryption https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html with this value as the appropriate KMS key arn. This will encrypt the files created by Lightly (crops, frames, thumbnails) in the S3 bucket. ") __properties = ["s3Region", "s3ExternalId", "s3ARN", "s3ServerSideEncryptionKMSKey"] @validator('s3_external_id') def s3_external_id_validate_regular_expression(cls, value): """Validates the regular expression""" if not re.match(r"^[a-zA-Z0-9_+=,.@:\/-]+$", value): raise ValueError(r"must validate the regular expression /^[a-zA-Z0-9_+=,.@:\/-]+$/") return value @validator('s3_arn') def s3_arn_validate_regular_expression(cls, value): """Validates the regular expression""" if not re.match(r"^arn:aws:iam::[0-9]{12}:role.+$", value): raise ValueError(r"must validate the regular expression /^arn:aws:iam::[0-9]{12}:role.+$/") return value @validator('s3_server_side_encryption_kms_key') def s3_server_side_encryption_kms_key_validate_regular_expression(cls, value): """Validates the regular expression""" if value is None: return value if not re.match(r"^arn:aws:kms:[a-zA-Z0-9-]*:[0-9]{12}:key.+$", value): raise ValueError(r"must validate the regular expression /^arn:aws:kms:[a-zA-Z0-9-]*:[0-9]{12}:key.+$/") return value class Config: """Pydantic configuration""" allow_population_by_field_name = True validate_assignment = True use_enum_values = True extra = Extra.forbid def METHOD_NAME(self, by_alias: bool = False) -> str: """Returns the string representation of the model""" return pprint.pformat(self.dict(by_alias=by_alias)) def to_json(self, by_alias: bool = False) -> str: """Returns the JSON representation of the model""" return json.dumps(self.to_dict(by_alias=by_alias)) @classmethod def from_json(cls, json_str: str) -> DatasourceConfigS3DelegatedAccessAllOf: """Create an instance of DatasourceConfigS3DelegatedAccessAllOf from a JSON string""" return cls.from_dict(json.loads(json_str)) def to_dict(self, by_alias: bool = False): """Returns the dictionary representation of the model""" _dict = self.dict(by_alias=by_alias, exclude={ }, exclude_none=True) return _dict @classmethod def from_dict(cls, obj: dict) -> DatasourceConfigS3DelegatedAccessAllOf: """Create an instance of DatasourceConfigS3DelegatedAccessAllOf from a dict""" if obj is None: return None if not isinstance(obj, dict): return DatasourceConfigS3DelegatedAccessAllOf.parse_obj(obj) # raise errors for additional fields in the input for _key in obj.keys(): if _key not in cls.__properties: raise ValueError("Error due to additional fields (not defined in DatasourceConfigS3DelegatedAccessAllOf) in the input: " + str(obj)) _obj = DatasourceConfigS3DelegatedAccessAllOf.parse_obj({ "s3_region": obj.get("s3Region"), "s3_external_id": obj.get("s3ExternalId"), "s3_arn": obj.get("s3ARN"), "s3_server_side_encryption_kms_key": obj.get("s3ServerSideEncryptionKMSKey") }) return _obj
null
438
from abc import ABC from typing import Any, Iterable, Set, Sized from boa3.internal.model.type.collection.icollection import ICollectionType from boa3.internal.model.type.itype import IType from boa3.internal.neo.vm.type.AbiType import AbiType from boa3.internal.neo.vm.type.StackItem import StackItemType class MappingType(ICollectionType, ABC): """ An interface used to represent Python mapping type """ def __init__(self, identifier: str, keys_type: Set[IType], values_type: Set[IType]): super().__init__(identifier, keys_type=keys_type, values_type=values_type) @property def identifier(self) -> str: return '{0}[{1}, {2}]'.format(self._identifier, self.key_type.identifier, self.value_type.identifier) @property def value_type(self) -> IType: return self.item_type @property def default_value(self) -> Any: return {} def is_type_of(self, value: Any) -> bool: if self._is_type_of(value): if isinstance(value, MappingType): return (self.key_type.is_type_of(value.key_type) and self.value_type.is_type_of(value.value_type)) return True return False @property def abi_type(self) -> AbiType: return AbiType.Map @property def METHOD_NAME(self) -> StackItemType: return StackItemType.Map def is_valid_key(self, key_type: IType) -> bool: return self.valid_key.is_type_of(key_type) @property def valid_key(self) -> IType: return self.key_type @classmethod def filter_types(cls, values_type) -> Set[IType]: if values_type is None: values_type = set() elif not isinstance(values_type, set): if isinstance(values_type, Iterable): values_type = set(values_type) else: values_type = {values_type} if len(values_type) > 1 and all(isinstance(x, MappingType) for x in values_type): first_item: MappingType = list(values_type)[0] mapping_type = type(first_item) # first mapping type k_types = set(value.key_type for value in values_type) v_types = set(value.value_type for value in values_type) if all(isinstance(x, mapping_type) for x in values_type): values_type = {mapping_type(keys_type=k_types, values_type=v_types)} else: from boa3.internal.model.type.type import Type generic_type: IType = Type.get_generic_type(*values_type) if isinstance(generic_type, MappingType): values_type = {generic_type.build_collection(k_types, v_types)} return values_type # if any value is not a map, call the collection filter return super().filter_types(values_type) @classmethod def build(cls, value: Any) -> IType: if cls._is_type_of(value): # value is an instance of mapping if isinstance(value, dict): keys = list(value.keys()) values = list(value.values()) else: keys = value.key_type values = value.value_type keys_types: Set[IType] = cls.get_types(keys) values_types: Set[IType] = cls.get_types(values) return cls(keys_types, values_types) elif isinstance(value, Sized) and len(value) == 2: # value is a tuple with two lists of types for contructing the map keys_type, values_type = value if not isinstance(keys_type, Iterable): keys_type = {keys_type} else: keys_type = set(keys_type) if not isinstance(values_type, Iterable): values_types = {values_type} else: values_types = set(values_type) if all(isinstance(k, IType) for k in keys_type) and all(isinstance(v, IType) for v in values_types): return cls(keys_type, values_type) return super(MappingType, cls).build(value)
null
439
#!/usr/bin/env python from __future__ import print_function import math import IMP.multifit import IMP.atom import IMP.em from IMP import ArgumentParser import os import sys __doc__ = "Fit subunits into a density map with FFT." multiproc_exception = None try: from multiprocessing import Pool # Detect whether we are running Windows Python via Wine. Wine does not # currently support some named pipe functions which the multiprocessing # module needs: http://bugs.winehq.org/show_bug.cgi?id=17273 if sys.platform == 'win32' and 'WINELOADERNOEXEC' in os.environ: multiproc_exception = "Wine does not currently support multiprocessing" except ImportError as detail: multiproc_exception = str(detail) class Fitter(object): def __init__( self, em_map, spacing, resolution, origin, density_threshold, pdb, fits_fn, angle, num_fits, angles_per_voxel, ref_pdb=''): self.em_map = em_map self.spacing = spacing self.resolution = resolution self.threshold = density_threshold self.originx = origin[0] self.originy = origin[1] self.originz = origin[2] self.pdb = pdb self.fits_fn = fits_fn self.angle = angle self.num_fits = num_fits self.angles_per_voxel = angles_per_voxel self.ref_pdb = ref_pdb def run(self): print("resolution is:", self.resolution) dmap = IMP.em.read_map(self.em_map) dmap.get_header().set_resolution(self.resolution) dmap.update_voxel_size(self.spacing) dmap.set_origin(IMP.algebra.Vector3D(self.originx, self.originy, self.originz)) dmap.set_was_used(True) dmap.get_header().show() mdl = IMP.Model() mol2fit = IMP.atom.read_pdb(self.pdb, mdl) mh_xyz = IMP.core.XYZs(IMP.core.get_leaves(mol2fit)) rb = IMP.atom.create_rigid_body(mol2fit) ff = IMP.multifit.FFTFitting() ff.set_was_used(True) fits = ff.do_global_fitting(dmap, self.threshold, mol2fit, self.angle / 180.0 * math.pi, self.num_fits, self.spacing, 0.5, True, self.angles_per_voxel) fits.set_was_used(True) final_fits = fits.best_fits_ if self.ref_pdb != '': ref_mh = IMP.atom.read_pdb(self.ref_pdb, mdl) ref_mh_xyz = IMP.core.XYZs(IMP.core.get_leaves(ref_mh)) cur_low = [1e4, 0] for i, fit in enumerate(final_fits): fit.set_index(i) if self.ref_pdb != '': trans = fit.get_fit_transformation() IMP.atom.transform(mol2fit, trans) rmsd = IMP.atom.get_rmsd(mh_xyz, ref_mh_xyz) if rmsd < cur_low[0]: cur_low[0] = rmsd cur_low[1] = i fit.set_rmsd_to_reference(rmsd) IMP.atom.transform(mol2fit, trans.get_inverse()) if self.ref_pdb != '': print('from all fits, lowest rmsd to ref:', cur_low) IMP.multifit.write_fitting_solutions(self.fits_fn, final_fits) def do_work(f): f.run() def parse_args(): desc = """Fit subunits into a density map with FFT.""" p = ArgumentParser(description=desc) p.add_argument("-c", "--cpu", dest="cpus", type=int, default=1, help="number of cpus to use (default 1)") p.add_argument("-a", "--angle", dest="angle", type=float, default=30, help="angle delta (degrees) for FFT rotational " "search (default 30)") p.add_argument("-n", "--num", dest="num", type=int, default=100, help="Number of fits to report (default 100)") p.add_argument("-v", "--angle_voxel", dest="angle_voxel", type=int, default=10, help="Number of angles to keep per voxel (default 10)") p.add_argument("assembly_file", help="assembly file name") # p.add_argument("-n", "--num", dest="num", type="int", # default=100, # help="Number of fits to report" # "(default 100)") return p.parse_args() def run(asmb_fn, options): if multiproc_exception is None and options.cpus > 1: work_units = [] asmb_input = IMP.multifit.read_settings(asmb_fn) asmb_input.set_was_used(True) em_map = asmb_input.get_assembly_header().get_dens_fn() resolution = asmb_input.get_assembly_header().get_resolution() spacing = asmb_input.get_assembly_header().get_spacing() origin = asmb_input.get_assembly_header().get_origin() for i in range(asmb_input.get_number_of_component_headers()): fits_fn = asmb_input.get_component_header(i).get_transformations_fn() pdb_fn = asmb_input.get_component_header(i).get_filename() f = Fitter( em_map, spacing, resolution, origin, asmb_input.get_assembly_header().get_threshold(), pdb_fn, fits_fn, options.angle, options.num, options.angle_voxel) if multiproc_exception is None and options.cpus > 1: work_units.append(f) else: if options.cpus > 1: options.cpus = 1 print(""" The Python 'multiprocessing' module (available in Python 2.6 and later) is needed to run on multiple CPUs, and could not be found (Python error: '%s'). Running on a single processor.""" % multiproc_exception, file=sys.stderr) f.run() if multiproc_exception is None and options.cpus > 1: # No point in spawning more processes than components nproc = min(options.cpus, asmb_input.get_number_of_component_headers()) p = Pool(processes=nproc) out = list(p.imap_unordered(do_work, work_units)) def METHOD_NAME(): args = parse_args() run(args.assembly_file, args) if __name__ == "__main__": METHOD_NAME()
null
440
# Drakkar-Software OctoBot-Interfaces # Copyright (c) Drakkar-Software, All rights reserved. # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 3.0 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library. import threading import octobot.api as octobot_api import octobot.constants as octobot_constants import octobot_commons.logging as bot_logging import octobot_commons.tentacles_management as tentacles_management import octobot_commons.time_frame_manager as time_frame_manager import octobot_evaluators.evaluators as evaluators import octobot_evaluators.api as evaluators_api import octobot_services.interfaces.util as interfaces_util import tentacles.Services.Interfaces.web_interface as web_interface_root import tentacles.Services.Interfaces.web_interface.constants as constants import tentacles.Evaluator.Strategies as TentaclesStrategies LOGGER = bot_logging.get_logger(__name__) def get_strategies_list(trading_mode): try: return trading_mode.get_required_strategies_names_and_count(interfaces_util.get_startup_tentacles_config())[0] except Exception: return [] def get_time_frames_list(strategy_name): if strategy_name: strategy_class = tentacles_management.get_class_from_string(strategy_name, evaluators.StrategyEvaluator, TentaclesStrategies, tentacles_management.evaluator_parent_inspection) return [tf.value for tf in strategy_class.get_required_time_frames( interfaces_util.get_global_config(), interfaces_util.get_bot_api().get_tentacles_setup_config())] else: return [] def get_evaluators_list(strategy_name): if strategy_name: strategy_class = tentacles_management.get_class_from_string(strategy_name, evaluators.StrategyEvaluator, TentaclesStrategies, tentacles_management.evaluator_parent_inspection) found_evaluators = evaluators_api.get_relevant_TAs_for_strategy( strategy_class, interfaces_util.get_bot_api().get_tentacles_setup_config()) return set(evaluator.get_name() for evaluator in found_evaluators) else: return [] def get_risks_list(): return [i / 10 for i in range(10, 0, -1)] def cancel_optimizer(): tools = web_interface_root.WebInterface.tools optimizer = tools[constants.BOT_TOOLS_STRATEGY_OPTIMIZER] if optimizer is None: return False, "No optimizer is running" octobot_api.cancel_strategy_optimizer(optimizer) return True, "Optimizer is being cancelled" def start_optimizer(strategy, time_frames, evaluators, risks): if not octobot_constants.ENABLE_BACKTESTING: return False, "Backtesting is disabled" try: tools = web_interface_root.WebInterface.tools optimizer = tools[constants.BOT_TOOLS_STRATEGY_OPTIMIZER] if optimizer is not None and octobot_api.is_optimizer_computing(optimizer): return False, "Optimizer already running" independent_backtesting = tools[constants.BOT_TOOLS_BACKTESTING] if independent_backtesting and octobot_api.is_independent_backtesting_in_progress(independent_backtesting): return False, "A backtesting is already running" formatted_time_frames = time_frame_manager.parse_time_frames(time_frames) float_risks = [float(risk) for risk in risks] temp_independent_backtesting = octobot_api.create_independent_backtesting( interfaces_util.get_global_config(), None, []) optimizer_config = interfaces_util.run_in_bot_async_executor( octobot_api.initialize_independent_backtesting_config(temp_independent_backtesting) ) optimizer = octobot_api.create_strategy_optimizer(optimizer_config, interfaces_util.get_bot_api().get_edited_tentacles_config(), strategy) tools[constants.BOT_TOOLS_STRATEGY_OPTIMIZER] = optimizer thread = threading.Thread(target=octobot_api.find_optimal_configuration, args=(optimizer, evaluators, formatted_time_frames, float_risks), name=f"{optimizer.get_name()}-WebInterface-runner") thread.start() return True, "Optimizer started" except Exception as e: LOGGER.exception(e, True, f"Error when starting optimizer: {e}") raise e def METHOD_NAME(): optimizer = web_interface_root.WebInterface.tools[constants.BOT_TOOLS_STRATEGY_OPTIMIZER] if optimizer: results = octobot_api.METHOD_NAME(optimizer) return [result.get_result_dict(i) for i, result in enumerate(results)] else: return [] def get_optimizer_report(): if get_optimizer_status()[0] == "finished": optimizer = web_interface_root.WebInterface.tools[constants.BOT_TOOLS_STRATEGY_OPTIMIZER] return octobot_api.get_optimizer_report(optimizer) else: return [] def get_current_run_params(): params = { "strategy_name": [], "time_frames": [], "evaluators": [], "risks": [], "trading_mode": [] } if web_interface_root.WebInterface.tools[constants.BOT_TOOLS_STRATEGY_OPTIMIZER]: optimizer = web_interface_root.WebInterface.tools[constants.BOT_TOOLS_STRATEGY_OPTIMIZER] params = { "strategy_name": [octobot_api.get_optimizer_strategy(optimizer).get_name()], "time_frames": [tf.value for tf in octobot_api.get_optimizer_all_time_frames(optimizer)], "evaluators": octobot_api.get_optimizer_all_TAs(optimizer), "risks": octobot_api.get_optimizer_all_risks(optimizer), "trading_mode": [octobot_api.get_optimizer_trading_mode(optimizer)] } return params def get_optimizer_status(): optimizer = web_interface_root.WebInterface.tools[constants.BOT_TOOLS_STRATEGY_OPTIMIZER] if optimizer: if octobot_api.is_optimizer_computing(optimizer): overall_progress, remaining_time =\ interfaces_util.run_in_bot_async_executor(octobot_api.get_optimizer_overall_progress(optimizer)) return "computing", octobot_api.get_optimizer_current_test_suite_progress(optimizer), \ overall_progress, remaining_time, \ octobot_api.get_optimizer_errors_description(optimizer) else: status = "finished" if octobot_api.is_optimizer_finished(optimizer) else "starting" return status, 100, 100, 0, octobot_api.get_optimizer_errors_description(optimizer) else: return "not started", 0, 0, 0, None
null
441
from __future__ import print_function import ihm.format import IMP.test import IMP.pmi.topology import IMP.pmi.mmcif import sys if sys.version_info[0] >= 3: from io import StringIO else: from io import BytesIO as StringIO class MockMsgPack(object): @staticmethod def pack(data, fh, use_bin_type=True): fh.data = data class MockFh(object): pass class Tests(IMP.test.TestCase): def assign_entity_asym_ids(self, system): """Assign IDs to all Entities and AsymUnits in the system""" d = ihm.dumper._EntityDumper() d.finalize(system) d = ihm.dumper._StructAsymDumper() d.finalize(system) def assign_range_ids(self, system): """Assign IDs to all Entity/AsymUnit segments in the system""" d = ihm.dumper._EntityPolySegmentDumper() d.finalize(system) def test_component_mapper(self): """Test ComponentMapper with PMI2 topology""" m = IMP.Model() s = IMP.pmi.topology.System(m) po = IMP.pmi.mmcif.ProtocolOutput() s.add_protocol_output(po) state = s.create_state() # Should be OK with a multi-character chain ID nup84 = state.create_molecule("Nup84", "MELS", "AA") nup84.add_representation(resolutions=[1]) hier = s.build() c = IMP.pmi.mmcif._ComponentMapper(hier) r = IMP.atom.get_by_type(hier, IMP.atom.RESIDUE_TYPE)[1] self.assertEqual(c[r], 'Nup84.0') def test_hier_system_mapping(self): """Test mapping from Hierarchy back to System""" m = IMP.Model() s = IMP.pmi.topology.System(m) po = IMP.pmi.mmcif.ProtocolOutput() s.add_protocol_output(po) state = s.create_state() nup84 = state.create_molecule("Nup84", "MELS", "A") nup84.add_representation(resolutions=[1]) hier = s.build() # Check mapping from top-level Hierarchy back to System self.assertEqual(IMP.pmi.tools._get_system_for_hier(hier), s) # Invalid particle self.assertEqual(IMP.pmi.tools._get_system_for_hier(None), None) # Particle not set up by System p = IMP.Particle(m) self.assertEqual(IMP.pmi.tools._get_system_for_hier(p), None) h = IMP.atom.Hierarchy.setup_particle(p) self.assertEqual(IMP.pmi.tools._get_system_for_hier(h), None) # Child particles should be OK child = hier.get_child(0).get_child(0).get_child(0).get_child(0) self.assertEqual(IMP.pmi.tools._get_system_for_hier(child), s) child = child.get_child(3) self.assertEqual(IMP.pmi.tools._get_system_for_hier(child), s) # Check mapping from Hierarchy to ProtocolOutput pos = list(IMP.pmi.tools._all_protocol_outputs(hier)) # Should be a list of (ProtocolOuput, State) tuples self.assertEqual(len(pos), 1) self.assertEqual(len(pos[0]), 2) self.assertEqual(pos[0][0], po) def METHOD_NAME(self): """Test ProtocolOutput.finalize() and mmCIF output""" m = IMP.Model() s = IMP.pmi.topology.System(m) po = IMP.pmi.mmcif.ProtocolOutput() s.add_protocol_output(po) po.finalize() fh = StringIO() ihm.dumper.write(fh, [po.system]) val = fh.getvalue() # Work with both latest stable ihm and that bundled with IMP if '_struct.pdbx_model_details' in val: self.assertEqual( val.split('\n')[:5], ['data_model', '_entry.id model', '_struct.entry_id model', '_struct.pdbx_model_details .', '_struct.pdbx_structure_determination_methodology ' 'integrative']) else: self.assertEqual( val.split('\n')[:5], ['data_model', '_entry.id model', '_struct.entry_id model', '_struct.pdbx_structure_determination_methodology ' 'integrative', '_struct.title .']) def test_finalize_write_bcif(self): """Test ProtocolOutput.finalize() and BinaryCIF output""" m = IMP.Model() s = IMP.pmi.topology.System(m) sys.modules['msgpack'] = MockMsgPack po = IMP.pmi.mmcif.ProtocolOutput() s.add_protocol_output(po) po.finalize() fh = MockFh() ihm.dumper.write(fh, [po.system], format='BCIF') self.assertEqual(fh.data['dataBlocks'][0]['categories'][0]['name'], '_entry') def test_entity(self): """Test EntityDump with PMI2-style init""" m = IMP.Model() s = IMP.pmi.topology.System(m) po = IMP.pmi.mmcif.ProtocolOutput() s.add_protocol_output(po) state = s.create_state() nup84 = state.create_molecule("Nup84", "MELS", "A") nup84.add_representation(resolutions=[1]) hier = s.build() fh = StringIO() w = ihm.format.CifWriter(fh) d = ihm.dumper._EntityDumper() d.finalize(po.system) d.dump(po.system, w) out = fh.getvalue() self.assertEqual(out, """# loop_ _entity.id _entity.type _entity.src_method _entity.pdbx_description _entity.formula_weight _entity.pdbx_number_of_molecules _entity.details 1 polymer man Nup84 532.606 1 . # """) def test_model_representation(self): """Test ModelRepresentationDumper with PMI2-style init""" m = IMP.Model() s = IMP.pmi.topology.System(m) po = IMP.pmi.mmcif.ProtocolOutput() s.add_protocol_output(po) state = s.create_state() nup84 = state.create_molecule("Nup84", "MELS", "A") nup84.add_structure(self.get_input_file_name('test.nup84.pdb'), 'A') nup84.add_representation(resolutions=[1]) hier = s.build() fh = StringIO() w = ihm.format.CifWriter(fh) self.assign_entity_asym_ids(po.system) self.assign_range_ids(po.system) # Assign starting model IDs d = ihm.dumper._StartingModelDumper() d.finalize(po.system) d = ihm.dumper._ModelRepresentationDumper() d.finalize(po.system) d.dump(po.system, w) r, = po.system.orphan_representations self.assertEqual([f.asym_unit.seq_id_range for f in r], [(1,2), (3,4)]) out = fh.getvalue() self.assertEqual(out, """# loop_ _ihm_model_representation.id _ihm_model_representation.name _ihm_model_representation.details 1 'Default representation' . # # loop_ _ihm_model_representation_details.id _ihm_model_representation_details.representation_id _ihm_model_representation_details.entity_id _ihm_model_representation_details.entity_description _ihm_model_representation_details.entity_asym_id _ihm_model_representation_details.entity_poly_segment_id _ihm_model_representation_details.model_object_primitive _ihm_model_representation_details.starting_model_id _ihm_model_representation_details.model_mode _ihm_model_representation_details.model_granularity _ihm_model_representation_details.model_object_count _ihm_model_representation_details.description 1 1 1 Nup84 A 1 sphere 1 flexible by-residue . . 2 1 1 Nup84 A 2 sphere . flexible by-feature 2 . # """) if __name__ == '__main__': IMP.test.main()
null
442
import numpy as np import pytest import torch from lhotse import AudioSource, CutSet, MultiCut, Recording, SupervisionSegment from lhotse.audio import RecordingSet from lhotse.cut import PaddingCut from lhotse.utils import fastcopy @pytest.fixture def recording(): return Recording.from_file("test/fixtures/libri/libri-1088-134315-0000_8ch.wav") @pytest.fixture def mono_rir(): return Recording.from_file("test/fixtures/rir/sim_1ch.wav") @pytest.fixture def multi_channel_rir(): return Recording.from_file("test/fixtures/rir/real_8ch.wav") @pytest.fixture def cut_with_supervision(recording, cut_channels=None, sup_channels=None): if cut_channels is None: cut_channels = [0, 1, 2, 3, 4, 5, 6, 7] if sup_channels is None: sup_channels = [0, 1, 2, 3, 4, 5, 6, 7] return MultiCut( id="cut", start=0.0, duration=1.0, channel=cut_channels, supervisions=[ SupervisionSegment( id="sup", recording_id="rec", start=0.0, duration=1.0, channel=sup_channels, ) ], recording=recording, ) def test_cut_perturb_speed11(cut_with_supervision): cut_sp = cut_with_supervision.perturb_speed(1.1) assert cut_sp.start == 0.0 assert cut_sp.duration == 0.9090625 assert cut_sp.end == 0.9090625 assert cut_sp.num_samples == 14545 assert cut_sp.recording.duration == 14.5818125 assert cut_sp.recording.num_samples == 233309 assert cut_sp.supervisions[0].start == 0.0 assert cut_sp.supervisions[0].duration == 0.9090625 assert cut_sp.supervisions[0].end == 0.9090625 cut_samples = cut_sp.load_audio() assert cut_samples.shape[0] == 8 assert cut_samples.shape[1] == 14545 recording_samples = cut_sp.recording.load_audio() assert recording_samples.shape[0] == 8 assert recording_samples.shape[1] == 233309 def test_cut_perturb_speed09(cut_with_supervision): cut_sp = cut_with_supervision.perturb_speed(0.9) assert cut_sp.start == 0.0 assert cut_sp.duration == 1.111125 assert cut_sp.end == 1.111125 assert cut_sp.num_samples == 17778 assert cut_sp.recording.duration == 17.82225 assert cut_sp.recording.num_samples == 285156 assert cut_sp.supervisions[0].start == 0.0 assert cut_sp.supervisions[0].duration == 1.111125 assert cut_sp.supervisions[0].end == 1.111125 cut_samples = cut_sp.load_audio() assert cut_samples.shape[0] == 8 assert cut_samples.shape[1] == 17778 recording_samples = cut_sp.recording.load_audio() assert recording_samples.shape[0] == 8 assert recording_samples.shape[1] == 285156 def test_cut_perturb_tempo09(cut_with_supervision): cut_tp = cut_with_supervision.perturb_tempo(0.9) assert cut_tp.start == 0.0 assert cut_tp.duration == 1.111125 assert cut_tp.end == 1.111125 assert cut_tp.num_samples == 17778 assert cut_tp.recording.duration == 17.82225 assert cut_tp.recording.num_samples == 285156 assert cut_tp.supervisions[0].start == 0.0 assert cut_tp.supervisions[0].duration == 1.111125 assert cut_tp.supervisions[0].end == 1.111125 cut_samples = cut_tp.load_audio() assert cut_samples.shape[0] == 8 assert cut_samples.shape[1] == 17778 recording_samples = cut_tp.recording.load_audio() assert recording_samples.shape[0] == 8 assert recording_samples.shape[1] == 285156 def test_cut_perturb_tempo11(cut_with_supervision): cut_tp = cut_with_supervision.perturb_tempo(1.1) assert cut_tp.start == 0.0 assert cut_tp.duration == 0.9090625 assert cut_tp.end == 0.9090625 assert cut_tp.num_samples == 14545 assert cut_tp.recording.duration == 14.5818125 assert cut_tp.recording.num_samples == 233309 assert cut_tp.supervisions[0].start == 0.0 assert cut_tp.supervisions[0].duration == 0.9090625 assert cut_tp.supervisions[0].end == 0.9090625 cut_samples = cut_tp.load_audio() assert cut_samples.shape[0] == 8 assert cut_samples.shape[1] == 14545 recording_samples = cut_tp.recording.load_audio() assert recording_samples.shape[0] == 8 assert recording_samples.shape[1] == 233309 def METHOD_NAME(cut_with_supervision): resampled = cut_with_supervision.resample(8000) assert cut_with_supervision.sampling_rate == 16000 assert resampled.sampling_rate == 8000 assert cut_with_supervision.num_samples == 2 * resampled.num_samples samples = resampled.load_audio() assert samples.shape[1] == resampled.num_samples @pytest.mark.parametrize("scale", [0.125, 2.0]) def test_cut_perturb_volume(cut_with_supervision, scale): cut_vp = cut_with_supervision.perturb_volume(scale) assert cut_vp.start == cut_with_supervision.start assert cut_vp.duration == cut_with_supervision.duration assert cut_vp.end == cut_with_supervision.end assert cut_vp.num_samples == cut_with_supervision.num_samples assert cut_vp.recording.duration == cut_with_supervision.recording.duration assert cut_vp.recording.num_samples == cut_with_supervision.recording.num_samples assert cut_vp.supervisions[0].start == cut_with_supervision.supervisions[0].start assert ( cut_vp.supervisions[0].duration == cut_with_supervision.supervisions[0].duration ) assert cut_vp.supervisions[0].end == cut_with_supervision.supervisions[0].end assert cut_vp.load_audio().shape == cut_with_supervision.load_audio().shape assert ( cut_vp.recording.load_audio().shape == cut_with_supervision.recording.load_audio().shape ) np.testing.assert_array_almost_equal( cut_vp.load_audio(), cut_with_supervision.load_audio() * scale ) np.testing.assert_array_almost_equal( cut_vp.recording.load_audio(), cut_with_supervision.recording.load_audio() * scale, ) @pytest.mark.parametrize( "rir, rir_channels, expected_channels", [ ("mono_rir", [0], [0, 1, 2, 3, 4, 5, 6, 7]), pytest.param("mono_rir", [1], None, marks=pytest.mark.xfail), ("multi_channel_rir", [0, 1, 2, 3, 4, 5, 6, 7], [0, 1, 2, 3, 4, 5, 6, 7]), ("multi_channel_rir", [0], [0, 1, 2, 3, 4, 5, 6, 7]), ("multi_channel_rir", [1], [0, 1, 2, 3, 4, 5, 6, 7]), pytest.param("multi_channel_rir", [0, 1], None, marks=pytest.mark.xfail), ], ) def test_cut_reverb_rir( cut_with_supervision, rir, rir_channels, expected_channels, request ): rir = request.getfixturevalue(rir) cut = cut_with_supervision cut_rvb = cut.reverb_rir(rir, rir_channels=rir_channels) print(cut_rvb.channel) assert cut_rvb.start == cut.start assert cut_rvb.duration == cut.duration assert cut_rvb.end == cut.end assert cut_rvb.num_samples == cut.num_samples assert cut_rvb.recording.duration == cut.recording.duration assert cut_rvb.recording.num_samples == cut.recording.num_samples assert cut_rvb.supervisions[0].start == cut.supervisions[0].start assert cut_rvb.supervisions[0].duration == cut.supervisions[0].duration assert cut_rvb.supervisions[0].end == cut.supervisions[0].end assert cut_rvb.load_audio().shape == cut.load_audio().shape assert cut_rvb.recording.load_audio().shape == cut.recording.load_audio().shape assert cut_rvb.channel == expected_channels def test_cut_reverb_fast_rir(cut_with_supervision): cut = cut_with_supervision with pytest.raises(AssertionError): cut_rvb = cut.reverb_rir(rir_recording=None)
null
443
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkhbase.endpoint import endpoint_data class RelateDbForHBaseHaRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'HBase', '2019-01-01', 'RelateDbForHBaseHa','hbase') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_HaMigrateType(self): return self.get_query_params().get('HaMigrateType') def set_HaMigrateType(self,HaMigrateType): self.add_query_param('HaMigrateType',HaMigrateType) def get_HaActiveHdfsUri(self): return self.get_query_params().get('HaActiveHdfsUri') def set_HaActiveHdfsUri(self,HaActiveHdfsUri): self.add_query_param('HaActiveHdfsUri',HaActiveHdfsUri) def get_HaStandbyVersion(self): return self.get_query_params().get('HaStandbyVersion') def set_HaStandbyVersion(self,HaStandbyVersion): self.add_query_param('HaStandbyVersion',HaStandbyVersion) def get_IsStandbyStandard(self): return self.get_query_params().get('IsStandbyStandard') def set_IsStandbyStandard(self,IsStandbyStandard): self.add_query_param('IsStandbyStandard',IsStandbyStandard) def get_HaActiveClusterKey(self): return self.get_query_params().get('HaActiveClusterKey') def set_HaActiveClusterKey(self,HaActiveClusterKey): self.add_query_param('HaActiveClusterKey',HaActiveClusterKey) def get_HaStandbyPassword(self): return self.get_query_params().get('HaStandbyPassword') def set_HaStandbyPassword(self,HaStandbyPassword): self.add_query_param('HaStandbyPassword',HaStandbyPassword) def get_HaStandbyClusterKey(self): return self.get_query_params().get('HaStandbyClusterKey') def set_HaStandbyClusterKey(self,HaStandbyClusterKey): self.add_query_param('HaStandbyClusterKey',HaStandbyClusterKey) def get_HaStandbyHbaseFsDir(self): return self.get_query_params().get('HaStandbyHbaseFsDir') def set_HaStandbyHbaseFsDir(self,HaStandbyHbaseFsDir): self.add_query_param('HaStandbyHbaseFsDir',HaStandbyHbaseFsDir) def get_HaActiveHbaseFsDir(self): return self.get_query_params().get('HaActiveHbaseFsDir') def set_HaActiveHbaseFsDir(self,HaActiveHbaseFsDir): self.add_query_param('HaActiveHbaseFsDir',HaActiveHbaseFsDir) def get_HaActiveDBType(self): return self.get_query_params().get('HaActiveDBType') def set_HaActiveDBType(self,HaActiveDBType): self.add_query_param('HaActiveDBType',HaActiveDBType) def get_HaActivePassword(self): return self.get_query_params().get('HaActivePassword') def set_HaActivePassword(self,HaActivePassword): self.add_query_param('HaActivePassword',HaActivePassword) def get_IsActiveStandard(self): return self.get_query_params().get('IsActiveStandard') def METHOD_NAME(self,IsActiveStandard): self.add_query_param('IsActiveStandard',IsActiveStandard) def get_HaStandbyUser(self): return self.get_query_params().get('HaStandbyUser') def set_HaStandbyUser(self,HaStandbyUser): self.add_query_param('HaStandbyUser',HaStandbyUser) def get_HaActive(self): return self.get_query_params().get('HaActive') def set_HaActive(self,HaActive): self.add_query_param('HaActive',HaActive) def get_HaStandby(self): return self.get_query_params().get('HaStandby') def set_HaStandby(self,HaStandby): self.add_query_param('HaStandby',HaStandby) def get_HaStandbyHdfsUri(self): return self.get_query_params().get('HaStandbyHdfsUri') def set_HaStandbyHdfsUri(self,HaStandbyHdfsUri): self.add_query_param('HaStandbyHdfsUri',HaStandbyHdfsUri) def get_HaActiveVersion(self): return self.get_query_params().get('HaActiveVersion') def set_HaActiveVersion(self,HaActiveVersion): self.add_query_param('HaActiveVersion',HaActiveVersion) def get_ClusterId(self): return self.get_query_params().get('ClusterId') def set_ClusterId(self,ClusterId): self.add_query_param('ClusterId',ClusterId) def get_HaStandbyDBType(self): return self.get_query_params().get('HaStandbyDBType') def set_HaStandbyDBType(self,HaStandbyDBType): self.add_query_param('HaStandbyDBType',HaStandbyDBType) def get_HaTables(self): return self.get_query_params().get('HaTables') def set_HaTables(self,HaTables): self.add_query_param('HaTables',HaTables) def get_HaActiveUser(self): return self.get_query_params().get('HaActiveUser') def set_HaActiveUser(self,HaActiveUser): self.add_query_param('HaActiveUser',HaActiveUser
null
444
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RoaRequest from aliyunsdkedas.endpoint import endpoint_data class StartK8sAppPrecheckRequest(RoaRequest): def __init__(self): RoaRequest.__init__(self, 'Edas', '2017-08-01', 'StartK8sAppPrecheck','Edas') self.set_uri_pattern('/pop/v5/k8s/app_precheck') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_ComponentIds(self): # String return self.get_query_params().get('ComponentIds') def set_ComponentIds(self, ComponentIds): # String self.add_query_param('ComponentIds', ComponentIds) def get_Replicas(self): # Integer return self.get_query_params().get('Replicas') def set_Replicas(self, Replicas): # Integer self.add_query_param('Replicas', Replicas) def get_RequestsEphemeralStorage(self): # Integer return self.get_query_params().get('RequestsEphemeralStorage') def set_RequestsEphemeralStorage(self, RequestsEphemeralStorage): # Integer self.add_query_param('RequestsEphemeralStorage', RequestsEphemeralStorage) def get_Envs(self): # String return self.get_query_params().get('Envs') def set_Envs(self, Envs): # String self.add_query_param('Envs', Envs) def METHOD_NAME(self): # String return self.get_query_params().get('Annotations') def set_Annotations(self, Annotations): # String self.add_query_param('Annotations', Annotations) def get_ClusterId(self): # String return self.get_query_params().get('ClusterId') def set_ClusterId(self, ClusterId): # String self.add_query_param('ClusterId', ClusterId) def get_RequestsMem(self): # Integer return self.get_query_params().get('RequestsMem') def set_RequestsMem(self, RequestsMem): # Integer self.add_query_param('RequestsMem', RequestsMem) def get_LocalVolume(self): # String return self.get_query_params().get('LocalVolume') def set_LocalVolume(self, LocalVolume): # String self.add_query_param('LocalVolume', LocalVolume) def get_EnvFroms(self): # String return self.get_query_params().get('EnvFroms') def set_EnvFroms(self, EnvFroms): # String self.add_query_param('EnvFroms', EnvFroms) def get_Labels(self): # String return self.get_query_params().get('Labels') def set_Labels(self, Labels): # String self.add_query_param('Labels', Labels) def get_LimitMem(self): # Integer return self.get_query_params().get('LimitMem') def set_LimitMem(self, LimitMem): # Integer self.add_query_param('LimitMem', LimitMem) def get_LimitEphemeralStorage(self): # Integer return self.get_query_params().get('LimitEphemeralStorage') def set_LimitEphemeralStorage(self, LimitEphemeralStorage): # Integer self.add_query_param('LimitEphemeralStorage', LimitEphemeralStorage) def get_LimitmCpu(self): # Integer return self.get_query_params().get('LimitmCpu') def set_LimitmCpu(self, LimitmCpu): # Integer self.add_query_param('LimitmCpu', LimitmCpu) def get_ConfigMountDescs(self): # String return self.get_query_params().get('ConfigMountDescs') def set_ConfigMountDescs(self, ConfigMountDescs): # String self.add_query_param('ConfigMountDescs', ConfigMountDescs) def get_AppName(self): # String return self.get_query_params().get('AppName') def set_AppName(self, AppName): # String self.add_query_param('AppName', AppName) def get_PackageUrl(self): # String return self.get_query_params().get('PackageUrl') def set_PackageUrl(self, PackageUrl): # String self.add_query_param('PackageUrl', PackageUrl) def get_AppId(self): # String return self.get_query_params().get('AppId') def set_AppId(self, AppId): # String self.add_query_param('AppId', AppId) def get_EmptyDirs(self): # String return self.get_query_params().get('EmptyDirs') def set_EmptyDirs(self, EmptyDirs): # String self.add_query_param('EmptyDirs', EmptyDirs) def get_PvcMountDescs(self): # String return self.get_query_params().get('PvcMountDescs') def set_PvcMountDescs(self, PvcMountDescs): # String self.add_query_param('PvcMountDescs', PvcMountDescs) def get_ImageUrl(self): # String return self.get_query_params().get('ImageUrl') def set_ImageUrl(self, ImageUrl): # String self.add_query_param('ImageUrl', ImageUrl) def get_Namespace(self): # String return self.get_query_params().get('Namespace') def set_Namespace(self, Namespace): # String self.add_query_param('Namespace', Namespace) def get_RequestsmCpu(self): # Integer return self.get_query_params().get('RequestsmCpu') def set_RequestsmCpu(self, RequestsmCpu): # Integer self.add_query_param('RequestsmCpu', RequestsmCpu) def get_JavaStartUpConfig(self): # String return self.get_query_params().get('JavaStartUpConfig') def set_JavaStartUpConfig(self, JavaStartUpConfig): # String self.add_query_param('JavaStartUpConfig', JavaStartUpConfig)
null
445
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest class ListInstancesRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'cloudphone', '2020-12-30', 'ListInstances') self.set_method('POST') def get_ResourceOwnerId(self): # Long return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self, ResourceOwnerId): # Long self.add_query_param('ResourceOwnerId', ResourceOwnerId) def get_ImageId(self): # String return self.get_query_params().get('ImageId') def set_ImageId(self, ImageId): # String self.add_query_param('ImageId', ImageId) def get_ShowWebRtcToken(self): # Boolean return self.get_query_params().get('ShowWebRtcToken') def set_ShowWebRtcToken(self, ShowWebRtcToken): # Boolean self.add_query_param('ShowWebRtcToken', ShowWebRtcToken) def get_KeyPairName(self): # String return self.get_query_params().get('KeyPairName') def set_KeyPairName(self, KeyPairName): # String self.add_query_param('KeyPairName', KeyPairName) def get_Resolution(self): # String return self.get_query_params().get('Resolution') def set_Resolution(self, Resolution): # String self.add_query_param('Resolution', Resolution) def get_NextToken(self): # String return self.get_query_params().get('NextToken') def set_NextToken(self, NextToken): # String self.add_query_param('NextToken', NextToken) def get_InstanceType(self): # String return self.get_query_params().get('InstanceType') def set_InstanceType(self, InstanceType): # String self.add_query_param('InstanceType', InstanceType) def get_Tags(self): # RepeatList return self.get_query_params().get('Tag') def METHOD_NAME(self, Tag): # RepeatList for depth1 in range(len(Tag)): if Tag[depth1].get('Key') is not None: self.add_query_param('Tag.' + str(depth1 + 1) + '.Key', Tag[depth1].get('Key')) if Tag[depth1].get('Value') is not None: self.add_query_param('Tag.' + str(depth1 + 1) + '.Value', Tag[depth1].get('Value')) def get_ResourceOwnerAccount(self): # String return self.get_query_params().get('ResourceOwnerAccount') def set_ResourceOwnerAccount(self, ResourceOwnerAccount): # String self.add_query_param('ResourceOwnerAccount', ResourceOwnerAccount) def get_OwnerAccount(self): # String return self.get_query_params().get('OwnerAccount') def set_OwnerAccount(self, OwnerAccount): # String self.add_query_param('OwnerAccount', OwnerAccount) def get_OwnerId(self): # Long return self.get_query_params().get('OwnerId') def set_OwnerId(self, OwnerId): # Long self.add_query_param('OwnerId', OwnerId) def get_InstanceName(self): # String return self.get_query_params().get('InstanceName') def set_InstanceName(self, InstanceName): # String self.add_query_param('InstanceName', InstanceName) def get_InstanceIds(self): # RepeatList return self.get_query_params().get('InstanceId') def set_InstanceIds(self, InstanceId): # RepeatList for depth1 in range(len(InstanceId)): self.add_query_param('InstanceId.' + str(depth1 + 1), InstanceId[depth1]) def get_MaxResults(self): # Integer return self.get_query_params().get('MaxResults') def set_MaxResults(self, MaxResults): # Integer self.add_query_param('MaxResults', MaxResults) def get_ZoneId(self): # String return self.get_query_params().get('ZoneId') def set_ZoneId(self, ZoneId): # String self.add_query_param('ZoneId', ZoneId) def get_ChargeType(self): # String return self.get_query_params().get('ChargeType') def set_ChargeType(self, ChargeType): # String self.add_query_param('ChargeType', ChargeType) def get_Status(self): # String return self.get_query_params().get('Status') def set_Status(self, Status): # String self.add_query_param('Status', Status)
null
446
"""HDF5 adapter class """ import h5py import warnings import numpy as np from . import ImageSeriesAdapter from ..imageseriesiter import ImageSeriesIterator class HDF5ImageSeriesAdapter(ImageSeriesAdapter): """collection of images in HDF5 format""" format = 'hdf5' def __init__(self, fname, **kwargs): """ Constructor for HDF% ImageSeries Parameters ---------- fname : str or h5py.File object filename of the HDF5 file, or an open h5py file. Note that this class will close the h5py.File when finished. **kwargs : Keyword arguments See below. Keyword Arguments ----------------- path : str, required The path to the HDF dataset containing the image data dataname : str, optional The name of the HDF dataset containing the 2-d or 3d image data. The default values is 'images'. Returns ------- None. """ if isinstance(fname, h5py.File): self.__h5name = fname.filename self.__h5file = fname else: self.__h5name = fname self.__h5file = h5py.File(self.__h5name, 'r') self.__path = kwargs['path'] self.__dataname = kwargs.pop('dataname', 'images') self.__images = '/'.join([self.__path, self.__dataname]) self.METHOD_NAME() self._meta = self._getmeta() def close(self): self.__image_dataset = None self.__data_group = None self.__h5file.close() self.__h5file = None def __del__(self): # !!! Note this is not ideal, as the use of __del__ is problematic. # However, it is highly unlikely that the usage of a ImageSeries # would pose a problem. A warning will (hopefully) be emitted if # an issue arises at some point try: self.close() except(Exception): warnings.warn("HDF5ImageSeries could not close h5 file") pass def __getitem__(self, key): if self._ndim == 2: if key != 0: raise IndexError( f'key {key} is out of range for imageseris with length 1' ) # !!! necessary when not returning a slice return np.asarray(self.__image_dataset) else: return self.__image_dataset[key] def __iter__(self): return ImageSeriesIterator(self) def __len__(self): if self._ndim == 2: return 1 else: # !!! must be 3-d; exception handled in load_data() return len(self.__image_dataset) def __getstate__(self): # Remove any non-pickleable attributes to_remove = [ '__h5file', '__image_dataset', '__data_group', ] # Prefix them with the private prefix prefix = f'_{self.__class__.__name__}' to_remove = [f'{prefix}{x}' for x in to_remove] # Make a copy of the dict to modify state = self.__dict__.copy() # Remove them for attr in to_remove: state.pop(attr) return state def __setstate__(self, state): self.__dict__.update(state) self.__h5file = h5py.File(self.__h5name, 'r') self.METHOD_NAME() def METHOD_NAME(self): self.__image_dataset = self.__h5file[self.__images] self._ndim = self.__image_dataset.ndim if self._ndim not in [2, 3]: raise RuntimeError( f'Image data must be a 2-d or 3-d array; yours is {self._ndim}' ) self.__data_group = self.__h5file[self.__path] def _getmeta(self): mdict = {} for k, v in list(self.__data_group.attrs.items()): mdict[k] = v return mdict @property def metadata(self): """(read-only) Image sequence metadata note: metadata loaded on open and allowed to be modified """ return self._meta @property def dtype(self): return self.__image_dataset.dtype @property def shape(self): if self._ndim == 2: return self.__image_dataset.shape else: return self.__image_dataset.shape[1:] pass # end class
null
447
# coding=utf-8 # Copyright 2023 The Uncertainty Baselines Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for (Fashion) MNIST.""" import numpy as np import scipy def one_hot(a, num_classes): return np.squeeze(np.eye(num_classes)[a.reshape(-1)]) def brier_score(y, p): """Compute the Brier score. Brier Score: see https://www.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf, page 363, Example 1 Args: y: one-hot encoding of the true classes, size (?, num_classes) p: numpy array, size (?, num_classes) containing the output predicted probabilities Returns: bs: Brier score. """ return np.mean(np.power(p - y, 2)) def METHOD_NAME(y, p_mean, num_bins=10): """Compute the calibration. References: https://arxiv.org/abs/1706.04599 https://arxiv.org/abs/1807.00263 Args: y: one-hot encoding of the true classes, size (?, num_classes) p_mean: numpy array, size (?, num_classes) containing the mean output predicted probabilities num_bins: number of bins Returns: ece: Expected Calibration Error mce: Maximum Calibration Error """ # Compute for every test sample x, the predicted class. class_pred = np.argmax(p_mean, axis=1) # and the confidence (probability) associated with it. conf = np.max(p_mean, axis=1) # Convert y from one-hot encoding to the number of the class y = np.argmax(y, axis=1) # Storage acc_tab = np.zeros(num_bins) # empirical (true) confidence mean_conf = np.zeros(num_bins) # predicted confidence nb_items_bin = np.zeros(num_bins) # number of items in the bins tau_tab = np.linspace(0, 1, num_bins+1) # confidence bins for i in np.arange(num_bins): # iterate over the bins # select the items where the predicted max probability falls in the bin # [tau_tab[i], tau_tab[i + 1)] sec = (tau_tab[i + 1] > conf) & (conf >= tau_tab[i]) nb_items_bin[i] = np.sum(sec) # Number of items in the bin # select the predicted classes, and the true classes class_pred_sec, y_sec = class_pred[sec], y[sec] # average of the predicted max probabilities mean_conf[i] = np.mean(conf[sec]) if nb_items_bin[i] > 0 else np.nan # compute the empirical confidence acc_tab[i] = np.mean( class_pred_sec == y_sec) if nb_items_bin[i] > 0 else np.nan # Cleaning mean_conf = mean_conf[nb_items_bin > 0] acc_tab = acc_tab[nb_items_bin > 0] nb_items_bin = nb_items_bin[nb_items_bin > 0] # Expected Calibration Error ece = np.average( np.absolute(mean_conf - acc_tab), weights=nb_items_bin.astype(float) / np.sum(nb_items_bin)) # Maximum Calibration Error mce = np.max(np.absolute(mean_conf - acc_tab)) return ece, mce def ensemble_metrics(x, y, model, log_likelihood_fn, n_samples=1, weight_files=None): """Evaluate metrics of an ensemble. Args: x: numpy array of inputs y: numpy array of labels model: tf.keras.Model. log_likelihood_fn: keras function of log likelihood. For classification tasks, log_likelihood_fn(...)[1] should return the logits n_samples: number of Monte Carlo samples to draw per ensemble member (each weight file). weight_files: to draw samples from multiple weight sets, specify a list of weight files to load. These files must have been generated through keras's model.save_weights(...). Returns: metrics_dict: dictionary containing the metrics """ if weight_files is None: ensemble_logprobs = [log_likelihood_fn([x, y])[0] for _ in range(n_samples)] metric_values = [model.evaluate(x, y, verbose=0) for _ in range(n_samples)] ensemble_logits = [log_likelihood_fn([x, y])[1] for _ in range(n_samples)] else: ensemble_logprobs = [] metric_values = [] ensemble_logits = [] for filename in weight_files: model.load_weights(filename) ensemble_logprobs.extend([log_likelihood_fn([x, y])[0] for _ in range(n_samples)]) ensemble_logits.extend([log_likelihood_fn([x, y])[1] for _ in range(n_samples)]) metric_values.extend([model.evaluate(x, y, verbose=0) for _ in range(n_samples)]) metric_values = np.mean(np.array(metric_values), axis=0) results = {} for m, name in zip(metric_values, model.metrics_names): results[name] = m ensemble_logprobs = np.array(ensemble_logprobs) probabilistic_log_likelihood = np.mean( scipy.special.logsumexp( np.sum(ensemble_logprobs, axis=2) if len(ensemble_logprobs.shape) > 2 else ensemble_logprobs, b=1. / ensemble_logprobs.shape[0], axis=0), axis=0) results['probabilistic_log_likelihood'] = probabilistic_log_likelihood ensemble_logits = np.array(ensemble_logits) probs = np.mean(scipy.special.softmax(ensemble_logits, axis=2), axis=0) class_pred = np.argmax(probs, axis=1) probabilistic_accuracy = np.mean(np.equal(y, class_pred)) results['probabilistic_accuracy'] = probabilistic_accuracy results['ece'], results['mce'] = METHOD_NAME( one_hot(y, probs.shape[1]), probs) results['brier_score'] = brier_score(one_hot(y, probs.shape[1]), probs) return results
null
448
# Copyright 2017-2023 Posit Software, PBC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import logging import os import re import sys import time from guild import batch_util from guild import cli from guild import op_util from guild import run_util from guild import tfevent from guild import util from . import runs_impl log = logging.getLogger("guild") DEFAULT_PREPARE_THRESHOLD = 5 # seconds def main(args): if args.export_scalars: METHOD_NAME(args) else: _run_tensorboard(args) def METHOD_NAME(args): with _open_file(args.export_scalars) as f: out = csv.writer(f) out.writerow(["run", "path", "tag", "value", "step"]) for run in _list_runs_cb(args)(): for path, _digest, reader in tfevent.scalar_readers(run.dir): subpath = os.path.relpath(path, run.dir) for tag, value, step in reader: out.writerow([run.id, subpath, tag, value, step]) def _open_file(path): if path == "-": return util.StdIOContextManager(sys.stdout) util.ensure_dir(os.path.dirname(path)) try: return open(path, "w") except (OSError, IOError) as e: cli.error(f"error opening {path}: {e}") def _run_tensorboard(args): from guild import tensorboard tensorboard.setup_logging() with util.TempDir("guild-tensorboard-", keep=_keep_logdir(args)) as tmp: logdir = tmp.path (log.info if args.keep_logdir else log.debug)("Using logdir %s", logdir) tensorboard_options = _tensorboard_options(args) monitor = tensorboard.RunsMonitor( logdir, _list_runs_cb(args), interval=args.refresh_interval, log_images=not args.skip_images, log_hparams=not args.skip_hparams, run_name_cb=_run_name_cb(args), ) t0 = time.time() cli.out("Preparing runs for TensorBoard") monitor.run_once(exit_on_error=True) if args.test_logdir: cli.out(f"Initialized log dir {logdir}") return _maybe_log_prepare_time(t0) monitor.start() try: tensorboard.serve_forever( logdir=logdir, host=(args.host or "0.0.0.0"), port=(args.port or util.free_port()), reload_interval=args.refresh_interval, tensorboard_options=tensorboard_options, middleware=_maybe_tb_middleware(args), ready_cb=_open_cb(args), ) except tensorboard.TensorboardError as e: cli.error(str(e)) finally: log.debug("Stopping") monitor.stop() if not args.keep_logdir: # Removal of temp logdir occurs when context manager # exits. log.debug("Removing logdir %s", logdir) else: print(f"TensorBoard logs saved in {logdir}") if util.get_platform() != "Windows": cli.out() def _keep_logdir(args): return args.keep_logdir or args.test_logdir def _maybe_log_prepare_time(t0): prepare_time = time.time() - t0 if prepare_time > _prepare_threshold(): log.warning( "Guild took %0.2f seconds to prepare runs. To reduce startup time, " "try running with '--skip-images' or '--skip-hparams' options " "or reduce the number of runs with filters. Try 'guild tensorboard " "--help' for filter options.", prepare_time, ) def _prepare_threshold(): try: return float(os.environ["PREPARE_THRESHOLD"]) except (KeyError, ValueError): return DEFAULT_PREPARE_THRESHOLD def _tensorboard_options(args): name_vals = [_parse_tensorboard_opt(opt) for opt in args.tensorboard_options] return dict(name_vals) def _parse_tensorboard_opt(opt): parts = opt.split("=", 1) if len(parts) != 2: cli.error(f"invalid TensorBoard option {opt!r} - must be OPTION=VALUE") return parts def _run_name_cb(args): if args.run_name_flags is None: return None label_template = _run_label_template(args.run_name_flags) def f(run): flags = run.get("flags") return run_util.run_name(run, _run_label(label_template, flags)) return f def _run_label(label_template, flags): if not label_template: return "" return op_util.run_label(label_template, flags) def _run_label_template(flags_arg): flags = _split_flags(flags_arg) return " ".join([f"{flag}=${{{flag}}}" for flag in flags]) def _split_flags(flags_arg): return [arg.strip() for arg in re.split(r"[ ,]", flags_arg) if arg] def _list_runs_cb(args): def f(): return ( _runs_for_infile(args.runs_infile) if args.runs_infile else _runs_for_args(args) ) return f def _runs_for_infile(path): run_ids = _read_infile(path).split() maybe_runs = [run_util.run_for_id(id) for id in run_ids] return [run for run in maybe_runs if run.opref] def _read_infile(path): try: f = open(path) except FileNotFoundError: return "" else: with f: return f.read() def _runs_for_args(args): runs = runs_impl.runs_for_args(args) return runs if args.include_batch else _strip_batch_runs(runs) def _strip_batch_runs(runs): return [run for run in runs if not batch_util.is_batch(run)] def _maybe_tb_middleware(args): if args.dark_mode: from guild import tensorboard_util return tensorboard_util.dark_mode_middleware() return None def _open_cb(args): if args.no_open: return None def f(url): if args.tab: url += "#" + args.tab util.open_url(url) return f
null
449
import requests from grants.sync.helpers import is_txn_done_recently, record_contribution_activity, txn_already_used def find_txn_on_zcash_explorer(contribution): subscription = contribution.subscription grant = subscription.grant token_symbol = subscription.token_symbol if subscription.tenant != 'ZCASH': return None if token_symbol != 'ZEC': return None to_address = grant.zcash_payout_address from_address = subscription.contributor_address amount = subscription.amount_per_period url = f'https://sochain.com/api/v2/address/ZEC/{from_address}' response = requests.get(url).json() # Check contributors txn history if response['status'] == 'success' and response['data'] and response['data']['txs']: txns = response['data']['txs'] for txn in txns: if txn.get('outgoing') and txn['outgoing']['outputs']: for output in txn['outgoing']['outputs']: if contribution.tx_id and contribution.tx_id != '0x0': if txn['txid'] == contribution.tx_id: if ( output['address'] == to_address and float(output['value']) == float(amount) and is_txn_done_recently(txn['time']) ): return txn['txid'] else: if ( output['address'] == to_address and response['data']['address'] == from_address and float(output['value']) == float(amount) and is_txn_done_recently(txn['time']) and not txn_already_used(txn['txid'], token_symbol) ): return txn['txid'] url = f'https://sochain.com/api/v2/address/ZEC/{to_address}' response = requests.get(url).json() # Check funders txn history # if response['status'] == 'success' and response['data'] and response['data']['txs']: # txns = response['data']['txs'] # for txn in txns: # if txn.get('incoming') and txn['incoming']['inputs']: # for input_tx in txn['incoming']['inputs']: # if ( # input_tx['address'] == from_address and # response['data']['address'] == to_address and # is_txn_done_recently(txn['time']) and # not txn_already_used(txn['txid'], token_symbol) # ): # return txn['txid'] return None def METHOD_NAME(txnid): if not txnid: return None url = f'https://sochain.com/api/v2/is_tx_confirmed/ZEC/{txnid}' response = requests.get(url).json() if ( response['status'] == 'success' and response['data'] and response['data']['is_confirmed'] ): return True return None def is_valid_zcash_txn(contribution): subscription = contribution.subscription grant = subscription.grant txn_id = contribution.tx_id to_address = grant.zcash_payout_address amount = subscription.amount_per_period token_symbol = subscription.token_symbol if not txn_id or txn_id == '0x0': return None url = f'https://sochain.com/api/v2/tx/ZEC/{txn_id}' response = requests.get(url).json() if ( response['status'] == 'success' and response['data'] and response['data']['outputs'] ): for txn in response['data']['outputs']: if ( txn['address'] == to_address and float(txn['value']) == float(amount) and is_txn_done_recently(response['data']['time']) and not txn_already_used(txn_id, token_symbol) ): return True return None def sync_zcash_payout(contribution): is_successfull_txn = False if not contribution.tx_id or contribution.tx_id == '0x0': # user entered t-addr. txn = find_txn_on_zcash_explorer(contribution) if txn: contribution.tx_id = txn contribution.save() is_successfull_txn = METHOD_NAME(contribution.tx_id) else: # user entered txn-id or txn-id picked up by cron. is_successfull_txn = is_valid_zcash_txn(contribution) if is_successfull_txn: contribution.success = True contribution.tx_cleared = True contribution.checkout_type = 'zcash_std' record_contribution_activity(contribution) contribution.save()
null
450
""" Copyright (c) 2022, NVIDIA CORPORATION. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import tensorflow as tf import horovod.tensorflow as hvd from sparse_operation_kit import experiment as sok if __name__ == "__main__": physical_devices = tf.config.list_physical_devices("GPU") for gpu_instance in physical_devices: tf.config.experimental.set_memory_growth(gpu_instance, True) dim = 128 vocab_size = 1024 * 128 batch = 8192 sok_var = sok.DynamicVariable(dimension=dim) sok_optimizer = sok.SGD(lr=1.0) indices_val = [idx for idx in range(vocab_size)] table_val = tf.nn.embedding_lookup(sok_var, indices_val) tf_var = tf.Variable(table_val) tf_optimizer = tf.optimizers.SGD(learning_rate=1.0) def sok_step(indices, weight, var): with tf.GradientTape() as tape: emb = tf.nn.embedding_lookup(var, indices) emb_mul = emb * weight loss = tf.reduce_sum(emb_mul) grads = tape.gradient(loss, [var]) sok_optimizer.apply_gradients(zip(grads, [var])) return loss @tf.function def tf_step(indices, weight, var): with tf.GradientTape() as tape: emb = tf.nn.embedding_lookup(var, indices) emb_mul = emb * weight loss = tf.reduce_sum(emb_mul) grads = tape.gradient(loss, [var]) tf_optimizer.apply_gradients(zip(grads, [var])) return loss num = np.random.randint(1, batch + 1, 1)[0] for i in range(100): print("---------------------Iter %d---------------------" % i) indices_val = np.random.randint(0, vocab_size, num).astype(np.int64) indices_val = tf.convert_to_tensor(indices_val, dtype=tf.int64) weight_val = np.random.rand(num, dim).astype(np.float32) weight_val = tf.convert_to_tensor(weight_val, dtype=tf.float32) sok_loss = sok_step(indices_val, weight_val, sok_var) tf_loss = tf_step(indices_val, weight_val, tf_var) print(sok_loss, tf_loss) indices_val = [idx for idx in range(vocab_size)] table_val = tf.nn.embedding_lookup(sok_var, indices_val) diff = tf.reduce_mean((table_val - tf_var) ** 2.0) assert diff < 1e-6 print("[SOK INFO] Test variable with sok.SGD successfully") # ----------------------------Test eager mode---------------------------- def sok_step_eager(indices, weight, var): with tf.GradientTape() as tape: emb = tf.nn.embedding_lookup(var, indices) emb_mul = emb * weight loss = tf.reduce_sum(emb_mul) grads = tape.gradient(loss, [var]) sok_optimizer.apply_gradients(zip(grads, [var])) return loss def METHOD_NAME(indices, weight, var): with tf.GradientTape() as tape: emb = tf.nn.embedding_lookup(var, indices) emb_mul = emb * weight loss = tf.reduce_sum(emb_mul) grads = tape.gradient(loss, [var]) tf_optimizer.apply_gradients(zip(grads, [var])) return loss for i in range(100): num = np.random.randint(1, batch + 1, 1)[0] print("---------------------Iter %d---------------------" % i) indices_val = np.random.randint(0, vocab_size, num).astype(np.int64) indices_val = tf.convert_to_tensor(indices_val, dtype=tf.int64) weight_val = np.random.rand(num, dim).astype(np.float32) weight_val = tf.convert_to_tensor(weight_val, dtype=tf.float32) sok_loss = sok_step_eager(indices_val, weight_val, sok_var) tf_loss = METHOD_NAME(indices_val, weight_val, tf_var) print(sok_loss, tf_loss) indices_val = [idx for idx in range(vocab_size)] table_val = tf.nn.embedding_lookup(sok_var, indices_val) diff = tf.reduce_mean((table_val - tf_var) ** 2.0) assert diff < 1e-6 print("[SOK INFO] Test variable with sok.SGD and eager mode successfully")
null
451
# Copyright 2021 Camptocamp SA # @author Iván Todorovich <[email protected]> # License AGPL-3.0 or later (http://www.gnu.org/licenses/agpl). from odoo.addons.shopinvader.tests.common import ProductCommonCase class ProductCase(ProductCommonCase): @classmethod def setUpClass(cls): super().setUpClass() cls.env = cls.env(context=dict(cls.env.context, test_queue_job_no_delay=True)) cls.backend = cls.backend.with_context(test_queue_job_no_delay=True) def _assertDictContains(self, source, values, msg=None): if msg is None: msg = "" for key, value in values.items(): self.assertEqual(source[key], value, f"key='{key}' {msg}") def test_product_price(self): self._assertDictContains( self.shopinvader_variant.price["default"], { "value_taxed": 750.0, "value_untaxed": 652.17, "original_value_taxed": 750.0, "original_value_untaxed": 652.17, }, ) def test_product_get_price(self): # self.base_pricelist doesn't define a tax mapping. We are tax included fiscal_position_fr = self.env.ref("shopinvader.fiscal_position_0") price = self.shopinvader_variant._get_price( pricelist=self.base_pricelist, fposition=fiscal_position_fr ) self._assertDictContains( price, { "value_taxed": 750.0, "value_untaxed": 652.17, "original_value_taxed": 750.0, "original_value_untaxed": 652.17, }, ) # promotion price list define a discount of 20% on all product promotion_price_list = self.env.ref("shopinvader.pricelist_1") price = self.shopinvader_variant._get_price( pricelist=promotion_price_list, fposition=fiscal_position_fr ) self._assertDictContains( price, { "value_taxed": 600.0, "value_untaxed": 521.74, "original_value_taxed": 600.0, "original_value_untaxed": 521.74, }, ) # use a fiscal position defining a mapping from tax included to tax # excluded tax_exclude_fiscal_position = self.env.ref("shopinvader.fiscal_position_1") price = self.shopinvader_variant._get_price( pricelist=self.base_pricelist, fposition=tax_exclude_fiscal_position ) self._assertDictContains( price, { "value_taxed": 750.0, "value_untaxed": 652.17, "original_value_taxed": 750.0, "original_value_untaxed": 652.17, }, ) price = self.shopinvader_variant._get_price( pricelist=promotion_price_list, fposition=tax_exclude_fiscal_position ) self._assertDictContains( price, { "value_taxed": 600.0, "value_untaxed": 521.74, "original_value_taxed": 600.0, "original_value_untaxed": 521.74, }, ) def METHOD_NAME(self): # Define a promotion price for the product with min_qty = 10 fposition = self.env.ref("shopinvader.fiscal_position_0") pricelist = self.base_pricelist self.env["product.pricelist.item"].create( { "name": "Discount on Product when Qty >= 10", "pricelist_id": pricelist.id, "base": "list_price", "compute_price": "percentage", "percent_price": "20", "applied_on": "0_product_variant", "product_id": self.shopinvader_variant.record_id.id, "min_quantity": 10.0, } ) # Case 1 (qty = 1.0). No discount is applied price = self.shopinvader_variant._get_price( qty=1.0, pricelist=pricelist, fposition=fposition ) self._assertDictContains( price, { "value_taxed": 750.0, "value_untaxed": 652.17, "original_value_taxed": 750.0, "original_value_untaxed": 652.17, }, ) # Case 2 (qty = 10.0). Discount is applied # promotion price list define a discount of 20% on all product price = self.shopinvader_variant._get_price( qty=10.0, pricelist=pricelist, fposition=fposition ) self._assertDictContains( price, { "value_taxed": 600.0, "value_untaxed": 521.74, "original_value_taxed": 600.0, "original_value_untaxed": 521.74, }, ) def test_product_get_price_discount_policy(self): # Ensure that discount is with 2 digits self.env.ref("product.decimal_discount").digits = 2 # self.base_pricelist doesn't define a tax mapping. We are tax included # we modify the discount_policy self.base_pricelist.discount_policy = "without_discount" fiscal_position_fr = self.env.ref("shopinvader.fiscal_position_0") price = self.shopinvader_variant._get_price( pricelist=self.base_pricelist, fposition=fiscal_position_fr ) self._assertDictContains( price, { "value_taxed": 750.0, "value_untaxed": 652.17, "original_value_taxed": 750.0, "original_value_untaxed": 652.17, }, ) # promotion price list define a discount of 20% on all product # we modify the discount_policy promotion_price_list = self.env.ref("shopinvader.pricelist_1") promotion_price_list.discount_policy = "without_discount" price = self.shopinvader_variant._get_price( pricelist=promotion_price_list, fposition=fiscal_position_fr ) self._assertDictContains( price, { "value_taxed": 600.0, "value_untaxed": 521.74, "original_value_taxed": 750.0, "original_value_untaxed": 652.17, }, ) # use the fiscal position defining a mapping from tax included to tax # excluded # Tax mapping should not impact the computation of the discount and # the original value tax_exclude_fiscal_position = self.env.ref("shopinvader.fiscal_position_1") price = self.shopinvader_variant._get_price( pricelist=self.base_pricelist, fposition=tax_exclude_fiscal_position ) self._assertDictContains( price, { "value_taxed": 750.0, "value_untaxed": 652.17, "original_value_taxed": 750.0, "original_value_untaxed": 652.17, }, ) price = self.shopinvader_variant._get_price( pricelist=promotion_price_list, fposition=tax_exclude_fiscal_position ) self._assertDictContains( price, { "value_taxed": 600.0, "value_untaxed": 521.74, "original_value_taxed": 750.0, "original_value_untaxed": 652.17, }, )
null
452
#!/usr/bin/python # # Copyright 2014 Microsoft Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from Utils.WAAgentUtil import waagent from AbstractPatching import AbstractPatching class redhatPatching(AbstractPatching): def __init__(self, hutil): super(redhatPatching,self).__init__(hutil) self.cron_restart_cmd = 'service crond restart' self.check_cmd = 'yum -q check-update' self.check_security_cmd = 'yum -q --security check-update' self.clean_cmd = 'yum clean packages' self.download_cmd = 'yum -q -y --downloadonly update' self.patch_cmd = 'yum -y update' self.status_cmd = 'yum -q info' self.pkg_query_cmd = 'repoquery -l' self.cache_dir = '/var/cache/yum/' def install(self): """ Install for dependencies. """ # For yum --downloadonly option waagent.Run('yum -y install yum-downloadonly', False) # For yum --security option retcode = waagent.Run('yum -y install yum-plugin-security') if retcode > 0: self.hutil.error("Failed to install yum-plugin-security") # For package-cleanup, needs-restarting, repoquery retcode = waagent.Run('yum -y install yum-utils') if retcode > 0: self.hutil.error("Failed to install yum-utils") # For lsof retcode = waagent.Run('yum -y install lsof') if retcode > 0: self.hutil.error("Failed to install lsof") # Install missing dependencies missing_dependency_list = self.check_missing_dependencies() for pkg in missing_dependency_list: retcode = waagent.Run('yum -y install ' + pkg) if retcode > 0: self.hutil.error("Failed to install missing dependency: " + pkg) def METHOD_NAME(self, category): """ Check valid upgrades, Return the package list to download & upgrade """ if category == self.category_all: check_cmd = self.check_cmd elif category == self.category_required: check_cmd = self.check_security_cmd to_download = [] retcode,output = waagent.RunGetOutput(check_cmd, chk_err=False) if retcode == 0: return 0, to_download elif retcode == 100: lines = output.strip().split('\n') for line in lines: line = re.split(r'\s+', line.strip()) if len(line) != 3: break to_download.append(line[0]) return 0, to_download elif retcode == 1: return 1, to_download def download_package(self, package): retcode = waagent.Run(self.download_cmd + ' ' + package, chk_err=False) # Yum exit code is not 0 even if succeed, so check if the package rpm exsits to verify that downloading succeeds. return self.check_download(package) def patch_package(self, package): return waagent.Run(self.patch_cmd + ' ' + package) def check_reboot(self): retcode,last_kernel = waagent.RunGetOutput("rpm -q --last kernel") last_kernel = last_kernel.split()[0][7:] retcode,current_kernel = waagent.RunGetOutput('uname -r') current_kernel = current_kernel.strip() self.reboot_required = (last_kernel != current_kernel) def report(self): """ TODO: Report the detail status of patching """ for package_patched in self.patched: self.info_pkg(package_patched) def info_pkg(self, pkg_name): """ Return details about a package """ retcode,output = waagent.RunGetOutput(self.status_cmd + ' ' + pkg_name) if retcode != 0: self.hutil.error(output) return None installed_pkg_info_list = output.rpartition('Available Packages')[0].strip().split('\n') available_pkg_info_list = output.rpartition('Available Packages')[-1].strip().split('\n') pkg_info = dict() pkg_info['installed'] = dict() pkg_info['available'] = dict() for item in installed_pkg_info_list: if item.startswith('Name'): pkg_info['installed']['name'] = item.split(':')[-1].strip() elif item.startswith('Arch'): pkg_info['installed']['arch'] = item.split(':')[-1].strip() elif item.startswith('Version'): pkg_info['installed']['version'] = item.split(':')[-1].strip() elif item.startswith('Release'): pkg_info['installed']['release'] = item.split(':')[-1].strip() for item in available_pkg_info_list: if item.startswith('Name'): pkg_info['available']['name'] = item.split(':')[-1].strip() elif item.startswith('Arch'): pkg_info['available']['arch'] = item.split(':')[-1].strip() elif item.startswith('Version'): pkg_info['available']['version'] = item.split(':')[-1].strip() elif item.startswith('Release'): pkg_info['available']['release'] = item.split(':')[-1].strip() return pkg_info def check_download(self, pkg_name): pkg_info = self.info_pkg(pkg_name) name = pkg_info['available']['name'] arch = pkg_info['available']['arch'] version = pkg_info['available']['version'] release = pkg_info['available']['release'] package = '.'.join(['-'.join([name, version, release]), arch, 'rpm']) retcode,output = waagent.RunGetOutput('cd ' + self.cache_dir + ';find . -name "'+ package + '"') if retcode != 0: self.hutil.error("Unable to check whether the downloading secceeds") else: if output == '': return 1 else: return 0 def check_missing_dependencies(self): retcode, output = waagent.RunGetOutput('package-cleanup --problems', chk_err=False) missing_dependency_list = [] for line in output.split('\n'): if 'requires' not in line: continue words = line.split() missing_dependency = words[words.index('requires') + 1] if missing_dependency not in missing_dependency_list: missing_dependency_list.append(missing_dependency) return missing_dependency_list
null
453
from typing import ( Any, Dict, List, Optional, Set, Union, ) from typing_extensions import ( Literal, TypedDict, ) BadgeSourceT = Literal["admin", "galaxy"] # Badges that can be explicitly set by admins. AdminBadgeT = Literal[ "faster", "slower", "short_term", "backed_up", "not_backed_up", "more_secure", "less_secure", "more_stable", "less_stable", ] # All badges - so AdminBadgeT plus Galaxy specifiable badges. BadgeT = Union[ AdminBadgeT, Literal[ "cloud", "quota", "no_quota", "restricted", ], ] class BadgeSpecDict(TypedDict): """Describe badges that can be set by Galaxy admins.""" type: AdminBadgeT conflicts: List[AdminBadgeT] BADGE_SPECIFICATION: List[BadgeSpecDict] = [ {"type": "faster", "conflicts": ["slower"]}, {"type": "slower", "conflicts": ["faster"]}, {"type": "short_term", "conflicts": []}, {"type": "backed_up", "conflicts": ["not_backed_up"]}, {"type": "not_backed_up", "conflicts": ["backed_up"]}, {"type": "more_secure", "conflicts": ["less_secure"]}, {"type": "less_secure", "conflicts": ["more_secure"]}, {"type": "more_stable", "conflicts": ["less_stable"]}, {"type": "less_stable", "conflicts": ["more_stable"]}, ] KNOWN_BADGE_TYPES: List[AdminBadgeT] = [s["type"] for s in BADGE_SPECIFICATION] BADGE_SPECIFICATION_BY_TYPE: Dict[AdminBadgeT, BadgeSpecDict] = {s["type"]: s for s in BADGE_SPECIFICATION} class BadgeDict(TypedDict): type: BadgeT message: Optional[str] source: BadgeSourceT class StoredBadgeDict(TypedDict): type: AdminBadgeT message: Optional[str] def read_badges(config_dict: Dict[str, Any]) -> List[StoredBadgeDict]: raw_badges = config_dict.get("badges", []) badges: List[StoredBadgeDict] = [] badge_types: Set[str] = set() badge_conflicts: Dict[str, str] = {} for badge in raw_badges: # when recovering serialized badges, skip ones that are set by Galaxy badge_source = badge.get("source") if badge_source and badge_source != "admin": continue assert "type" in badge badge_type = badge["type"] if badge_type not in KNOWN_BADGE_TYPES: raise Exception(f"badge_type {badge_type} unimplemented/unknown {badge}") message = badge.get("message", None) badges.append({"type": badge_type, "message": message}) badge_types.add(badge_type) if badge_type in badge_conflicts: conflicting_badge_type = badge_conflicts[badge_type] raise Exception( f"Conflicting badge to [{badge_type}] defined on the object store [{conflicting_badge_type}]." ) conflicts = BADGE_SPECIFICATION_BY_TYPE[badge_type]["conflicts"] for conflict in conflicts: badge_conflicts[conflict] = badge_type return badges def METHOD_NAME(stored_badges: List[StoredBadgeDict], quota_enabled: bool, private: bool) -> List[BadgeDict]: """Produce blended, unified list of badges for target object store entity. Combine more free form admin information stored about badges with Galaxy tracked information (quota and access restriction information) to produce a unified list of badges to be consumed via the API. """ badge_dicts: List[BadgeDict] = [] for badge in stored_badges: badge_dict: BadgeDict = { "source": "admin", "type": badge["type"], "message": badge["message"], } badge_dicts.append(badge_dict) quota_badge_dict: BadgeDict if quota_enabled: quota_badge_dict = { "type": "quota", "message": None, "source": "galaxy", } else: quota_badge_dict = { "type": "no_quota", "message": None, "source": "galaxy", } badge_dicts.append(quota_badge_dict) if private: restricted_badge_dict: BadgeDict = { "type": "restricted", "message": None, "source": "galaxy", } badge_dicts.append(restricted_badge_dict) return badge_dicts
null
454
from http import HTTPStatus from typing import Any, Dict, Optional, Union import httpx from ... import errors from ...client import AuthenticatedClient, Client from ...models.error_response import ErrorResponse from ...models.pipeline import Pipeline from ...types import Response def _get_kwargs( pipeline_id: str, ) -> Dict[str, Any]: pass return { "method": "get", "url": "/pipelines/{pipeline_id}".format( pipeline_id=pipeline_id, ), } def _parse_response( *, client: Union[AuthenticatedClient, Client], response: httpx.Response ) -> Optional[Union[ErrorResponse, Pipeline]]: if response.status_code == HTTPStatus.OK: response_200 = Pipeline.from_dict(response.json()) return response_200 if response.status_code == HTTPStatus.NOT_FOUND: response_404 = ErrorResponse.from_dict(response.json()) return response_404 if client.raise_on_unexpected_status: raise errors.UnexpectedStatus(response.status_code, response.content) else: return None def _build_response( *, client: Union[AuthenticatedClient, Client], response: httpx.Response ) -> Response[Union[ErrorResponse, Pipeline]]: return Response( status_code=HTTPStatus(response.status_code), content=response.content, headers=response.headers, parsed=_parse_response(client=client, response=response), ) def sync_detailed( pipeline_id: str, *, client: Union[AuthenticatedClient, Client], ) -> Response[Union[ErrorResponse, Pipeline]]: """Fetch a pipeline by ID. Fetch a pipeline by ID. Args: pipeline_id (str): Raises: errors.UnexpectedStatus: If the server returns an undocumented status code and Client.raise_on_unexpected_status is True. httpx.TimeoutException: If the request takes longer than Client.timeout. Returns: Response[Union[ErrorResponse, Pipeline]] """ kwargs = _get_kwargs( pipeline_id=pipeline_id, ) response = client.get_httpx_client().request( **kwargs, ) return _build_response(client=client, response=response) def sync( pipeline_id: str, *, client: Union[AuthenticatedClient, Client], ) -> Optional[Union[ErrorResponse, Pipeline]]: """Fetch a pipeline by ID. Fetch a pipeline by ID. Args: pipeline_id (str): Raises: errors.UnexpectedStatus: If the server returns an undocumented status code and Client.raise_on_unexpected_status is True. httpx.TimeoutException: If the request takes longer than Client.timeout. Returns: Union[ErrorResponse, Pipeline] """ return sync_detailed( pipeline_id=pipeline_id, client=client, ).parsed async def asyncio_detailed( pipeline_id: str, *, client: Union[AuthenticatedClient, Client], ) -> Response[Union[ErrorResponse, Pipeline]]: """Fetch a pipeline by ID. Fetch a pipeline by ID. Args: pipeline_id (str): Raises: errors.UnexpectedStatus: If the server returns an undocumented status code and Client.raise_on_unexpected_status is True. httpx.TimeoutException: If the request takes longer than Client.timeout. Returns: Response[Union[ErrorResponse, Pipeline]] """ kwargs = _get_kwargs( pipeline_id=pipeline_id, ) response = await client.get_async_httpx_client().request(**kwargs) return _build_response(client=client, response=response) async def METHOD_NAME( pipeline_id: str, *, client: Union[AuthenticatedClient, Client], ) -> Optional[Union[ErrorResponse, Pipeline]]: """Fetch a pipeline by ID. Fetch a pipeline by ID. Args: pipeline_id (str): Raises: errors.UnexpectedStatus: If the server returns an undocumented status code and Client.raise_on_unexpected_status is True. httpx.TimeoutException: If the request takes longer than Client.timeout. Returns: Union[ErrorResponse, Pipeline] """ return ( await asyncio_detailed( pipeline_id=pipeline_id, client=client, ) ).parsed
null
455
# coding=utf-8 # Copyright 2023 The Uncertainty Baselines Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pretraining utils.""" from typing import Any, Dict from absl import logging import flax import ml_collections import numpy as np from scenic.train_lib_deprecated import train_utils from tensorflow.io import gfile def load_bb_config( config: ml_collections.ConfigDict) -> ml_collections.ConfigDict: """Temporary toy bb config. Args: config: model config. Returns: restored_model_cfg: mock model config """ del config restored_model_cfg = ml_collections.ConfigDict() restored_model_cfg.classifier = "token" return restored_model_cfg def convert_from_pytorch(model: Dict[str, Any], config: ml_collections.ConfigDict) -> Dict[str, Any]: """Update the variables names from pytorch convention to jax convention. Args: model: Dictionary of segmenter parameters as numpy arrays from pytorch model in https://github.com/rstrudel/segmenter config: model configuration Returns: jax_state: Dictionary of segmenter parameters as numpy arrays with updated names to match segmenter-ub model. """ # TODO(kellybuchanan): add configuration files to compute dims of qkv. del config jax_state = dict(model) for key, tensor in model.items(): # Decoder if "decoder.head." in key: del jax_state[key] key = key.replace("decoder.head.", "output_projection/") if "weight" in key: key = key.replace("weight", "kernel") tensor = np.transpose(tensor) # Encoder elif "encoder.head." in key: del jax_state[key] key = key.replace("encoder.head.", "backbone/Transformer/head/") elif "encoder.norm." in key: del jax_state[key] key = key.replace("encoder.norm.", "backbone/Transformer/encoder_norm/") if "weight" in key: key = key.replace("weight", "scale") elif "encoder.patch_embed.proj." in key: del jax_state[key] key = key.replace("encoder.patch_embed.proj.", "backbone/embedding/") if "weight" in key: key = key.replace("weight", "kernel") # mapping tf -> torch in timm torch model: # w.transpose([3,2,0,1]) tensor = np.transpose(tensor, [2, 3, 1, 0]) elif "encoder.pos_embed" in key: del jax_state[key] key = key.replace("encoder.pos_embed", "backbone/Transformer/posembed_input/pos_embedding") elif "encoder.cls_token" in key: del jax_state[key] key = key.replace("encoder.cls_token", "backbone/cls") elif "encoder.blocks" in key: del jax_state[key] key = key.replace("encoder.", "backbone/Transformer/") key = key.replace("blocks.", "encoderblock_") key = key.replace(".norm1.", "/LayerNorm_0/") key = key.replace(".attn.", "/MultiHeadDotProductAttention_1/") key = key.replace(".norm2.", "/LayerNorm_2/") key = key.replace(".mlp.fc1.", "/MlpBlock_3/Dense_0/") key = key.replace(".mlp.fc2.", "/MlpBlock_3/Dense_1/") if "LayerNorm" in key: key = key.replace("weight", "scale") else: key = key.replace("weight", "kernel") if "Dense_" in key: tensor = np.transpose(tensor) elif "qkv" in key: # slice query key and value dims = tensor.shape[0] // 3 key1 = key.replace("qkv.", "query/") key2 = key.replace("qkv.", "key/") key3 = key.replace("qkv.", "value/") # mapping tf -> torch in timm torch model: # cat[x.flatten(1).T for x in qkv] \in (3072,1024) # where q, k, v \in (1024, 16, 64) tensor_masks = [ np.arange(dims), np.arange(dims, dims * 2), np.arange(dims * 2, dims * 3) ] tensor_keys = [key1, key2, key3] for key_, tensor_m in zip(tensor_keys, tensor_masks): tensor_tmp = tensor[tensor_m].reshape(16, 64, -1).squeeze() if tensor_tmp.ndim == 3: tensor_tmp = tensor_tmp.transpose([2, 0, 1]) jax_state[key_] = tensor_tmp continue elif "proj." in key: key = key.replace("proj.", "out/") # mapping tf -> torch in timm torch model: # w.transpose([2,0,1]) + flatten(1) \in (1024, 1024) # where w \in (16, 64, 1024) tensor = tensor.reshape(-1, 16, 64).squeeze() if tensor.ndim == 3: tensor = tensor.transpose([1, 2, 0]) else: tensor = tensor.flatten() else: raise NotImplementedError( "Key {} doesn\'t exist in encoder".format(key)) else: raise NotImplementedError("Key {} doesn\'t exist in model".format(key)) jax_state[key] = tensor return jax_state def METHOD_NAME( checkpoint_path: str, config: ml_collections.ConfigDict) -> train_utils.TrainState: """Converts a segmm segmenter model checkpoint to an scenic train state. The model weights are extracted. Args: checkpoint_path: Path to checkpoint. config: config of pretrained model. Returns: restored_train_state: Scenic train state with model weights, global step and accumulated training time. """ logging.info("Loading torch/numpy checkpoint from %s", checkpoint_path) checkpoint_data = np.load( gfile.GFile(checkpoint_path, "rb"), allow_pickle=True)[()] restored_params = convert_from_pytorch(checkpoint_data, config) # Construct tree restored_params = flax.traverse_util.unflatten_dict( {tuple(k.split("/")[:]): v for k, v in restored_params.items()}) train_state = train_utils.TrainState() # pytype: disable=wrong-arg-types restored_train_state = train_state.replace( # pytype: disable=attribute-error optimizer={"target": restored_params},) # pytype: enable=wrong-arg-types # free memory del restored_params return restored_train_state
null
456
import numpy as np import nibabel as nib import skimage from sklearn.neighbors import KernelDensity from sklearn import mixture def piecewise_linear_normalize(in_img_data, ref_img_data): """Function to piecewise linearly scale image intensities to training data landmarks""" in_img_flat = np.ravel(in_img_data, 'C') in_img_fg = in_img_flat[in_img_flat > 0].reshape(-1, 1) clf_in = mixture.GaussianMixture(n_components=3, covariance_type='full') clf_in.fit(in_img_fg) ref_img_flat = np.ravel(ref_img_data, 'C') ref_img_fg = ref_img_flat[ref_img_flat > 0].reshape(-1, 1) clf_ref = mixture.GaussianMixture(n_components=3, covariance_type='full') clf_ref.fit(ref_img_fg) in_landmarks = np.asarray(sorted(clf_in.means_.squeeze())) in_wm_std = np.sqrt(clf_in.covariances_[np.argmax(clf_in.means_)]) in_wm_threshold = in_landmarks[2] + 2*in_wm_std[0] in_landmarks = np.append(np.asarray([0]), np.append(in_landmarks, in_wm_threshold)) ref_landmarks = np.asanyarray(sorted(clf_ref.means_.squeeze())) ref_wm_std = np.sqrt(clf_in.covariances_[np.argmax(clf_in.means_)]) ref_wm_threshold = 255 ref_landmarks = np.append(np.asarray([0]), np.append(ref_landmarks, ref_wm_threshold)) print(ref_landmarks) print(in_landmarks) out_img_data = np.zeros(in_img_data.shape) # map intensities using these landmarks for i in range(len(in_landmarks)-1): m = (ref_landmarks[i+1] - ref_landmarks[i])/(in_landmarks[i+1] - in_landmarks[i]) c = (in_landmarks[i+1]*ref_landmarks[i] - in_landmarks[i]*ref_landmarks[i+1])/(in_landmarks[i+1] - in_landmarks[i]) out_img_data[(in_img_data > in_landmarks[i]) & (in_img_data <= in_landmarks[i+1])] = \ m*in_img_data[(in_img_data > in_landmarks[i]) & (in_img_data <= in_landmarks[i+1])] + c out_img_data[(in_img_data > in_landmarks[-1])] = 255 return out_img_data def wm_peak_normalize(in_img_data): """Function to scale image intensities by setting wm peak to 200""" in_img_flat = np.ravel(in_img_data, 'C') in_img_fg = in_img_flat[in_img_flat > 0].reshape(-1, 1) p95 = np.percentile(in_img_fg, q=95) in_img_fg = in_img_fg[in_img_fg < p95] in_img_fg = in_img_fg.reshape(-1,1) # clf = mixture.GMM(n_components=3, covariance_type='full') # clf = mixture.GaussianMixture(n_components=3, covariance_type='full') clf.fit(in_img_fg) # max of means is the wm centroid for t1w images wm_peak_intensity = clf.means_.max() wm_scaling = 200.0 / wm_peak_intensity out_img_data = in_img_data * wm_scaling return out_img_data def wm_peak_normalize_t2w(in_img_data): """Function to scale image intensities by setting wm peak to 200""" in_img_flat = np.ravel(in_img_data, 'C') in_img_fg = in_img_flat[in_img_flat > 0].reshape(-1, 1) p95 = np.percentile(in_img_fg, q=90) p05 = np.percentile(in_img_fg, q=10) in_img_fg = in_img_fg[(in_img_fg < p95) & (in_img_fg > p05)] in_img_fg = in_img_fg.reshape(-1,1) # clf = mixture.GMM(n_components=3, covariance_type='full') # clf = mixture.GaussianMixture(n_components=2, covariance_type='full') clf.fit(in_img_fg) print('GMM centroids are ') print(sorted(clf.means_)) wm_peak_intensity = sorted(clf.means_)[0] # # # h, bin_edges = np.histogram(in_img_fg, 500) # max_bin = np.argmax(h) # mode_h = max_bin * (bin_edges[1] - bin_edges[0]) # max of means is the wm centroid for t1w images # wm_peak_intensity = mode_h wm_scaling = 0.3 / wm_peak_intensity out_img_data = in_img_data * wm_scaling return out_img_data def METHOD_NAME(in_img_data): in_img_flat = np.ravel(in_img_data, 'C') in_img_fg = in_img_flat[in_img_flat > 0].reshape(-1, 1) p01 = np.percentile(in_img_fg, q=1) p999 = np.percentile(in_img_fg, q=99) # set p99 to 255 scaling = 255.0 / (p999 - p01) in_img_data[(in_img_data < p01) & (in_img_data > 0)] = p01 out_img_data = (in_img_data) * scaling return out_img_data def max_normalize(in_img_data): in_img_flat = np.ravel(in_img_data, 'C') in_img_fg = in_img_flat[in_img_flat > 0].reshape(-1, 1) p01 = np.percentile(in_img_fg, q=1) p999 = np.percentile(in_img_fg, q=99) # set p99 to 255 scaling = 255.0 / (p999 - p01) in_img_data[in_img_data < p01] = p01 out_img_data = (in_img_data) * scaling return out_img_data def histmatch(in_img_data, ref_img_data): # in_img_data = wm_peak_normalize(in_img_data) # ref_img_data = wm_peak_normalize(ref_img_data) in_img_data_flat = in_img_data.flatten() in_img_fg = in_img_data_flat[in_img_data_flat > 0] # foreground is > 0 ref_img_data_flat = ref_img_data.flatten() ref_img_fg = ref_img_data_flat[ref_img_data_flat > 0] # foreground is > 0 # plot histograms # plt.figure() bins_in = np.linspace(0, 1, 255 / 1) bins_ref = np.linspace(0, 1, 255 / 1) hist_in = np.histogram(in_img_fg, bins=bins_in, range=(bins_in.min(), bins_in.max())) n_in = hist_in[0] bins_in = hist_in[1] hist_ref = np.histogram(ref_img_fg, bins=bins_ref, range=(bins_ref.min(), bins_ref.max())) n_ref = hist_ref[0] bins_ref = hist_ref[1] cdf_in_img = np.float64(np.cumsum(n_in)) cdf_in_img = np.divide(cdf_in_img, cdf_in_img[-1]) cdf_ref_img = np.float64(np.cumsum(n_ref)) cdf_ref_img = np.divide(cdf_ref_img, cdf_ref_img[-1]) interp_ref_values = np.interp(cdf_in_img, cdf_ref_img, bins_ref[1:]) bins_in_z = np.append(0, bins_in) out_img_data = np.copy(in_img_data) for i in range(1, len(bins_in)): out_img_data[(in_img_data > bins_in_z[i - 1]) & (in_img_data <= bins_in_z[i])] = interp_ref_values[i - 1] # print(i) return out_img_data, bins_in_z, interp_ref_values
null
457
# Copyright 2020,2021 Sony Corporation. # Copyright 2021 Sony Group Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import nnabla as nn import numpy as np from nnabla.utils.data_iterator import data_iterator from nnabla.utils.data_source import DataSource from nnabla.utils import image_utils import os import glob import imageio from helper import load_K_Rt_from_P, generate_raydir_camloc class DTUMVSDataSource(DataSource): ''' Load DTUMVS dataset from the zip file created by the author of "Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance". ''' def _get_data(self, position): img_idx = self._img_indices[position] image = self._images[img_idx] mask = self._masks[img_idx] intrinsic = self._intrinsics[img_idx] pose = self._poses[img_idx] H, W, _ = image.shape R = H * W color = image.reshape((R, 3))[self.pixel_idx] mask = mask.reshape((R, 1))[self.pixel_idx] xy = self._xy[self.pixel_idx] return color, mask, intrinsic, pose, xy def _load_dtumvs(self, path): # Images image_files = sorted(glob.glob(os.path.join(path, "image", "*"))) METHOD_NAME = np.asarray([image_utils.imread(f) for f in image_files]) METHOD_NAME = METHOD_NAME * (1.0 / 127.5) - 1.0 # Masks mask_files = sorted(glob.glob(os.path.join(path, "mask", "*"))) masks = np.asarray([imageio.imread(f, as_gray=True)[:, :, np.newaxis] > 127.5 for f in mask_files]) * 1.0 # Camera projection matrix and scale matrix for special correctness cameras = np.load(os.path.join(path, "cameras.npz")) world_mats = [cameras['world_mat_%d' % idx].astype( np.float32) for idx in range(len(METHOD_NAME))] scale_mats = [cameras['scale_mat_%d' % idx].astype( np.float32) for idx in range(len(METHOD_NAME))] intrinsics, poses = [], [] for W, S in zip(world_mats, scale_mats): P = W @ S P = P[:3, :4] intrinsic, pose = load_K_Rt_from_P(P) intrinsics.append(intrinsic[:3, :3]) poses.append(pose) # return images[0:1, ...], masks[0:1, ...], np.asarray(intrinsics)[0:1, ...], np.asarray(poses)[0:1, ...] return METHOD_NAME, masks, np.asarray(intrinsics), np.asarray(poses) def __init__(self, path, n_rays, train=True, shuffle=False, rng=None): super(DTUMVSDataSource, self).__init__(shuffle=shuffle) self._n_rays = n_rays self._train = train self._images, self._masks, self._intrinsics, self._poses = self._load_dtumvs( path) # assume all images have same resolution H, W, _ = self._images[0].shape x = np.arange(W) y = np.arange(H) xx, yy = np.meshgrid(x, y) self._xy = np.asarray([xx.flatten(), yy.flatten()]).T self._size = len(self._images) self._pixels = H * W self._variables = ('image', 'mask', 'intrinsic', 'pose', 'xy') if rng is None: rng = np.random.RandomState(313) self.rng = rng self.reset() self.pixel_idx = self._sampling_idx() dname = os.path.split(path.rstrip("/"))[-1] nn.logger.info(f"--- Finish loading DTU MVS dataset ({dname}). ---") nn.logger.info(f"Num. of images = {self._size}") nn.logger.info(f"Num. of pixels (H x W) = {self._pixels} ({H} x {W})") nn.logger.info(f"Num. of random rays = {self._n_rays}") def reset(self): if self._shuffle: self._img_indices = self.rng.permutation(self._size) else: self._img_indices = np.arange(self._size) super(DTUMVSDataSource, self).reset() @property def METHOD_NAME(self): """Get copy of whole data with a shape of (B, H, W, 3).""" return self._images.copy() @property def poses(self): return self._poses.copy() @property def intrinsics(self): return self._intrinsics.copy() @property def masks(self): return self._masks.copy() def change_sampling_idx(self): self.pixel_idx = self._sampling_idx() def _sampling_idx(self): return self.rng.randint(0, self._pixels, self._n_rays) def data_iterator_dtumvs(data_source, batch_size, rng=None, with_memory_cache=False, with_file_cache=False): ''' Provide DataIterator with :py:class:`DTUMVSDataSource` with_memory_cache and with_file_cache option's default value is all False, because :py:class:`DTUMVSDataSource` is able to store all data into memory. ''' return data_iterator(data_source, batch_size, rng, with_memory_cache, with_file_cache) def main(args): # Data Iterator ds = DTUMVSDataSource(args.path, args.n_rays, shuffle=True) di = data_iterator_dtumvs(ds, 1) for i in range(args.iters): pcolor, mask, intrinsic, pose, xy = di.next() print(f"pcolor.shape = {pcolor.shape}") print(f"mask.shape = {mask.shape}") print(f"intrinsic.shape = {intrinsic.shape}") print(f"pose.shape = {pose.shape}") print(f"xy.shape = {xy.shape}") print(f"Pcolor (min, max) = ({pcolor.min()}, {pcolor.max()})") print(f"Mask (min, max) = ({mask.min()}, {mask.max()})") # Generate rays raydir, camloc = generate_raydir_camloc(pose, intrinsic, xy) print(f"raydir.shape = {raydir.shape}") np.testing.assert_allclose( np.sum(raydir ** 2, axis=-1) ** 0.5, 1.0, atol=1e-6) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description="DTU MVS Dataset.") parser.add_argument('--path', type=str, required=True, help="Path to scale directory, Ex, DTU/scan24.") parser.add_argument('--batch-size', '-b', type=int, default=4) parser.add_argument('--n-rays', '-n', type=int, default=800) parser.add_argument('--iters', '-i', type=int, default=100) args = parser.parse_args() main(args)
null
458
import asyncio import copy import hashlib import hmac import json import unittest from typing import Awaitable from urllib.parse import urlencode import hummingbot.connector.derivative.phemex_perpetual.phemex_perpetual_constants as CONSTANTS from hummingbot.connector.derivative.phemex_perpetual.phemex_perpetual_auth import PhemexPerpetualAuth from hummingbot.core.web_assistant.connections.data_types import RESTMethod, RESTRequest, WSJSONRequest class PhemexPerpetualAuthUnitTests(unittest.TestCase): @classmethod def setUpClass(cls) -> None: super().setUpClass() cls.ev_loop = asyncio.get_event_loop() cls.api_key = "TEST_API_KEY" cls.secret_key = "TEST_SECRET_KEY" def setUp(self) -> None: super().setUp() self.emulated_time = 1640001112.223 self.path = "/TEST_PATH_URL" self.test_params = { "test_param": "test_input", "timestamp": int(self.emulated_time), } self.auth = PhemexPerpetualAuth( api_key=self.api_key, api_secret=self.secret_key, time_provider=self) def _get_test_payload(self, is_get: bool = True): payload = "" if is_get is True: payload += ( self.path + urlencode(dict(copy.deepcopy(self.test_params))) + str(int(self.emulated_time) + CONSTANTS.ONE_MINUTE)) else: payload += ( self.path + str(int(self.emulated_time) + CONSTANTS.ONE_MINUTE) + json.dumps(copy.deepcopy(self.test_params)) ) return payload def _get_signature_from_test_payload(self, is_get: bool = True): return hmac.new( bytes(self.auth._api_secret.encode("utf-8")), self._get_test_payload(is_get=is_get).encode("utf-8"), hashlib.sha256 ).hexdigest() def async_run_with_timeout(self, coroutine: Awaitable, timeout: float = 1): ret = self.ev_loop.run_until_complete(asyncio.wait_for(coroutine, timeout)) return ret def time(self): # Implemented to emulate a TimeSynchronizer return self.emulated_time def test_generate_signature_from_payload(self): payload = self._get_test_payload() signature = self.auth.generate_signature_from_payload(payload) self.assertEqual(signature, self._get_signature_from_test_payload()) def test_rest_authenticate_parameters_provided(self): request: RESTRequest = RESTRequest( method=RESTMethod.GET, url=self.path, params=copy.deepcopy(self.test_params), is_auth_required=True ) signed_request: RESTRequest = self.async_run_with_timeout(self.auth.rest_authenticate(request)) self.assertIn("x-phemex-access-token", signed_request.headers) self.assertEqual(signed_request.headers["x-phemex-access-token"], self.api_key) self.assertIn("x-phemex-request-signature", signed_request.headers) self.assertEqual(signed_request.headers["x-phemex-request-signature"], self._get_signature_from_test_payload()) def test_rest_authenticate_data_provided(self): request: RESTRequest = RESTRequest( method=RESTMethod.POST, url=self.path, data=json.dumps(self.test_params), is_auth_required=True ) signed_request: RESTRequest = self.async_run_with_timeout(self.auth.rest_authenticate(request)) self.assertIn("x-phemex-access-token", signed_request.headers) self.assertEqual(signed_request.headers["x-phemex-access-token"], self.api_key) self.assertIn("x-phemex-request-signature", signed_request.headers) self.assertEqual( signed_request.headers["x-phemex-request-signature"], self._get_signature_from_test_payload(is_get=False) ) def test_ws_authenticate(self): request: WSJSONRequest = WSJSONRequest( payload={"TEST": "SOME_TEST_PAYLOAD"}, throttler_limit_id="TEST_LIMIT_ID", is_auth_required=True ) signed_request: WSJSONRequest = self.async_run_with_timeout(self.auth.ws_authenticate(request)) self.assertEqual(request, signed_request) def METHOD_NAME(self): auth_payload = self.auth.get_ws_auth_payload() payload = f"{self.api_key}{int(self.emulated_time) + 2}" signature = hmac.new(self.secret_key.encode("utf-8"), payload.encode("utf-8"), hashlib.sha256).hexdigest() target_auth_payload = { "method": "user.auth", "params": [ "API", self.api_key, signature, int(self.emulated_time) + 2, ], "id": 0, } self.assertEqual(target_auth_payload, auth_payload)
null
459
from dataclasses import asdict from functools import partial from unittest import TestCase, main as unittest_main import numpy as np from gbstats.frequentist.tests import ( FrequentistConfig, SequentialConfig, SequentialTwoSidedTTest, TwoSidedTTest, ) from gbstats.shared.models import ( FrequentistTestResult, ProportionStatistic, RegressionAdjustedStatistic, SampleMeanStatistic, Uplift, ) DECIMALS = 5 round_ = partial(np.round, decimals=DECIMALS) def _round_result_dict(result_dict): for k, v in result_dict.items(): if k == "uplift": v = { kk: round_(vv) if isinstance(vv, float) else vv for kk, vv in v.items() } else: v = [round_(x) for x in v] if isinstance(v, list) else round_(v) result_dict[k] = v return result_dict class TestTwoSidedTTest(TestCase): def test_two_sided_ttest(self): stat_a = SampleMeanStatistic(sum=1396.87, sum_squares=52377.9767, n=3407) stat_b = SampleMeanStatistic(sum=2422.7, sum_squares=134698.29, n=3461) result_dict = asdict(TwoSidedTTest(stat_a, stat_b).compute_result()) expected_rounded_dict = asdict( FrequentistTestResult( expected=round_((0.7 - 0.41) / 0.41), ci=[-0.03526, 1.44989], uplift=Uplift("normal", 0.70732, 0.37879), p_value=0.06191, ) ) self.assertDictEqual(_round_result_dict(result_dict), expected_rounded_dict) def test_two_sided_ttest_binom(self): stat_a = ProportionStatistic(sum=14, n=28) stat_b = ProportionStatistic(sum=16, n=30) result_dict = asdict(TwoSidedTTest(stat_a, stat_b).compute_result()) expected_rounded_dict = asdict( FrequentistTestResult( expected=round_((16 / 30 - 0.5) / 0.5), ci=[-0.47767, 0.61101], uplift=Uplift("normal", 0.06667, 0.2717), p_value=0.80707, ) ) self.assertDictEqual(_round_result_dict(result_dict), expected_rounded_dict) def test_two_sided_ttest_missing_variance(self): stat_a = SampleMeanStatistic(sum=1396.87, sum_squares=52377.9767, n=2) stat_b = SampleMeanStatistic(sum=2422.7, sum_squares=134698.29, n=3461) default_output = TwoSidedTTest(stat_a, stat_b)._default_output() result_output = TwoSidedTTest(stat_a, stat_b).compute_result() self.assertEqual(default_output, result_output) class TestSequentialTTest(TestCase): def test_sequential_test_runs(self): stat_a = SampleMeanStatistic(sum=1396.87, sum_squares=52377.9767, n=3000) stat_b = SampleMeanStatistic(sum=2422.7, sum_squares=134698.29, n=3461) config = SequentialConfig(sequential_tuning_parameter=1000) result_dict = asdict( SequentialTwoSidedTTest(stat_a, stat_b, config).compute_result() ) expected_dict = asdict( FrequentistTestResult( expected=0.50336, ci=[-0.55844, 1.56516], uplift=Uplift("normal", 0.50336, 0.33341), p_value=1, ) ) self.assertEqual(_round_result_dict(result_dict), expected_dict) def METHOD_NAME(self): stat_a = ProportionStatistic(sum=1396, n=3000) stat_b = ProportionStatistic(sum=2422, n=3461) result_dict = asdict(SequentialTwoSidedTTest(stat_a, stat_b).compute_result()) expected_dict = asdict( FrequentistTestResult( expected=0.50386, ci=[0.40098, 0.60675], uplift=Uplift("normal", 0.50386, 0.03386), p_value=0.0, ) ) self.assertEqual(_round_result_dict(result_dict), expected_dict) def test_sequential_test_runs_ra(self): stat_a_pre = SampleMeanStatistic(sum=16.87, sum_squares=527.9767, n=3000) stat_b_pre = SampleMeanStatistic(sum=22.7, sum_squares=1348.29, n=3461) stat_a_post = SampleMeanStatistic(sum=1396.87, sum_squares=52377.9767, n=3000) stat_b_post = SampleMeanStatistic(sum=2422.7, sum_squares=134698.29, n=3461) stat_a_ra = RegressionAdjustedStatistic( n=3000, post_statistic=stat_a_post, pre_statistic=stat_a_pre, post_pre_sum_of_products=12525, theta=0.5, ) stat_b_ra = RegressionAdjustedStatistic( n=3461, post_statistic=stat_b_post, pre_statistic=stat_b_pre, post_pre_sum_of_products=3333, theta=0.5, ) result_dict = asdict( SequentialTwoSidedTTest(stat_a_ra, stat_b_ra).compute_result() ) expected_dict = asdict( FrequentistTestResult( expected=0.50236, ci=[-0.43745, 1.44217], uplift=Uplift("normal", 0.50236, 0.3093), p_value=1, ) ) self.assertEqual(_round_result_dict(result_dict), expected_dict) def test_sequential_test_tuning_as_expected(self): stat_a = SampleMeanStatistic(sum=1396.87, sum_squares=52377.9767, n=3000) stat_b = SampleMeanStatistic(sum=2422.7, sum_squares=134698.29, n=3461) config_below_n = SequentialConfig(sequential_tuning_parameter=10) result_below = SequentialTwoSidedTTest( stat_a, stat_b, config_below_n ).compute_result() config_near_n = SequentialConfig(sequential_tuning_parameter=6461) result_near = SequentialTwoSidedTTest( stat_a, stat_b, config_near_n ).compute_result() config_above_n = SequentialConfig(sequential_tuning_parameter=10000) result_above = SequentialTwoSidedTTest( stat_a, stat_b, config_above_n ).compute_result() # Way underestimating should be worse here self.assertTrue( (result_below.ci[0] < result_above.ci[0]) and (result_below.ci[1] > result_above.ci[1]) ) # And estimating well should be both self.assertTrue( (result_below.ci[0] < result_near.ci[0]) and (result_below.ci[1] > result_near.ci[1]) ) self.assertTrue( (result_above.ci[0] < result_near.ci[0]) and (result_above.ci[1] > result_near.ci[1]) ) if __name__ == "__main__": unittest_main()
null
460
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest class StoreMaterialTemporarilyRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Trademark', '2018-07-24', 'StoreMaterialTemporarily','trademark') def get_ContactEmail(self): return self.get_query_params().get('ContactEmail') def set_ContactEmail(self,ContactEmail): self.add_query_param('ContactEmail',ContactEmail) def get_ContactAddress(self): return self.get_query_params().get('ContactAddress') def set_ContactAddress(self,ContactAddress): self.add_query_param('ContactAddress',ContactAddress) def get_EAddress(self): return self.get_query_params().get('EAddress') def set_EAddress(self,EAddress): self.add_query_param('EAddress',EAddress) def get_Country(self): return self.get_query_params().get('Country') def set_Country(self,Country): self.add_query_param('Country',Country) def get_LegalNoticeOssKey(self): return self.get_query_params().get('LegalNoticeOssKey') def set_LegalNoticeOssKey(self,LegalNoticeOssKey): self.add_query_param('LegalNoticeOssKey',LegalNoticeOssKey) def get_Address(self): return self.get_query_params().get('Address') def set_Address(self,Address): self.add_query_param('Address',Address) def get_Town(self): return self.get_query_params().get('Town') def set_Town(self,Town): self.add_query_param('Town',Town) def get_ContactNumber(self): return self.get_query_params().get('ContactNumber') def set_ContactNumber(self,ContactNumber): self.add_query_param('ContactNumber',ContactNumber) def get_City(self): return self.get_query_params().get('City') def set_City(self,City): self.add_query_param('City',City) def get_IdCardOssKey(self): return self.get_query_params().get('IdCardOssKey') def set_IdCardOssKey(self,IdCardOssKey): self.add_query_param('IdCardOssKey',IdCardOssKey) def get_Type(self): return self.get_query_params().get('Type') def set_Type(self,Type): self.add_query_param('Type',Type) def get_ContactName(self): return self.get_query_params().get('ContactName') def set_ContactName(self,ContactName): self.add_query_param('ContactName',ContactName) def get_PassportOssKey(self): return self.get_query_params().get('PassportOssKey') def set_PassportOssKey(self,PassportOssKey): self.add_query_param('PassportOssKey',PassportOssKey) def METHOD_NAME(self): return self.get_query_params().get('ContactZipcode') def set_ContactZipcode(self,ContactZipcode): self.add_query_param('ContactZipcode',ContactZipcode) def get_EName(self): return self.get_query_params().get('EName') def set_EName(self,EName): self.add_query_param('EName',EName) def get_Province(self): return self.get_query_params().get('Province') def set_Province(self,Province): self.add_query_param('Province',Province) def get_BusinessLicenceOssKey(self): return self.get_query_params().get('BusinessLicenceOssKey') def set_BusinessLicenceOssKey(self,BusinessLicenceOssKey): self.add_query_param('BusinessLicenceOssKey',BusinessLicenceOssKey) def get_Name(self): return self.get_query_params().get('Name') def set_Name(self,Name): self.add_query_param('Name',Name) def get_CardNumber(self): return self.get_query_params().get('CardNumber') def set_CardNumber(self,CardNumber): self.add_query_param('CardNumber',CardNumber) def get_Region(self): return self.get_query_params().get('Region') def set_Region(self,Region): self.add_query_param('Region',Region) def get_LoaOssKey(self): return self.get_query_params().get('LoaOssKey') def set_LoaOssKey(self,LoaOssKey): self.add_query_param('LoaOssKey',LoaOssKey
null
461
# coding: utf-8 """ OpenAPI Petstore This spec is mainly for testing Petstore server and contains fake endpoints, models. Please do not use this for any other purpose. Special characters: \" \\ # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://github.com/openapi-json-schema-tools/openapi-json-schema-generator """ from __future__ import annotations from petstore_api.shared_imports.schema_imports import * # pyright: ignore [reportWildcardImportFromLibrary] ClassName: typing_extensions.TypeAlias = schemas.StrSchema @dataclasses.dataclass(frozen=True) class Color( schemas.StrSchema ): types: typing.FrozenSet[typing.Type] = frozenset({ str, }) default: typing.Literal["red"] = "red" Properties = typing.TypedDict( 'Properties', { "className": typing.Type[ClassName], "color": typing.Type[Color], } ) class AnimalDict(schemas.immutabledict[str, str]): __required_keys__: typing.FrozenSet[str] = frozenset({ "className", }) __optional_keys__: typing.FrozenSet[str] = frozenset({ "color", }) def __new__( cls, *, className: str, color: typing.Union[ str, schemas.Unset ] = schemas.unset, configuration_: typing.Optional[schema_configuration.SchemaConfiguration] = None, **kwargs: schemas.INPUT_TYPES_ALL, ): arg_: typing.Dict[str, typing.Any] = { "className": className, } for key, val in ( ("color", color), ): if isinstance(val, schemas.Unset): continue arg_[key] = val arg_.update(kwargs) used_arg_ = typing.cast(AnimalDictInput, arg_) return Animal.validate(used_arg_, configuration=configuration_) @staticmethod def from_dict_( arg: typing.Union[ AnimalDictInput, AnimalDict ], configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ) -> AnimalDict: return Animal.validate(arg, configuration=configuration) @property def className(self) -> str: return typing.cast( str, self.__getitem__("className") ) @property def color(self) -> typing.Union[str, schemas.Unset]: val = self.get("color", schemas.unset) if isinstance(val, schemas.Unset): return val return typing.cast( str, val ) def METHOD_NAME(self, name: str) -> typing.Union[schemas.OUTPUT_BASE_TYPES, schemas.Unset]: schemas.raise_if_key_known(name, self.__required_keys__, self.__optional_keys__) return self.get(name, schemas.unset) AnimalDictInput = typing.Mapping[str, schemas.INPUT_TYPES_ALL] @dataclasses.dataclass(frozen=True) class Animal( schemas.Schema[AnimalDict, tuple] ): """NOTE: This class is auto generated by OpenAPI JSON Schema Generator. Ref: https://github.com/openapi-json-schema-tools/openapi-json-schema-generator Do not edit the class manually. """ types: typing.FrozenSet[typing.Type] = frozenset({schemas.immutabledict}) required: typing.FrozenSet[str] = frozenset({ "className", }) discriminator: typing.Mapping[str, typing.Mapping[str, typing.Type[schemas.Schema]]] = dataclasses.field( default_factory=lambda: { 'className': { 'Cat': cat.Cat, 'Dog': dog.Dog, } } ) properties: Properties = dataclasses.field(default_factory=lambda: schemas.typed_dict_to_instance(Properties)) # type: ignore type_to_output_cls: typing.Mapping[ typing.Type, typing.Type ] = dataclasses.field( default_factory=lambda: { schemas.immutabledict: AnimalDict } ) @classmethod def validate( cls, arg: typing.Union[ AnimalDictInput, AnimalDict, ], configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ) -> AnimalDict: return super().validate_base( arg, configuration=configuration, ) from petstore_api.components.schema import cat from petstore_api.components.schema import dog
null
462
# Copyright 2017-2019 EPAM Systems, Inc. (https://www.epam.com/) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import functools import os import pykube from azure.common.client_factory import get_client_from_auth_file, get_client_from_cli_profile from azure.mgmt.resource import ResourceManagementClient from azure.mgmt.network import NetworkManagementClient from azure.mgmt.compute import ComputeManagementClient RUN_ID_LABEL = 'runid' CLOUD_REGION_LABEL = 'cloud_region' auth_file = os.environ.get('AZURE_AUTH_LOCATION', None) if auth_file: res_client = get_client_from_auth_file(ResourceManagementClient, auth_path=auth_file) network_client = get_client_from_auth_file(NetworkManagementClient, auth_path=auth_file) compute_client = get_client_from_auth_file(ComputeManagementClient, auth_path=auth_file) else: res_client = get_client_from_cli_profile(ResourceManagementClient) network_client = get_client_from_cli_profile(NetworkManagementClient) compute_client = get_client_from_cli_profile(ComputeManagementClient) resource_group_name = os.environ["AZURE_RESOURCE_GROUP"] def find_instance(run_id): for resource in res_client.resources.list(filter="tagName eq 'Name' and tagValue eq '" + run_id + "'"): if str(resource.type).split('/')[-1].lower() == "virtualmachines": return resource.name elif str(resource.type).split('/')[-1].lower() == "virtualmachinescalesets": instance_name, _ = get_instance_name_and_private_ip_from_vmss(resource.name) return instance_name return None def run_id_filter(run_id): return { 'Name': 'tag:Name', 'Values': [run_id] } def get_instance_name_and_private_ip_from_vmss(scale_set_name): vm_vmss_id = None for vm in compute_client.virtual_machine_scale_set_vms.list(resource_group_name, scale_set_name): vm_vmss_id = vm.instance_id break instance_name = compute_client.virtual_machine_scale_set_vms \ .get_instance_view(resource_group_name, scale_set_name, vm_vmss_id) \ .additional_properties["computerName"] private_ip = network_client.network_interfaces. \ get_virtual_machine_scale_set_ip_configuration(resource_group_name, scale_set_name, vm_vmss_id, scale_set_name + "-nic", scale_set_name + "-ip") \ .private_ip_address return instance_name, private_ip def verify_regnode(ins_id, api): if find_node(api, ins_id): return ins_id raise RuntimeError("Failed to find Node {}".format(ins_id)) def find_node(api, node_name): node = pykube.Node.objects(api).filter(field_selector={'metadata.name': node_name}) if len(node.response['items']) > 0: return node_name else: return '' def delete_kube_node(nodename, run_id, api): if nodename is None: nodes = pykube.Node.objects(api).filter(selector={RUN_ID_LABEL: run_id}) if len(nodes.response['items']) > 0: node = nodes.response['items'][0] nodename = node['metadata']['name'] if nodename is not None: obj = { "apiVersion": "v1", "kind": "Node", "metadata": { "name": nodename, "labels": { "runid": run_id } } } pykube.Node(api, obj).delete() def get_cloud_region(api, run_id): nodes = pykube.Node.objects(api).filter(selector={RUN_ID_LABEL: run_id}) if len(nodes.response['items']) == 0: raise RuntimeError('Cannot find node matching RUN ID %s' % run_id) node = nodes.response['items'][0] labels = node['metadata']['labels'] if CLOUD_REGION_LABEL not in labels: raise RuntimeError('Node %s is not labeled with Azure Region' % node['metadata']['name']) return labels[CLOUD_REGION_LABEL] def get_kube_api(): try: api = pykube.HTTPClient(pykube.KubeConfig.from_service_account()) except Exception as e: api = pykube.HTTPClient(pykube.KubeConfig.from_file("~/.kube/config")) api.session.verify = False return api def METHOD_NAME(resource): """ This method retrieves the latest non-preview api version for the given resource (unless the preview version is the only available api version) """ provider = res_client.providers.get(resource.id.split('/')[6]) rt = next((t for t in provider.resource_types if t.resource_type.lower() == '/'.join(resource.type.split('/')[1:]).lower()), None) if rt and 'api_versions' in rt.__dict__: api_version = [v for v in rt.__dict__['api_versions'] if 'preview' not in v.lower()] return api_version[0] if api_version else rt.__dict__['api_versions'][0] def azure_resource_type_cmp(r1, r2): if str(r1.type).split('/')[-1].lower().startswith("virtualmachine"): return -1 elif str(r1.type).split('/')[-1].lower() == "networkinterfaces" and not str(r2.type).split('/')[-1].lower().startswith("virtualmachine"): return -1 return 0 def delete_resources_by_tag(run_id): resources = [] for resource in res_client.resources.list(filter="tagName eq 'Name' and tagValue eq '" + run_id + "'"): resources.append(resource) # we need to sort resources to be sure that vm and nic will be deleted first, because it has attached resorces(disks and ip) resources.sort(key=functools.cmp_to_key(azure_resource_type_cmp)) for resource in resources: res_client.resources.delete( resource_group_name=resource.id.split('/')[4], resource_provider_namespace=resource.id.split('/')[6], parent_resource_path='', resource_type=str(resource.type).split('/')[-1], resource_name=resource.name, api_version=METHOD_NAME(resource), parameters=resource ).wait() def main(): parser = argparse.ArgumentParser() parser.add_argument("--run_id", "-kid", type=str, required=True) parser.add_argument("--ins_id", "-id", type=str, required=False) # do we need? args, unknown = parser.parse_known_args() run_id = args.run_id api = get_kube_api() try: ins_id = find_instance(run_id) except Exception: ins_id = None if ins_id is None: delete_kube_node(None, run_id, api) delete_resources_by_tag(run_id) else: try: nodename = verify_regnode(ins_id, api) except Exception: nodename = None delete_kube_node(nodename, run_id, api) delete_resources_by_tag(run_id) if __name__ == '__main__': main()
null
463
# Copyright 2017-2019 EPAM Systems, Inc. (https://www.epam.com/) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import requests import time class CloudType: S3 = 'S3' GS = 'GS' def __init__(self): pass class TemporaryCredentials: def __init__(self): self.access_key_id = None self.secret_key = None self.session_token = None self.expiration = None self.region = None @classmethod def load(cls, json): instance = cls() instance.access_key_id = json['keyID'] if 'keyID' in json else None instance.secret_key = json['accessKey'] instance.session_token = json['token'] instance.expiration = json['expiration'] instance.region = json['region'] if 'region' in json else None return instance class StorageLifecycle: def __init__(self): self.path = None self.status = None self.restored_till = None @classmethod def load(cls, json): instance = StorageLifecycle() if 'path' in json: instance.path = json['path'] if 'status' in json: instance.status = json['status'] if 'restoredTill' in json: instance.restored_till = json['restoredTill'] return instance def is_restored(self): return self.status == 'SUCCEEDED' class DataStorage: _READ_MASK = 1 _WRITE_MASK = 1 << 1 def __init__(self): self.id = None self.path = None self.root = None self.mask = None self.sensitive = False self.ro = False self.type = None self.region_name = None @classmethod def load(cls, json, region_info=[]): instance = DataStorage() instance.id = json['id'] instance.path = json['path'] instance.root = json['root'] instance.mask = json['mask'] instance.sensitive = json['sensitive'] instance.type = json['type'] instance.region_name = cls._find_region_code(json.get('regionId', 0), region_info) return instance @staticmethod def _find_region_code(region_id, region_data): for region in region_data: if int(region.get('id', 0)) == int(region_id): return region.get('regionId', None) return None def is_read_allowed(self): return self.METHOD_NAME(self._READ_MASK) def is_write_allowed(self): return not self.ro and self.METHOD_NAME(self._WRITE_MASK) def METHOD_NAME(self, mask): return self.mask & mask == mask class ServerError(RuntimeError): pass class HTTPError(ServerError): pass class APIError(ServerError): pass class CloudPipelineClient: def __init__(self, api, token): self._api = api.strip('/') self._token = token self.__headers__ = {'Content-Type': 'application/json', 'Authorization': 'Bearer {}'.format(self._token)} self.__attempts__ = 3 self.__timeout__ = 5 self.__connection_timeout__ = 10 def init_bucket_object(self, name): storage_payload = self.get_storage(name) regions_payload = self.get_regions() bucket = DataStorage.load(storage_payload, regions_payload) # When regular bucket is mounted inside a sensitive run, the only way # check whether actual write will be allowed is to request write credentials # from API server and parse response if bucket.is_write_allowed(): bucket.ro = not self._is_write_allowed(bucket) return bucket def _is_write_allowed(self, bucket): try: self.get_temporary_credentials(bucket) return True except RuntimeError as e: if 'Write operations are forbidden' in str(e): return False else: raise e def get_storage(self, name): logging.info('Getting data storage %s...' % name) return self._retryable_call('GET', 'datastorage/findByPath?id={}'.format(name)) or {} def get_regions(self): logging.info('Getting regions...') return self._retryable_call('GET', 'cloud/region/info') or [] def get_temporary_credentials(self, bucket): logging.info('Getting temporary credentials for data storage #%s...' % bucket.id) data = [{ 'id': bucket.id, 'read': bucket.is_read_allowed(), 'write': bucket.is_write_allowed() }] payload = self._retryable_call('POST', 'datastorage/tempCredentials/', data=data) or {} return TemporaryCredentials.load(payload) def get_storage_lifecycle(self, bucket, path, is_file=False): logging.info('Getting storage lifecycle for data storage #%s...' % bucket.id) request_url = 'datastorage/%s/lifecycle/restore/effectiveHierarchy?path=%s&pathType=%s' \ % (str(bucket.id), path, 'FILE' if is_file else 'FOLDER&recursive=false') payload = self._retryable_call('GET', request_url) or [] return [StorageLifecycle.load(lifecycles_json) for lifecycles_json in payload] def create_system_logs(self, entries): self._retryable_call('POST', 'log', data=entries) def whoami(self): return self._retryable_call('GET', 'whoami') or {} def _retryable_call(self, http_method, endpoint, data=None): url = '{}/{}'.format(self._api, endpoint) count = 0 exceptions = [] while count < self.__attempts__: count += 1 try: response = requests.request(method=http_method, url=url, data=json.dumps(data), headers=self.__headers__, verify=False, timeout=self.__connection_timeout__) if response.status_code != 200: raise HTTPError('API responded with http status %s.' % str(response.status_code)) response_data = response.json() status = response_data.get('status') or 'ERROR' message = response_data.get('message') or 'No message' if status != 'OK': raise APIError('%s: %s' % (status, message)) return response_data.get('payload') except APIError as e: raise e except Exception as e: exceptions.append(e) time.sleep(self.__timeout__) raise exceptions[-1]
null
464
# coding=utf-8 # Copyright 2018-2023 EvaDB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from test.util import get_evadb_for_testing from unittest.mock import patch import pytest from evadb.catalog.models.utils import DatabaseCatalogEntry from evadb.server.command_handler import execute_query_fetch_all class NativeQueryResponse: def __init__(self): self.error = None self.data = None @pytest.mark.notparallel class SQLiteNativeStorageEngineTest(unittest.TestCase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def get_sqlite_params(self): return { "database": "evadb.db", } def setUp(self): connection_params = self.get_sqlite_params() self.evadb = get_evadb_for_testing() # Create all class level patches self.get_database_catalog_entry_patcher = patch( "evadb.catalog.catalog_manager.CatalogManager.get_database_catalog_entry" ) self.get_database_catalog_entry_mock = ( self.get_database_catalog_entry_patcher.start() ) self.execute_native_query_patcher = patch( "evadb.third_party.databases.sqlite.sqlite_handler.SQLiteHandler.execute_native_query" ) self.execute_native_query_mock = self.execute_native_query_patcher.start() self.connect_patcher = patch( "evadb.third_party.databases.sqlite.sqlite_handler.SQLiteHandler.connect" ) self.connect_mock = self.connect_patcher.start() self.disconnect_patcher = patch( "evadb.third_party.databases.sqlite.sqlite_handler.SQLiteHandler.disconnect" ) self.disconnect_mock = self.disconnect_patcher.start() # set return values self.execute_native_query_mock.return_value = NativeQueryResponse() self.get_database_catalog_entry_mock.return_value = DatabaseCatalogEntry( name="test_data_source", engine="sqlite", params=connection_params, row_id=1 ) def tearDown(self): self.get_database_catalog_entry_patcher.stop() self.execute_native_query_patcher.stop() self.connect_patcher.stop() self.disconnect_patcher.stop() def METHOD_NAME(self): execute_query_fetch_all( self.evadb, """USE test_data_source { SELECT * FROM test_table }""", ) self.connect_mock.assert_called_once() self.execute_native_query_mock.assert_called_once() self.get_database_catalog_entry_mock.assert_called_once() self.disconnect_mock.assert_called_once() def test_execute_sqlite_insert_query(self): execute_query_fetch_all( self.evadb, """USE test_data_source { INSERT INTO test_table ( name, age, comment ) VALUES ( 'val', 5, 'testing' ) }""", ) self.connect_mock.assert_called_once() self.execute_native_query_mock.assert_called_once() self.get_database_catalog_entry_mock.assert_called_once() self.disconnect_mock.assert_called_once() def test_execute_sqlite_update_query(self): execute_query_fetch_all( self.evadb, """USE test_data_source { UPDATE test_table SET comment = 'update' WHERE age > 5 }""", ) self.connect_mock.assert_called_once() self.execute_native_query_mock.assert_called_once() self.get_database_catalog_entry_mock.assert_called_once() self.disconnect_mock.assert_called_once() def test_execute_sqlite_delete_query(self): execute_query_fetch_all( self.evadb, """USE test_data_source { DELETE FROM test_table WHERE age < 5 }""", ) self.connect_mock.assert_called_once() self.execute_native_query_mock.assert_called_once() self.get_database_catalog_entry_mock.assert_called_once() self.disconnect_mock.assert_called_once()
null
465
###################################################################### # BioSimSpace: Making biomolecular simulation a breeze! # # Copyright: 2017-2023 # # Authors: Lester Hedges <[email protected]> # # BioSimSpace is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # BioSimSpace is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with BioSimSpace. If not, see <http://www.gnu.org/licenses/>. ##################################################################### """ A thin wrapper around Sire.Mol.Atom. This is an internal package and should not be directly exposed to the user. """ __author__ = "Lester Hedges" __email__ = "[email protected]" __all__ = ["Atom"] from sire.legacy import Mol as _SireMol from ..Types import Coordinate as _Coordinate from ..Types import Length as _Length from ._sire_wrapper import SireWrapper as _SireWrapper class Atom(_SireWrapper): """A class for storing an atom.""" def __init__(self, atom): """ Constructor. Parameters ---------- atom : Sire.Mol.Atom, :class:`Atom <BioSimSpace._SireWrappers.Atom>` A Sire or BioSimSpace Atom object. """ # Check that the atom is valid. # A Sire Atom object. if isinstance(atom, _SireMol._Mol.Atom): sire_object = atom # Another BioSimSpace Atom object. elif isinstance(atom, Atom): sire_object = atom._sire_object # Invalid type. else: raise TypeError( "'atom' must be of type 'Sire.Mol.Atom' " "or 'BioSimSpace._SireWrappers.Atom'." ) # Call the base class constructor. super().__init__(sire_object) def __str__(self): """Return a human readable string representation of the object.""" return "<BioSimSpace.Atom: name=%r, molecule=%d, index=%d>" % ( self.name(), self.moleculeNumber(), self.index(), ) def __repr__(self): """Return a string showing how to instantiate the object.""" return "<BioSimSpace.Atom: name=%r, molecule=%d, index=%d>" % ( self.name(), self.moleculeNumber(), self.index(), ) def name(self): """ Return the name of the atom. Returns ------- name : str The name of the atom. """ return self._sire_object.name().value() def index(self): """ Return the index of the atom. Returns ------- index : int The index of the atom. """ return self._sire_object.index().value() def moleculeNumber(self): """ Return the number of the molecule to which this atom belongs. Returns ------- number : int The number of the molecule to which the atom belongs. """ return self._sire_object.molecule().number().value() def coordinates(self, property_map={}): """ Return the coordinates of the atom. Parameters ---------- property_map : dict A dictionary that maps system "properties" to their user defined values. This allows the user to refer to properties with their own naming scheme, e.g. { "charge" : "my-charge" } Returns ------- coordinates : class:`Coordinate <BioSimSpace.Types.Coordinate>` The coordinates of the atom. """ prop = property_map.get("coordinates", "coordinates") # Get the "coordinates" property from the atom. try: sire_coord = self._sire_object.property(prop) coordinates = _Coordinate( _Length(sire_coord[0], "Angstrom"), _Length(sire_coord[1], "Angstrom"), _Length(sire_coord[2], "Angstrom"), ) except: return None # Return the coordinates. return coordinates def METHOD_NAME(self, property_map={}): """ Return the element. Parameters ---------- property_map : dict A dictionary that maps system "properties" to their user defined values. This allows the user to refer to properties with their own naming scheme, e.g. { "charge" : "my-charge" } Returns ------- element : str The element. """ prop = property_map.get("element", "element") # Get the element property from the atom. try: METHOD_NAME = self._sire_object.property(prop).toString() except: METHOD_NAME = "" # Return the element. return METHOD_NAME def toMolecule(self): """ Convert a single Atom to a Molecule. Returns ------- system : :class:`Molecule <BioSimSpace._SireWrappers.Molecule>` """ return _Molecule( _SireMol.PartialMolecule(self._sire_object).extract().molecule() ) # Import at bottom of module to avoid circular dependency. from ._molecule import Molecule as _Molecule
null
466
import unittest import numpy as np import scipy.sparse as sp from Orange.data import DiscreteVariable from Orange.preprocess.transformation import \ Transformation, _Indicator, Normalizer, Lookup, Indicator, Indicator1, \ MappingTransform class TestTransformEquality(unittest.TestCase): def METHOD_NAME(self): self.disc1 = DiscreteVariable("d1", values=tuple("abc")) self.disc1a = DiscreteVariable("d1", values=tuple("abc")) self.disc2 = DiscreteVariable("d2", values=tuple("abc")) assert self.disc1 == self.disc1a def test_transformation(self): t1 = Transformation(self.disc1) t1a = Transformation(self.disc1a) t2 = Transformation(self.disc2) self.assertEqual(t1, t1) self.assertEqual(t1, t1a) self.assertNotEqual(t1, t2) self.assertEqual(hash(t1), hash(t1a)) self.assertNotEqual(hash(t1), hash(t2)) def test_indicator(self): t1 = _Indicator(self.disc1, 0) t1a = _Indicator(self.disc1a, 0) t2 = _Indicator(self.disc2, 0) self.assertEqual(t1, t1) self.assertEqual(t1, t1a) self.assertNotEqual(t1, t2) self.assertEqual(hash(t1), hash(t1a)) self.assertNotEqual(hash(t1), hash(t2)) t1 = _Indicator(self.disc1, 0) t1a = _Indicator(self.disc1a, 1) self.assertNotEqual(t1, t1a) self.assertNotEqual(hash(t1), hash(t1a)) def test_normalizer(self): t1 = Normalizer(self.disc1, 0, 1) t1a = Normalizer(self.disc1a, 0, 1) t2 = Normalizer(self.disc2, 0, 1) self.assertEqual(t1, t1) self.assertEqual(t1, t1a) self.assertNotEqual(t1, t2) self.assertEqual(hash(t1), hash(t1a)) self.assertNotEqual(hash(t1), hash(t2)) t1 = Normalizer(self.disc1, 0, 1) t1a = Normalizer(self.disc1a, 1, 1) self.assertNotEqual(t1, t1a) self.assertNotEqual(hash(t1), hash(t1a)) t1 = Normalizer(self.disc1, 0, 1) t1a = Normalizer(self.disc1a, 0, 2) self.assertNotEqual(t1, t1a) self.assertNotEqual(hash(t1), hash(t1a)) def test_lookup(self): t1 = Lookup(self.disc1, np.array([0, 2, 1]), 1) t1a = Lookup(self.disc1a, np.array([0, 2, 1]), 1) t2 = Lookup(self.disc2, np.array([0, 2, 1]), 1) self.assertEqual(t1, t1) self.assertEqual(t1, t1a) self.assertNotEqual(t1, t2) self.assertEqual(hash(t1), hash(t1a)) self.assertNotEqual(hash(t1), hash(t2)) t1 = Lookup(self.disc1, np.array([0, 2, 1]), 1) t1a = Lookup(self.disc1a, np.array([1, 2, 0]), 1) self.assertNotEqual(t1, t1a) self.assertNotEqual(hash(t1), hash(t1a)) t1 = Lookup(self.disc1, np.array([0, 2, 1]), 1) t1a = Lookup(self.disc1a, np.array([0, 2, 1]), 2) self.assertNotEqual(t1, t1a) self.assertNotEqual(hash(t1), hash(t1a)) def test_mapping(self): def test_equal(a, b): self.assertEqual(a, b) self.assertEqual(hash(a), hash(b)) t1 = MappingTransform(self.disc1, {"a": "1", "b": "2", "c":"3"}) t1a = MappingTransform(self.disc1a, {"a": "1", "b": "2", "c":"3"}) t2 = MappingTransform(self.disc2, {"a": "1", "b": "2", "c":"3"}, unknown="") test_equal(t1, t1a) self.assertNotEqual(t1, t2) t1 = MappingTransform(self.disc1, {"a": 1, "b": 2, "c": float("nan")}, unknown=float("nan")) t1_ = MappingTransform(self.disc1, {"a": 1, "b": 2, "c": float("nan")}, unknown=float("nan")) test_equal(t1, t1_) t1_ = MappingTransform(self.disc1, {"a": 1, "b": float("nan"), "c": 2}, unknown=float("nan")) self.assertNotEqual(t1, t1_) t1_ = MappingTransform(self.disc1, {}, unknown=float("nan")) self.assertNotEqual(t1, t1_) t1_ = MappingTransform(self.disc1, {"f": 4, "k": 2, "j": 10}, unknown=float("nan")) self.assertNotEqual(t1, t1_) with self.assertRaises(ValueError): MappingTransform(self.disc1, {float("nan"): 1}) class TestIndicator(unittest.TestCase): def test_nan(self): var = DiscreteVariable("d", tuple("abcde")) col = np.array([1.0, 4, 2, np.nan, 2, 0]) transform = Indicator(var, 2).transform expected = [0, 0, 1, np.nan, 1, 0] np.testing.assert_equal(transform(col), expected) sparse = transform(sp.csr_matrix(col)) self.assertTrue(sp.issparse(sparse)) np.testing.assert_equal(sparse.toarray().ravel(), expected) self.assertEqual(transform(1), 0) self.assertEqual(transform(2), 1) self.assertTrue(np.isnan(transform(np.nan))) transform = Indicator(var, 0).transform expected = [0, 0, 0, np.nan, 0, 1] np.testing.assert_equal(transform(col), expected) sparse = transform(sp.csr_matrix(col)) # Currently, this always returns dense array assert not sp.issparse(sparse) np.testing.assert_equal(sparse, expected) self.assertEqual(transform(1), 0) self.assertEqual(transform(0), 1) self.assertTrue(np.isnan(transform(np.nan))) transform = Indicator1(var, 2).transform expected = [-1, -1, 1, np.nan, 1, -1] np.testing.assert_equal(transform(col), expected) np.testing.assert_equal(transform(sp.csr_matrix(col).toarray().ravel()), expected) self.assertEqual(transform(1), -1) self.assertEqual(transform(2), 1) self.assertTrue(np.isnan(transform(np.nan))) if __name__ == '__main__': unittest.main()
null
467
from collections import UserDict import functools from falcon import errors from falcon.constants import MEDIA_JSON from falcon.constants import MEDIA_MULTIPART from falcon.constants import MEDIA_URLENCODED from falcon.constants import PYPY from falcon.media.json import JSONHandler from falcon.media.multipart import MultipartFormHandler from falcon.media.multipart import MultipartParseOptions from falcon.media.urlencoded import URLEncodedFormHandler from falcon.util import deprecation from falcon.util import misc from falcon.vendor import mimeparse class MissingDependencyHandler: """Placeholder handler that always raises an error. This handler is used by the framework for media types that require an external dependency that can not be found. """ def __init__(self, handler: str, library: str): self._msg = ('The {} requires the {} library, which is not installed.').format( handler, library ) def _raise(self, *args, **kwargs): raise RuntimeError(self._msg) # TODO(kgriffs): Add support for async later if needed. serialize = deserialize = _raise class Handlers(UserDict): """A :class:`dict`-like object that manages Internet media type handlers.""" def __init__(self, initial=None): self._resolve = self._create_resolver() handlers = initial or { MEDIA_JSON: JSONHandler(), MEDIA_MULTIPART: MultipartFormHandler(), MEDIA_URLENCODED: URLEncodedFormHandler(), } # NOTE(jmvrbanac): Directly calling UserDict as it's not inheritable. # Also, this results in self.update(...) being called. UserDict.__init__(self, handlers) def __setitem__(self, key, value): super().__setitem__(key, value) # NOTE(kgriffs): When the mapping changes, we do not want to use a # cached handler from the previous mapping, in case it was # replaced. self._resolve.cache_clear() def __delitem__(self, key): super().__delitem__(key) # NOTE(kgriffs): Similar to __setitem__(), we need to avoid resolving # to a cached handler that was removed. self._resolve.cache_clear() def _create_resolver(self): # PERF(kgriffs): Under PyPy the LRU is relatively expensive as compared # to the common case of the self.data lookup succeeding. Using # _lru_cache_for_simple_logic() takes this into account by essentially # creating a nop but also decorating the method with a dummy # cache_clear(). # PERF(kgriffs): Most apps will probably only use one or two media handlers, # but we use maxsize=64 to give us some wiggle room just in case someone # is using versioned media types or something, and to cover various # combinations of the method args. We may need to tune this later. @misc._lru_cache_for_simple_logic(maxsize=64) def resolve(media_type, default, raise_not_found=True): if media_type == '*/*' or not media_type: media_type = default # PERF(kgriffs): Under CPython we do not need this shortcut to # improve performance since most calls will be resolved by the # LRU cache on resolve(). On the other hand, it doesn't hurt, # and it certainly makes a difference under PyPy. try: handler = self.data[media_type] except KeyError: handler = None if not handler: # PERF(kgriffs): We just do this slower check every time, rather # than trying to first check the dict directly, since the result # will almost always be cached anyway. # NOTE(kgriffs): Wrap keys in a tuple to make them hashable. matched_type = METHOD_NAME(media_type, tuple(self.data.keys())) if not matched_type: if raise_not_found: raise errors.HTTPUnsupportedMediaType( description='{0} is an unsupported media type.'.format( media_type ) ) return None, None, None handler = self.data[matched_type] return ( handler, getattr(handler, '_serialize_sync', None), getattr(handler, '_deserialize_sync', None), ) return resolve @deprecation.deprecated( 'This undocumented method is no longer supported as part of the public ' 'interface and will be removed in a future release.' ) def find_by_media_type(self, media_type, default, raise_not_found=True): # PERF(jmvrbanac): Check via a quick methods first for performance if media_type == '*/*' or not media_type: media_type = default try: return self.data[media_type] except KeyError: pass # PERF(jmvrbanac): Fallback to the slower method. # NOTE(kgriffs): Wrap keys in a tuple to make them hashable. resolved = METHOD_NAME(media_type, tuple(self.data.keys())) if not resolved: if raise_not_found: raise errors.HTTPUnsupportedMediaType( description='{0} is an unsupported media type.'.format(media_type) ) return None return self.data[resolved] def METHOD_NAME(media_type, all_media_types): result = None try: # NOTE(jmvrbanac): Mimeparse will return an empty string if it can # parse the media type, but cannot find a suitable type. result = mimeparse.best_match(all_media_types, media_type) except ValueError: pass return result if PYPY: # NOTE(kgriffs): The most common case for resolve() is that the # direct self.data shortcut will succeed. In this case, the LRU # lookup for resolve() is actually slower under PyPy than just # executing the method's body each time. # # However, if the shortcut does not succeed, invoking best_match() # is relatively expensive, so it does make sense to use an LRU # in that case. METHOD_NAME = functools.lru_cache(maxsize=64)(METHOD_NAME) # pragma: nocover # NOTE(vytas): An ugly way to work around circular imports. MultipartParseOptions._DEFAULT_HANDLERS = Handlers( { MEDIA_JSON: JSONHandler(), MEDIA_URLENCODED: URLEncodedFormHandler(), } ) # type: ignore
null
468
import os import ssl import sys import signal import tornado.web import tornado.process import tornado.httpserver import tornado.autoreload from DIRAC import gLogger, S_OK from WebAppDIRAC.Core.HandlerMgr import HandlerMgr from WebAppDIRAC.Core.TemplateLoader import TemplateLoader from WebAppDIRAC.Lib.SessionData import SessionData from WebAppDIRAC.Lib import Conf # If we are running with python3, Tornado will use asyncio, # and we have to convince it to let us run in a different thread # Doing this ensures a consistent behavior between py2 and py3 # see https://www.tornadoweb.org/en/stable/asyncio.html#tornado.platform.asyncio.AnyThreadEventLoopPolicy import asyncio from tornado.platform.asyncio import AnyThreadEventLoopPolicy asyncio.set_event_loop_policy(AnyThreadEventLoopPolicy()) class App: def __init__(self, handlersLoc="WebApp.handler"): self.__handlerMgr = HandlerMgr(handlersLoc, Conf.rootURL()) self.__servers = {} self.log = gLogger.getSubLogger("Web") def _logRequest(self, handler): status = handler.get_status() if status < 400: logm = self.log.notice elif status < 500: logm = self.log.warn else: logm = self.log.error request_time = 1000.0 * handler.request.request_time() logm("%d %s %.2fms" % (status, handler._request_summary(), request_time)) def __reloadAppCB(self): gLogger.notice("\n !!!!!! Reloading web app...\n") def stopChildProcesses(self, sig, frame): """ It is used to properly stop tornado when more than one process is used. In principle this is doing the job of runsv.... :param int sig: the signal sent to the process :param object frame: execution frame which contains the child processes """ # tornado.ioloop.IOLoop.instance().add_timeout(time.time()+5, sys.exit) for child in frame.f_locals.get("children", []): gLogger.info("Stopping child processes: %d" % child) os.kill(child, signal.SIGTERM) # tornado.ioloop.IOLoop.instance().stop() # gLogger.info('exit success') sys.exit(0) def METHOD_NAME(self, port=None): """Load Web portals :return: S_OK(dict)/S_ERROR() """ app = {"port": port or Conf.HTTPSPort()} # Calculating routes result = self.__handlerMgr.getRoutes() if not result["OK"]: return result app["routes"] = result["Value"] # Initialize the session data SessionData.setHandlers(self.__handlerMgr.getHandlers()["Value"]) # Create the app tLoader = TemplateLoader(self.__handlerMgr.getPaths("template")) app["settings"] = dict( debug=Conf.devMode(), template_loader=tLoader, cookie_secret=str(Conf.cookieSecret()), log_function=self._logRequest, ) return S_OK(app) def bootstrap(self): """ Configure and create web app """ self.log.always("\n ====== Starting DIRAC web app ====== \n") # Calculating routes result = self.__handlerMgr.getRoutes() if not result["OK"]: return result routes = result["Value"] # Initialize the session data SessionData.setHandlers(self.__handlerMgr.getHandlers()["Value"]) # Create the app tLoader = TemplateLoader(self.__handlerMgr.getPaths("template")) kw = dict( debug=Conf.devMode(), template_loader=tLoader, cookie_secret=str(Conf.cookieSecret()), log_function=self._logRequest, autoreload=Conf.numProcesses() < 2, ) # please do no move this lines. The lines must be before the fork_processes signal.signal(signal.SIGTERM, self.stopChildProcesses) signal.signal(signal.SIGINT, self.stopChildProcesses) # Check processes if we're under a load balancert if Conf.balancer() and Conf.numProcesses() not in (0, 1): tornado.process.fork_processes(Conf.numProcesses(), max_restarts=0) kw["debug"] = False # Debug mode? if kw["debug"]: self.log.info("Configuring in developer mode...") # Configure tornado app self.__app = tornado.web.Application(routes, **kw) port = Conf.HTTPPort() self.log.notice(f"Configuring HTTP on port {port}") # Create the web servers srv = tornado.httpserver.HTTPServer(self.__app, xheaders=True) srv.listen(port) self.__servers[("http", port)] = srv Conf.generateRevokedCertsFile() # it is used by nginx.... if Conf.HTTPS(): self.log.notice(f"Configuring HTTPS on port {Conf.HTTPSPort()}") sslops = dict( certfile=Conf.HTTPSCert(), keyfile=Conf.HTTPSKey(), cert_reqs=ssl.CERT_OPTIONAL, ca_certs=Conf.generateCAFile(), ssl_version="tls", ) sslprotocol = str(Conf.SSLProtocol()) aviableProtocols = [i for i in dir(ssl) if i.find("PROTOCOL") == 0] if sslprotocol and sslprotocol != "": if sslprotocol in aviableProtocols: sslops["ssl_version"] = getattr(ssl, sslprotocol) else: message = f"{sslprotocol} protocol is not provided." message += f"The following protocols are provided: {str(aviableProtocols)}" gLogger.warn(message) self.log.debug(" - %s" % "\n - ".join([f"{k} = {sslops[k]}" for k in sslops])) srv = tornado.httpserver.HTTPServer(self.__app, ssl_options=sslops, xheaders=True) port = Conf.HTTPSPort() srv.listen(port) self.__servers[("https", port)] = srv else: # when NGINX is used then the Conf.HTTPS return False, it means tornado # does not have to be configured using 443 port Conf.generateCAFile() # if we use Nginx we have to generate the cas as well... return result def run(self): """ Start web servers """ bu = Conf.rootURL().strip("/") urls = [] for proto, port in self.__servers: urls.append(f"{proto}://0.0.0.0:{port}/{bu}/") self.log.always(f"Listening on {' and '.join(urls)}") tornado.autoreload.add_reload_hook(self.__reloadAppCB) tornado.ioloop.IOLoop.instance().start()
null
469
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkrds.endpoint import endpoint_data class DescribeDBInstancesRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Rds', '2014-08-15', 'DescribeDBInstances') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_ResourceOwnerId(self): # Long return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self, ResourceOwnerId): # Long self.add_query_param('ResourceOwnerId', ResourceOwnerId) def get_ConnectionString(self): # String return self.get_query_params().get('ConnectionString') def set_ConnectionString(self, ConnectionString): # String self.add_query_param('ConnectionString', ConnectionString) def get_EngineVersion(self): # String return self.get_query_params().get('EngineVersion') def set_EngineVersion(self, EngineVersion): # String self.add_query_param('EngineVersion', EngineVersion) def get_ResourceGroupId(self): # String return self.get_query_params().get('ResourceGroupId') def set_ResourceGroupId(self, ResourceGroupId): # String self.add_query_param('ResourceGroupId', ResourceGroupId) def get_proxyId(self): # String return self.get_query_params().get('proxyId') def set_proxyId(self, proxyId): # String self.add_query_param('proxyId', proxyId) def get_OwnerId(self): # Long return self.get_query_params().get('OwnerId') def set_OwnerId(self, OwnerId): # Long self.add_query_param('OwnerId', OwnerId) def get_DBInstanceType(self): # String return self.get_query_params().get('DBInstanceType') def set_DBInstanceType(self, DBInstanceType): # String self.add_query_param('DBInstanceType', DBInstanceType) def get_DBInstanceClass(self): # String return self.get_query_params().get('DBInstanceClass') def set_DBInstanceClass(self, DBInstanceClass): # String self.add_query_param('DBInstanceClass', DBInstanceClass) def get_Tags(self): # String return self.get_query_params().get('Tags') def set_Tags(self, Tags): # String self.add_query_param('Tags', Tags) def get_VSwitchId(self): # String return self.get_query_params().get('VSwitchId') def set_VSwitchId(self, VSwitchId): # String self.add_query_param('VSwitchId', VSwitchId) def get_ZoneId(self): # String return self.get_query_params().get('ZoneId') def set_ZoneId(self, ZoneId): # String self.add_query_param('ZoneId', ZoneId) def get_MaxResults(self): # Integer return self.get_query_params().get('MaxResults') def set_MaxResults(self, MaxResults): # Integer self.add_query_param('MaxResults', MaxResults) def get_InstanceNetworkType(self): # String return self.get_query_params().get('InstanceNetworkType') def set_InstanceNetworkType(self, InstanceNetworkType): # String self.add_query_param('InstanceNetworkType', InstanceNetworkType) def get_ConnectionMode(self): # String return self.get_query_params().get('ConnectionMode') def set_ConnectionMode(self, ConnectionMode): # String self.add_query_param('ConnectionMode', ConnectionMode) def get_ClientToken(self): # String return self.get_query_params().get('ClientToken') def set_ClientToken(self, ClientToken): # String self.add_query_param('ClientToken', ClientToken) def get_InstanceLevel(self): # Integer return self.get_query_params().get('InstanceLevel') def set_InstanceLevel(self, InstanceLevel): # Integer self.add_query_param('InstanceLevel', InstanceLevel) def get_SearchKey(self): # String return self.get_query_params().get('SearchKey') def set_SearchKey(self, SearchKey): # String self.add_query_param('SearchKey', SearchKey) def get_PageNumber(self): # Integer return self.get_query_params().get('PageNumber') def set_PageNumber(self, PageNumber): # Integer self.add_query_param('PageNumber', PageNumber) def get_Expired(self): # String return self.get_query_params().get('Expired') def set_Expired(self, Expired): # String self.add_query_param('Expired', Expired) def get_Engine(self): # String return self.get_query_params().get('Engine') def set_Engine(self, Engine): # String self.add_query_param('Engine', Engine) def get_NextToken(self): # String return self.get_query_params().get('NextToken') def set_NextToken(self, NextToken): # String self.add_query_param('NextToken', NextToken) def get_PageSize(self): # Integer return self.get_query_params().get('PageSize') def set_PageSize(self, PageSize): # Integer self.add_query_param('PageSize', PageSize) def get_DBInstanceStatus(self): # String return self.get_query_params().get('DBInstanceStatus') def set_DBInstanceStatus(self, DBInstanceStatus): # String self.add_query_param('DBInstanceStatus', DBInstanceStatus) def get_DBInstanceId(self): # String return self.get_query_params().get('DBInstanceId') def set_DBInstanceId(self, DBInstanceId): # String self.add_query_param('DBInstanceId', DBInstanceId) def get_DedicatedHostGroupId(self): # String return self.get_query_params().get('DedicatedHostGroupId') def set_DedicatedHostGroupId(self, DedicatedHostGroupId): # String self.add_query_param('DedicatedHostGroupId', DedicatedHostGroupId) def get_ResourceOwnerAccount(self): # String return self.get_query_params().get('ResourceOwnerAccount') def set_ResourceOwnerAccount(self, ResourceOwnerAccount): # String self.add_query_param('ResourceOwnerAccount', ResourceOwnerAccount) def get_OwnerAccount(self): # String return self.get_query_params().get('OwnerAccount') def set_OwnerAccount(self, OwnerAccount): # String self.add_query_param('OwnerAccount', OwnerAccount) def get_DedicatedHostId(self): # String return self.get_query_params().get('DedicatedHostId') def set_DedicatedHostId(self, DedicatedHostId): # String self.add_query_param('DedicatedHostId', DedicatedHostId) def get_Filter(self): # String return self.get_query_params().get('Filter') def set_Filter(self, Filter): # String self.add_query_param('Filter', Filter) def METHOD_NAME(self): # String return self.get_query_params().get('VpcId') def set_VpcId(self, VpcId): # String self.add_query_param('VpcId', VpcId) def get_Category(self): # String return self.get_query_params().get('Category') def set_Category(self, Category): # String self.add_query_param('Category', Category) def get_PayType(self): # String return self.get_query_params().get('PayType') def set_PayType(self, PayType): # String self.add_query_param('PayType', PayType)
null
470
# Test methods with long descriptive names can omit docstrings # pylint: disable=missing-docstring, protected-access from unittest import skip from unittest.mock import patch, Mock import numpy as np from scipy import sparse from Orange.data import Table, Domain, ContinuousVariable, DiscreteVariable from Orange.widgets.tests.base import WidgetTest from Orange.widgets.tests.utils import simulate, possible_duplicate_table from Orange.widgets.unsupervised.owmanifoldlearning import OWManifoldLearning class TestOWManifoldLearning(WidgetTest): @classmethod def setUpClass(cls): super().setUpClass() cls.iris = Table("iris") def setUp(self): self.widget = self.create_widget( OWManifoldLearning, stored_settings={"auto_apply": False}) # type: OWManifoldLearning def click_apply(self): self.widget.apply_button.button.clicked.emit() def test_input_data(self): """Check widget's data""" self.assertEqual(self.widget.data, None) self.send_signal(self.widget.Inputs.data, self.iris) self.assertEqual(self.widget.data, self.iris) self.send_signal(self.widget.Inputs.data, None) self.assertEqual(self.widget.data, None) def test_output_data(self): """Check if data is on output after apply""" self.assertIsNone(self.get_output(self.widget.Outputs.transformed_data)) self.send_signal(self.widget.Inputs.data, self.iris) self.click_apply() self.assertIsInstance(self.get_output(self.widget.Outputs.transformed_data), Table) self.send_signal(self.widget.Inputs.data, None) self.click_apply() self.assertIsNone(self.get_output(self.widget.Outputs.transformed_data)) def test_n_components(self): """Check the output for various numbers of components""" self.send_signal(self.widget.Inputs.data, self.iris) for i in range(self.widget.n_components_spin.minimum(), self.widget.n_components_spin.maximum()): self.assertEqual(self.widget.data, self.iris) self.widget.n_components_spin.setValue(i) self.widget.n_components_spin.onEnter() self.click_apply() self._compare_tables(self.get_output(self.widget.Outputs.transformed_data), i) def test_manifold_methods(self): """Check output for various manifold methods""" self.send_signal(self.widget.Inputs.data, self.iris) n_comp = self.widget.n_components for i in range(len(self.widget.MANIFOLD_METHODS)): self.assertEqual(self.widget.data, self.iris) self.widget.manifold_methods_combo.activated.emit(i) self.click_apply() self._compare_tables(self.get_output(self.widget.Outputs.transformed_data), n_comp) def _compare_tables(self, _output, n_components): """Helper function for table comparison""" self.assertEqual((len(self.iris), n_components), _output.X.shape) np.testing.assert_array_equal(self.iris.Y, _output.Y) np.testing.assert_array_equal(self.iris.metas, _output.metas) def test_sparse_data(self): data = Table("iris").to_sparse() self.assertTrue(sparse.issparse(data.X)) def __callback(): # Send sparse data to input self.send_signal(self.widget.Inputs.data, data) self.click_apply() self.assertTrue(self.widget.Error.sparse_not_supported.is_shown()) # Clear input self.send_signal(self.widget.Inputs.data, None) self.click_apply() self.assertFalse(self.widget.Error.sparse_not_supported.is_shown()) simulate.combobox_run_through_all( self.widget.manifold_methods_combo, callback=__callback, ) def test_metrics(self): # Select t-SNE method, which is the only method that supports metrics simulate.combobox_activate_item(self.widget.manifold_methods_combo, "t-SNE") def __callback(): # Send data to input self.send_signal(self.widget.Inputs.data, self.iris) self.click_apply() self.assertFalse(self.widget.Error.manifold_error.is_shown()) # Clear input self.send_signal(self.widget.Inputs.data, None) self.click_apply() self.assertFalse(self.widget.Error.manifold_error.is_shown()) simulate.combobox_run_through_all( self.widget.tsne_editor.controls.metric_index, callback=__callback, ) def METHOD_NAME(self): simulate.combobox_activate_item(self.widget.manifold_methods_combo, "MDS") data = possible_duplicate_table('C0', class_var=True) self.send_signal(self.widget.Inputs.data, data) self.click_apply() out = self.get_output(self.widget.Outputs.transformed_data) self.assertTrue(out.domain.attributes[0], 'C0 (1)') @skip def test_singular_matrices(self): """ Handle singular matrices. GH-2228 TODO: This test makes sense with the ``Mahalanobis`` distance metric which is currently not supported by tSNE. In case it is ever re-introduced, this test is very much required. """ table = Table( Domain( [ContinuousVariable("a"), ContinuousVariable("b")], class_vars=DiscreteVariable("c", values=("0", "1"))), list(zip( [1, 1, 1], [0, 1, 2], [0, 1, 1])) ) self.send_signal(self.widget.Inputs.data, table) self.widget.manifold_methods_combo.activated.emit(0) # t-SNE self.widget.tsne_editor.metric_combo.activated.emit(4) # Mahalanobis self.assertFalse(self.widget.Error.manifold_error.is_shown()) self.click_apply() self.assertTrue(self.widget.Error.manifold_error.is_shown()) def test_out_of_memory(self): """ Show error message when out of memory. GH-2441 """ table = Table("iris") with patch("Orange.projection.manifold.MDS.__call__", Mock()) as mock: mock.side_effect = MemoryError self.send_signal("Data", table) self.widget.manifold_methods_combo.activated.emit(1) self.click_apply() self.assertTrue(self.widget.Error.out_of_memory.is_shown()) def test_unconditional_commit_on_new_signal(self): with patch.object(self.widget.commit, 'now') as apply: self.widget.auto_apply = False apply.reset_mock() self.send_signal(self.widget.Inputs.data, self.iris) apply.assert_called() @patch("Orange.widgets.unsupervised.owmanifoldlearning.OWManifoldLearning.report_items") def test_report(self, mocked_report: Mock): for i in range(len(self.widget.MANIFOLD_METHODS)): self.send_signal(self.widget.Inputs.data, self.iris) self.widget.manifold_methods_combo.activated.emit(i) self.wait_until_finished() self.widget.send_report() mocked_report.assert_called() self.assertEqual(mocked_report.call_count, 3) mocked_report.reset_mock() self.send_signal(self.widget.Inputs.data, None) self.widget.send_report() self.assertEqual(mocked_report.call_count, 2) mocked_report.reset_mock()
null
471
# coding=utf-8 # Copyright 2018-2023 EvaDB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from evadb.constants import UNDEFINED_GROUP_ID from evadb.database import EvaDBDatabase from evadb.optimizer.cost_model import CostModel from evadb.optimizer.group_expression import GroupExpression from evadb.optimizer.memo import Memo from evadb.optimizer.operators import Dummy, Operator from evadb.optimizer.optimizer_task_stack import OptimizerTaskStack from evadb.optimizer.rules.rules_manager import RulesManager class OptimizerContext: """ Maintain context information for the optimizer Arguments: _task_queue(OptimizerTaskStack): stack to keep track outstanding tasks """ def __init__( self, db: EvaDBDatabase, cost_model: CostModel, rules_manager: RulesManager = None, ): self._db = db self._task_stack = OptimizerTaskStack() self._memo = Memo() self._cost_model = cost_model self._rules_manager = rules_manager or RulesManager(db.config) @property def db(self): return self._db @property def rules_manager(self): return self._rules_manager @property def cost_model(self): return self._cost_model @property def METHOD_NAME(self): return self._task_stack @property def memo(self): return self._memo def _xform_opr_to_group_expr(self, opr: Operator) -> GroupExpression: """ Note: Internal function Generate a group expressions from a logical operator tree. Caller is responsible for assigning the group to the returned GroupExpression. """ # Go through the children first. child_ids = [] for child_opr in opr.children: if isinstance(child_opr, Dummy): child_ids.append(child_opr.group_id) else: child_expr = self._xform_opr_to_group_expr(opr=child_opr) # add the expr to memo # handles duplicates and assigns group id memo_expr = self.memo.add_group_expr(child_expr) child_ids.append(memo_expr.group_id) # Group Expression only needs the operator content. Remove # the opr children as parent-child relationship is captured # by the group expressions. # Hack: Shallow copy all the content except children and # manually clearing the children as we don't need the # dependency. Better fix is to rewrite the operator class to # support exposing only the content opr_copy = copy.copy(opr) opr_copy.clear_children() expr = GroupExpression(opr=opr_copy, children=child_ids) return expr def replace_expression(self, opr: Operator, group_id: int): """ Removes all the expressions from the specified group and create a new expression. This is called by rewrite rules. The new expr gets assigned a new group id """ self.memo.erase_group(group_id) new_expr = self._xform_opr_to_group_expr(opr) new_expr = self.memo.add_group_expr(new_expr, group_id) return new_expr def add_opr_to_group(self, opr: Operator, group_id: int = UNDEFINED_GROUP_ID): """ Convert operator to group_expression and add to the group """ grp_expr = self._xform_opr_to_group_expr(opr) grp_expr = self.memo.add_group_expr(grp_expr, group_id) return grp_expr
null
472
from typing import Any, Dict, List, Optional from boa3.internal import constants from boa3.internal.model.callable import Callable from boa3.internal.model.method import Method from boa3.internal.model.property import Property from boa3.internal.model.symbol import ISymbol from boa3.internal.model.type.classes.classarraytype import ClassArrayType from boa3.internal.model.type.classes.classscope import ClassScope from boa3.internal.model.type.classes.classtype import ClassType from boa3.internal.model.type.itype import IType from boa3.internal.model.variable import Variable class UserClass(ClassArrayType): def __init__(self, identifier: str, decorators: List[Callable] = None, bases: List[ClassType] = None): super(ClassArrayType, self).__init__(identifier, decorators, bases) self._static_methods: Dict[str, Method] = {} self._class_variables: Dict[str, Variable] = {} self._class_methods: Dict[str, Method] = {} self._instance_variables: Dict[str, Variable] = {} self._instance_methods: Dict[str, Method] = {} self._properties: Dict[str, Property] = {} self.imported_symbols = {} @property def shadowing_name(self) -> str: return 'class' @property def class_variables(self) -> Dict[str, Variable]: class_vars = super().class_variables class_vars.update(self._class_variables) return class_vars @property def instance_variables(self) -> Dict[str, Variable]: instance_vars = super().instance_variables instance_vars.update(self._instance_variables) return instance_vars @property def properties(self) -> Dict[str, Property]: props = super().properties props.update(self._properties) return props @property def static_methods(self) -> Dict[str, Method]: static_funcs = super().static_methods static_funcs.update(self._static_methods) return static_funcs @property def class_methods(self) -> Dict[str, Method]: class_funcs = super().class_methods class_funcs.update(self._class_methods) return class_funcs @property def instance_methods(self) -> Dict[str, Method]: instance_funcs = super().instance_methods instance_funcs.update(self._instance_methods) return instance_funcs def include_variable(self, var_id: str, var: Variable, is_instance: bool): """ Includes a variable into the list of class variables :param var_id: variable identifier :param var: variable to be included :param is_instance: whether is a instance variable or a class variable """ if not is_instance: self._class_variables[var_id] = var else: self._instance_variables[var_id] = var def METHOD_NAME(self, prop_id: str, prop: Property): """ Includes a property into the list of properties :param prop_id: property identifier :param prop: property to be included """ self._properties[prop_id] = prop def include_callable(self, method_id: str, method: Callable, scope: ClassScope = ClassScope.INSTANCE) -> bool: """ Includes a method into the scope of the class :param method_id: method identifier :param method: method to be included :param scope: which class scope this method should be included """ from boa3.internal.model.builtin.builtin import Builtin if isinstance(method, Method): if Builtin.ClassMethodDecorator in method.decorators or scope is ClassScope.CLASS: methods_map = self._class_methods elif Builtin.StaticMethodDecorator in method.decorators or scope is ClassScope.STATIC: methods_map = self._static_methods else: methods_map = self._instance_methods if method_id not in methods_map: methods_map[method_id] = method return True return False def include_symbol(self, symbol_id: str, symbol: ISymbol, scope: ClassScope = ClassScope.INSTANCE): """ Includes a method into the scope of the module :param symbol_id: method identifier :param symbol: method to be included :param scope: which class scope this symbol should be included """ if symbol_id not in self.symbols: if isinstance(symbol, Variable): self.include_variable(symbol_id, symbol, scope == ClassScope.INSTANCE) elif isinstance(symbol, Property): self.METHOD_NAME(symbol_id, symbol) elif isinstance(symbol, Callable): self.include_callable(symbol_id, symbol, scope) else: self.imported_symbols[symbol_id] = symbol def constructor_method(self) -> Optional[Method]: if constants.INIT_METHOD_ID not in self._class_methods: # TODO: create a generic __init__ for instantiating classes that doesn't have it declared from boa3.internal.model.type.classes.classinitmethoddefault import ClassInitMethod self._class_methods[constants.INIT_METHOD_ID] = ClassInitMethod(self) return self._class_methods[constants.INIT_METHOD_ID] def is_type_of(self, value: Any) -> bool: if value is self: return True return any(base.is_type_of(value) for base in self.bases) @classmethod def _is_type_of(cls, value: Any) -> bool: return isinstance(value, UserClass) @classmethod def build(cls, value: Any) -> IType: return cls() _EMPTY_CLASS = UserClass('-internal_use')
null
473
#!/usr/bin/env python import asyncio import logging import websockets import json from hummingbot.core.api_throttler.async_throttler import AsyncThrottler from hummingbot.core.utils.async_utils import safe_ensure_future from typing import ( Any, AsyncIterable, Dict, List, Optional, ) from websockets.exceptions import ConnectionClosed from hummingbot.logger import HummingbotLogger from hummingbot.connector.exchange.altmarkets.altmarkets_constants import Constants from hummingbot.connector.exchange.altmarkets.altmarkets_auth import AltmarketsAuth from hummingbot.connector.exchange.altmarkets.altmarkets_utils import RequestId # reusable websocket class # ToDo: We should eventually remove this class, and instantiate web socket connection normally (see Binance for example) class AltmarketsWebsocket(RequestId): _logger: Optional[HummingbotLogger] = None @classmethod def logger(cls) -> HummingbotLogger: if cls._logger is None: cls._logger = logging.getLogger(__name__) return cls._logger def __init__(self, auth: Optional[AltmarketsAuth] = None, throttler: Optional[AsyncThrottler] = None): self._auth: Optional[AltmarketsAuth] = auth self._isPrivate = True if self._auth is not None else False self._WS_URL = Constants.WS_PRIVATE_URL if self._isPrivate else Constants.WS_PUBLIC_URL self._client: Optional[websockets.WebSocketClientProtocol] = None self._is_subscribed = False self._throttler = throttler or AsyncThrottler(Constants.RATE_LIMITS) @property def is_connected(self): return self._client.open if self._client is not None else False @property def is_subscribed(self): return self._is_subscribed # connect to exchange async def connect(self): extra_headers = self._auth.get_headers() if self._isPrivate else {"User-Agent": Constants.USER_AGENT} self._client = await websockets.connect(self._WS_URL, extra_headers=extra_headers) return self._client # disconnect from exchange async def disconnect(self): if self._client is None: return await self._client.close() # receive & parse messages async def _messages(self) -> AsyncIterable[Any]: try: while True: try: raw_msg_str: str = await asyncio.wait_for(self._client.recv(), timeout=Constants.MESSAGE_TIMEOUT) try: msg = json.loads(raw_msg_str) if "ping" in msg: payload = {"op": "pong", "timestamp": str(msg["ping"])} safe_ensure_future(self._client.send(json.dumps(payload))) yield None elif "success" in msg: ws_method: str = msg.get('success', {}).get('message') if ws_method in ['subscribed', 'unsubscribed']: if ws_method == 'subscribed' and len(msg['success']['streams']) > 0: self._is_subscribed = True yield None elif ws_method == 'unsubscribed': self._is_subscribed = False yield None else: yield msg except ValueError: continue except asyncio.TimeoutError: await asyncio.wait_for(self._client.ping(), timeout=Constants.PING_TIMEOUT) except asyncio.TimeoutError: self.logger().warning("WebSocket ping timed out. Going to reconnect...") return except ConnectionClosed: return finally: await self.disconnect() # emit messages async def METHOD_NAME(self, method: str, data: Optional[Dict[str, Any]] = {}, no_id: bool = False) -> int: async with self._throttler.execute_task(method): id = self.generate_request_id() payload = { "id": id, "event": method, } await self._client.send(json.dumps({**payload, **data})) return id # request via websocket async def request(self, method: str, data: Optional[Dict[str, Any]] = {}) -> int: return await self.METHOD_NAME(method, data) # subscribe to a method async def subscribe(self, streams: Optional[Dict[str, List]] = {}) -> int: return await self.request(Constants.WS_EVENT_SUBSCRIBE, {"streams": streams}) # unsubscribe to a method async def unsubscribe(self, streams: Optional[Dict[str, List]] = {}) -> int: return await self.request(Constants.WS_EVENT_UNSUBSCRIBE, {"streams": streams}) # listen to messages by method async def on_message(self) -> AsyncIterable[Any]: async for msg in self._messages(): if msg is None: yield None yield msg
null
474
## @file # Parser a Inf file and Get specify section data. # # Copyright (c) 2007 - 2018, Intel Corporation. All rights reserved.<BR> # SPDX-License-Identifier: BSD-2-Clause-Patent # ## Import Modules # import Common.EdkLogger as EdkLogger from Common.BuildToolError import * from Common.DataType import * class InfSectionParser(): def __init__(self, FilePath): self._FilePath = FilePath self._FileSectionDataList = [] self._ParserInf() def _ParserInf(self): FileLinesList = [] UserExtFind = False FindEnd = True FileLastLine = False SectionLine = '' SectionData = [] try: with open(self._FilePath, "r") as File: FileLinesList = File.readlines() except BaseException: EdkLogger.error("build", AUTOGEN_ERROR, 'File %s is opened failed.' % self._FilePath) for Index in range(0, len(FileLinesList)): line = str(FileLinesList[Index]).strip() if Index + 1 == len(FileLinesList): FileLastLine = True NextLine = '' else: NextLine = str(FileLinesList[Index + 1]).strip() if UserExtFind and FindEnd == False: if line: SectionData.append(line) if line.startswith(TAB_SECTION_START) and line.endswith(TAB_SECTION_END): SectionLine = line UserExtFind = True FindEnd = False if (NextLine != '' and NextLine[0] == TAB_SECTION_START and \ NextLine[-1] == TAB_SECTION_END) or FileLastLine: UserExtFind = False FindEnd = True self._FileSectionDataList.append({SectionLine: SectionData[:]}) del SectionData[:] SectionLine = '' # Get user extension TianoCore data # # @return: a list include some dictionary that key is section and value is a list contain all data. def METHOD_NAME(self): UserExtensionTianoCore = [] if not self._FileSectionDataList: return UserExtensionTianoCore for SectionDataDict in self._FileSectionDataList: for key in SectionDataDict: if key.lower().startswith("[userextensions") and key.lower().find('.tianocore.') > -1: SectionLine = key.lstrip(TAB_SECTION_START).rstrip(TAB_SECTION_END) SubSectionList = [SectionLine] if str(SectionLine).find(TAB_COMMA_SPLIT) > -1: SubSectionList = str(SectionLine).split(TAB_COMMA_SPLIT) for SubSection in SubSectionList: if SubSection.lower().find('.tianocore.') > -1: UserExtensionTianoCore.append({SubSection: SectionDataDict[key]}) return UserExtensionTianoCore # Get depex expression # # @return: a list include some dictionary that key is section and value is a list contain all data. def GetDepexExpresionList(self): DepexExpressionList = [] if not self._FileSectionDataList: return DepexExpressionList for SectionDataDict in self._FileSectionDataList: for key in SectionDataDict: if key.lower() == "[depex]" or key.lower().startswith("[depex."): SectionLine = key.lstrip(TAB_SECTION_START).rstrip(TAB_SECTION_END) SubSectionList = [SectionLine] if str(SectionLine).find(TAB_COMMA_SPLIT) > -1: SubSectionList = str(SectionLine).split(TAB_COMMA_SPLIT) for SubSection in SubSectionList: SectionList = SubSection.split(TAB_SPLIT) SubKey = () if len(SectionList) == 1: SubKey = (TAB_ARCH_COMMON, TAB_ARCH_COMMON) elif len(SectionList) == 2: SubKey = (SectionList[1], TAB_ARCH_COMMON) elif len(SectionList) == 3: SubKey = (SectionList[1], SectionList[2]) else: EdkLogger.error("build", AUTOGEN_ERROR, 'Section %s is invalid.' % key) DepexExpressionList.append({SubKey: SectionDataDict[key]}) return DepexExpressionList
null
475
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkmse.endpoint import endpoint_data import json class AddGatewayRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'mse', '2019-05-31', 'AddGateway','mse') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_InternetSlbSpec(self): # String return self.get_query_params().get('InternetSlbSpec') def set_InternetSlbSpec(self, InternetSlbSpec): # String self.add_query_param('InternetSlbSpec', InternetSlbSpec) def get_EnableXtrace(self): # Boolean return self.get_query_params().get('EnableXtrace') def set_EnableXtrace(self, EnableXtrace): # Boolean self.add_query_param('EnableXtrace', EnableXtrace) def get_Replica(self): # Integer return self.get_query_params().get('Replica') def set_Replica(self, Replica): # Integer self.add_query_param('Replica', Replica) def get_EnableHardwareAcceleration(self): # Boolean return self.get_query_params().get('EnableHardwareAcceleration') def set_EnableHardwareAcceleration(self, EnableHardwareAcceleration): # Boolean self.add_query_param('EnableHardwareAcceleration', EnableHardwareAcceleration) def get_EnableSls(self): # Boolean return self.get_query_params().get('EnableSls') def set_EnableSls(self, EnableSls): # Boolean self.add_query_param('EnableSls', EnableSls) def get_Spec(self): # String return self.get_query_params().get('Spec') def set_Spec(self, Spec): # String self.add_query_param('Spec', Spec) def get_ResourceGroupId(self): # String return self.get_query_params().get('ResourceGroupId') def set_ResourceGroupId(self, ResourceGroupId): # String self.add_query_param('ResourceGroupId', ResourceGroupId) def get_RequestPars(self): # String return self.get_query_params().get('RequestPars') def set_RequestPars(self, RequestPars): # String self.add_query_param('RequestPars', RequestPars) def get_EnterpriseSecurityGroup(self): # Boolean return self.get_query_params().get('EnterpriseSecurityGroup') def set_EnterpriseSecurityGroup(self, EnterpriseSecurityGroup): # Boolean self.add_query_param('EnterpriseSecurityGroup', EnterpriseSecurityGroup) def get_Tags(self): # RepeatList return self.get_query_params().get('Tag') def set_Tags(self, Tag): # RepeatList for depth1 in range(len(Tag)): if Tag[depth1].get('Value') is not None: self.add_query_param('Tag.' + str(depth1 + 1) + '.Value', Tag[depth1].get('Value')) if Tag[depth1].get('Key') is not None: self.add_query_param('Tag.' + str(depth1 + 1) + '.Key', Tag[depth1].get('Key')) def METHOD_NAME(self): # String return self.get_query_params().get('VSwitchId') def set_VSwitchId(self, VSwitchId): # String self.add_query_param('VSwitchId', VSwitchId) def get_SlbSpec(self): # String return self.get_query_params().get('SlbSpec') def set_SlbSpec(self, SlbSpec): # String self.add_query_param('SlbSpec', SlbSpec) def get_Name(self): # String return self.get_query_params().get('Name') def set_Name(self, Name): # String self.add_query_param('Name', Name) def get_Region(self): # String return self.get_query_params().get('Region') def set_Region(self, Region): # String self.add_query_param('Region', Region) def get_ZoneInfo(self): # Array return self.get_query_params().get('ZoneInfo') def set_ZoneInfo(self, ZoneInfo): # Array self.add_query_param("ZoneInfo", json.dumps(ZoneInfo)) def get_XtraceRatio(self): # String return self.get_query_params().get('XtraceRatio') def set_XtraceRatio(self, XtraceRatio): # String self.add_query_param('XtraceRatio', XtraceRatio) def get_VSwitchId2(self): # String return self.get_query_params().get('VSwitchId2') def set_VSwitchId2(self, VSwitchId2): # String self.add_query_param('VSwitchId2', VSwitchId2) def get_Vpc(self): # String return self.get_query_params().get('Vpc') def set_Vpc(self, Vpc): # String self.add_query_param('Vpc', Vpc) def get_AcceptLanguage(self): # String return self.get_query_params().get('AcceptLanguage') def set_AcceptLanguage(self, AcceptLanguage): # String self.add_query_param('AcceptLanguage', AcceptLanguage) def get_ChargeType(self): # String return self.get_query_params().get('ChargeType') def set_ChargeType(self, ChargeType): # String self.add_query_param('ChargeType', ChargeType)
null
476
from shlex import quote from typing import Iterable from pcs.cli.common.output import ( INDENT_STEP, bool_to_cli_value, pairs_to_cmd, ) from pcs.cli.reports.output import warn from pcs.common.pacemaker.constraint import ( CibConstraintOrderAttributesDto, CibConstraintOrderDto, CibConstraintOrderSetDto, ) from pcs.common.str_tools import ( format_optional, indent, pairs_to_text, ) from . import set as _set def METHOD_NAME( attributes_dto: CibConstraintOrderAttributesDto, ) -> list[tuple[str, str]]: pairs = [] if attributes_dto.symmetrical is not None: pairs.append( ("symmetrical", bool_to_cli_value(attributes_dto.symmetrical)) ) if attributes_dto.require_all is not None: pairs.append( ("require-all", bool_to_cli_value(attributes_dto.require_all)) ) if attributes_dto.score: pairs.append(("score", attributes_dto.score)) if attributes_dto.kind: pairs.append(("kind", attributes_dto.kind)) return pairs def _attributes_to_text( attributes_dto: CibConstraintOrderAttributesDto, ) -> list[str]: return pairs_to_text(METHOD_NAME(attributes_dto)) def plain_constraint_to_text( constraint_dto: CibConstraintOrderDto, with_id: bool, ) -> list[str]: result = [ "{first_action}resource '{first_resource}' then {then_action}resource '{then_resource}'".format( first_action=format_optional(constraint_dto.first_action), first_resource=constraint_dto.first_resource_id, then_action=format_optional(constraint_dto.then_action), then_resource=constraint_dto.then_resource_id, ) ] if with_id: result[0] += f" (id: {constraint_dto.attributes.constraint_id})" result.extend( indent( _attributes_to_text(constraint_dto.attributes), indent_step=INDENT_STEP, ) ) return result def set_constraint_to_text( constraint_dto: CibConstraintOrderSetDto, with_id: bool, ) -> list[str]: return _set.set_constraint_to_text( constraint_dto.attributes.constraint_id, _attributes_to_text(constraint_dto.attributes), constraint_dto.resource_sets, with_id, ) def constraints_to_text( plain_dtos: Iterable[CibConstraintOrderDto], set_dtos: Iterable[CibConstraintOrderSetDto], with_id: bool, ) -> list[str]: result = [] if plain_dtos: result.append("Order Constraints:") for constraint_dto in plain_dtos: result.extend( indent( plain_constraint_to_text(constraint_dto, with_id), indent_step=INDENT_STEP, ) ) if set_dtos: result.append("Order Set Constraints:") for set_constraint_dto in set_dtos: result.extend( indent( set_constraint_to_text(set_constraint_dto, with_id), indent_step=INDENT_STEP, ) ) return result def _attributes_to_cmd_pairs( attributes_dto: CibConstraintOrderAttributesDto, ) -> list[tuple[str, str]]: return [("id", attributes_dto.constraint_id)] + METHOD_NAME( attributes_dto ) def plain_constraint_to_cmd( constraint_dto: CibConstraintOrderDto, ) -> list[str]: if ( constraint_dto.first_resource_instance is not None or constraint_dto.then_resource_instance is not None ): warn( "Resource instance(s) detected in constraint " f"'{constraint_dto.attributes.constraint_id}' but not supported by " "this command." " Command for creating the constraint is omitted." ) return [] result = [ "pcs -- constraint order {first_action}{first_resource_id} then {then_action}{then_resource_id}".format( first_action=format_optional(constraint_dto.first_action), first_resource_id=quote(constraint_dto.first_resource_id), then_action=format_optional(constraint_dto.then_action), then_resource_id=quote(constraint_dto.then_resource_id), ) ] params = pairs_to_cmd(_attributes_to_cmd_pairs(constraint_dto.attributes)) if params: result.extend(indent([params], indent_step=INDENT_STEP)) return result def set_constraint_to_cmd( constraint_dto: CibConstraintOrderSetDto, ) -> list[str]: result = ["pcs -- constraint order"] for resource_set in constraint_dto.resource_sets: set_cmd_part = _set.resource_set_to_cmd(resource_set) if not set_cmd_part: return [] result.extend(indent(set_cmd_part, indent_step=INDENT_STEP)) pairs = [] for pair in _attributes_to_cmd_pairs(constraint_dto.attributes): # this list is based on pcs.lib.cib.constraint.order.ATTRIB if pair[0] not in ("symmetrical", "kind", "id"): warn( f"Option '{pair[0]}' detected in constraint " f"'{constraint_dto.attributes.constraint_id}' but not " "supported by this command." " Command for creating the constraint is omitted." ) return [] pairs.append(pair) if pairs: result.extend( indent( [f"setoptions {pairs_to_cmd(pairs)}"], indent_step=INDENT_STEP ) ) return result
null
477
import pytest from unittest.mock import ( Mock, ) from web3.providers.eth_tester.middleware import ( async_default_transaction_fields_middleware, default_transaction_fields_middleware, ) from web3.types import ( BlockData, ) SAMPLE_ADDRESS_LIST = [ "0x0000000000000000000000000000000000000001", "0x0000000000000000000000000000000000000002", "0x0000000000000000000000000000000000000003", ] SAMPLE_ADDRESS = "0x0000000000000000000000000000000000000004" @pytest.mark.parametrize("block_number", {0, "0x0", "earliest"}) def test_get_transaction_count_formatters(w3, block_number): tx_counts = w3.eth.get_transaction_count(w3.eth.accounts[-1], block_number) assert tx_counts == 0 def METHOD_NAME(w3): all_block_keys = BlockData.__annotations__.keys() all_non_poa_block_keys = set( [k for k in all_block_keys if k != "proofOfAuthorityData"] ) latest_block = w3.eth.get_block("latest") latest_block_keys = set(latest_block.keys()) assert all_non_poa_block_keys == latest_block_keys @pytest.mark.parametrize( "w3_accounts, w3_coinbase, method, from_field_added, from_field_value", ( (SAMPLE_ADDRESS_LIST, SAMPLE_ADDRESS, "eth_call", True, SAMPLE_ADDRESS), ( SAMPLE_ADDRESS_LIST, SAMPLE_ADDRESS, "eth_estimateGas", True, SAMPLE_ADDRESS, ), ( SAMPLE_ADDRESS_LIST, SAMPLE_ADDRESS, "eth_sendTransaction", True, SAMPLE_ADDRESS, ), (SAMPLE_ADDRESS_LIST, SAMPLE_ADDRESS, "eth_gasPrice", False, None), (SAMPLE_ADDRESS_LIST, SAMPLE_ADDRESS, "eth_blockNumber", False, None), (SAMPLE_ADDRESS_LIST, SAMPLE_ADDRESS, "meow", False, None), (SAMPLE_ADDRESS_LIST, None, "eth_call", True, SAMPLE_ADDRESS_LIST[0]), (SAMPLE_ADDRESS_LIST, None, "eth_estimateGas", True, SAMPLE_ADDRESS_LIST[0]), ( SAMPLE_ADDRESS_LIST, None, "eth_sendTransaction", True, SAMPLE_ADDRESS_LIST[0], ), (SAMPLE_ADDRESS_LIST, None, "eth_gasPrice", False, None), (SAMPLE_ADDRESS_LIST, None, "eth_blockNumber", False, None), (SAMPLE_ADDRESS_LIST, None, "meow", False, None), (None, SAMPLE_ADDRESS, "eth_call", True, SAMPLE_ADDRESS), (None, SAMPLE_ADDRESS, "eth_estimateGas", True, SAMPLE_ADDRESS), (None, SAMPLE_ADDRESS, "eth_sendTransaction", True, SAMPLE_ADDRESS), (None, SAMPLE_ADDRESS, "eth_gasPrice", False, SAMPLE_ADDRESS), (None, SAMPLE_ADDRESS, "eth_blockNumber", False, SAMPLE_ADDRESS), (None, SAMPLE_ADDRESS, "meow", False, SAMPLE_ADDRESS), (None, None, "eth_call", True, None), (None, None, "eth_estimateGas", True, None), (None, None, "eth_sendTransaction", True, None), (None, None, "eth_gasPrice", False, None), (None, None, "eth_blockNumber", False, None), (None, None, "meow", False, None), ), ) def test_default_transaction_fields_middleware( w3_accounts, w3_coinbase, method, from_field_added, from_field_value ): def mock_request(_method, params): return params mock_w3 = Mock() mock_w3.eth.accounts = w3_accounts mock_w3.eth.coinbase = w3_coinbase middleware = default_transaction_fields_middleware(mock_request, mock_w3) base_params = {"chainId": 5} filled_transaction = middleware(method, [base_params]) filled_params = filled_transaction[0] assert ("from" in filled_params.keys()) == from_field_added if "from" in filled_params.keys(): assert filled_params["from"] == from_field_value filled_transaction[0].pop("from", None) assert filled_transaction[0] == base_params # -- async -- # @pytest.mark.parametrize( "w3_accounts, w3_coinbase, method, from_field_added, from_field_value", ( (SAMPLE_ADDRESS_LIST, SAMPLE_ADDRESS, "eth_call", True, SAMPLE_ADDRESS), ( SAMPLE_ADDRESS_LIST, SAMPLE_ADDRESS, "eth_estimateGas", True, SAMPLE_ADDRESS, ), ( SAMPLE_ADDRESS_LIST, SAMPLE_ADDRESS, "eth_sendTransaction", True, SAMPLE_ADDRESS, ), (SAMPLE_ADDRESS_LIST, SAMPLE_ADDRESS, "eth_gasPrice", False, None), (SAMPLE_ADDRESS_LIST, SAMPLE_ADDRESS, "eth_blockNumber", False, None), (SAMPLE_ADDRESS_LIST, SAMPLE_ADDRESS, "meow", False, None), (SAMPLE_ADDRESS_LIST, None, "eth_call", True, SAMPLE_ADDRESS_LIST[0]), (SAMPLE_ADDRESS_LIST, None, "eth_estimateGas", True, SAMPLE_ADDRESS_LIST[0]), ( SAMPLE_ADDRESS_LIST, None, "eth_sendTransaction", True, SAMPLE_ADDRESS_LIST[0], ), (SAMPLE_ADDRESS_LIST, None, "eth_gasPrice", False, None), (SAMPLE_ADDRESS_LIST, None, "eth_blockNumber", False, None), (SAMPLE_ADDRESS_LIST, None, "meow", False, None), (None, SAMPLE_ADDRESS, "eth_call", True, SAMPLE_ADDRESS), (None, SAMPLE_ADDRESS, "eth_estimateGas", True, SAMPLE_ADDRESS), (None, SAMPLE_ADDRESS, "eth_sendTransaction", True, SAMPLE_ADDRESS), (None, SAMPLE_ADDRESS, "eth_gasPrice", False, SAMPLE_ADDRESS), (None, SAMPLE_ADDRESS, "eth_blockNumber", False, SAMPLE_ADDRESS), (None, SAMPLE_ADDRESS, "meow", False, SAMPLE_ADDRESS), (None, None, "eth_call", True, None), (None, None, "eth_estimateGas", True, None), (None, None, "eth_sendTransaction", True, None), (None, None, "eth_gasPrice", False, None), (None, None, "eth_blockNumber", False, None), (None, None, "meow", False, None), ), ) @pytest.mark.asyncio async def test_async_default_transaction_fields_middleware( w3_accounts, w3_coinbase, method, from_field_added, from_field_value, ): async def mock_request(_method, params): return params async def mock_async_accounts(): return w3_accounts async def mock_async_coinbase(): return w3_coinbase mock_w3 = Mock() mock_w3.eth.accounts = mock_async_accounts() mock_w3.eth.coinbase = mock_async_coinbase() middleware = await async_default_transaction_fields_middleware( mock_request, mock_w3 ) base_params = {"chainId": 5} filled_transaction = await middleware(method, [base_params]) filled_params = filled_transaction[0] assert ("from" in filled_params.keys()) == from_field_added if "from" in filled_params.keys(): assert filled_params["from"] == from_field_value filled_transaction[0].pop("from", None) assert filled_transaction[0] == base_params # clean up mock_w3.eth.accounts.close() mock_w3.eth.coinbase.close()
null
478
import pytest from web3.exceptions import ( Web3ValidationError, ) def test_contract_estimate_gas(w3, math_contract, estimate_gas, transact): gas_estimate = estimate_gas( contract=math_contract, contract_function="incrementCounter" ) txn_hash = transact(contract=math_contract, contract_function="incrementCounter") txn_receipt = w3.eth.wait_for_transaction_receipt(txn_hash) gas_used = txn_receipt.get("gasUsed") assert abs(gas_estimate - gas_used) < 21000 def test_contract_fallback_estimate_gas(w3, fallback_function_contract): gas_estimate = fallback_function_contract.fallback.estimate_gas() txn_hash = fallback_function_contract.fallback.transact() txn_receipt = w3.eth.wait_for_transaction_receipt(txn_hash) gas_used = txn_receipt.get("gasUsed") assert abs(gas_estimate - gas_used) < 21000 def test_contract_estimate_gas_with_arguments( w3, math_contract, estimate_gas, transact ): gas_estimate = estimate_gas( contract=math_contract, contract_function="add", func_args=[5, 6] ) txn_hash = transact( contract=math_contract, contract_function="add", func_args=[5, 6] ) txn_receipt = w3.eth.wait_for_transaction_receipt(txn_hash) gas_used = txn_receipt.get("gasUsed") assert abs(gas_estimate - gas_used) < 21000 def test_estimate_gas_not_sending_ether_to_nonpayable_function( w3, payable_tester_contract, estimate_gas, transact ): gas_estimate = estimate_gas( contract=payable_tester_contract, contract_function="doNoValueCall" ) txn_hash = transact( contract=payable_tester_contract, contract_function="doNoValueCall" ) txn_receipt = w3.eth.wait_for_transaction_receipt(txn_hash) gas_used = txn_receipt.get("gasUsed") assert abs(gas_estimate - gas_used) < 21000 def test_estimate_gas_sending_ether_to_nonpayable_function( w3, payable_tester_contract, estimate_gas ): with pytest.raises(Web3ValidationError): estimate_gas( contract=payable_tester_contract, contract_function="doNoValueCall", tx_params={"value": 1}, ) def test_estimate_gas_accepts_latest_block(w3, math_contract, transact): gas_estimate = math_contract.functions.counter().estimate_gas( block_identifier="latest" ) txn_hash = transact(contract=math_contract, contract_function="incrementCounter") txn_receipt = w3.eth.wait_for_transaction_receipt(txn_hash) gas_used = txn_receipt.get("gasUsed") assert abs(gas_estimate - gas_used) < 21000 def test_estimate_gas_block_identifier_unique_estimates(w3, math_contract, transact): txn_hash = transact(contract=math_contract, contract_function="incrementCounter") w3.eth.wait_for_transaction_receipt(txn_hash) latest_gas_estimate = math_contract.functions.counter().estimate_gas( block_identifier="latest" ) earliest_gas_estimate = math_contract.functions.counter().estimate_gas( block_identifier="earliest" ) assert latest_gas_estimate != earliest_gas_estimate @pytest.mark.asyncio async def test_async_contract_estimate_gas( async_w3, async_math_contract, async_estimate_gas, async_transact ): gas_estimate = await async_estimate_gas( contract=async_math_contract, contract_function="incrementCounter" ) txn_hash = await async_transact( contract=async_math_contract, contract_function="incrementCounter" ) txn_receipt = await async_w3.eth.wait_for_transaction_receipt(txn_hash) gas_used = txn_receipt.get("gasUsed") assert abs(gas_estimate - gas_used) < 21000 @pytest.mark.asyncio async def METHOD_NAME( async_w3, async_fallback_function_contract ): gas_estimate = await async_fallback_function_contract.fallback.estimate_gas() txn_hash = await async_fallback_function_contract.fallback.transact() txn_receipt = await async_w3.eth.wait_for_transaction_receipt(txn_hash) gas_used = txn_receipt.get("gasUsed") assert abs(gas_estimate - gas_used) < 21000 @pytest.mark.asyncio async def test_async_contract_estimate_gas_with_arguments( async_w3, async_math_contract, async_estimate_gas, async_transact ): gas_estimate = await async_estimate_gas( contract=async_math_contract, contract_function="add", func_args=[5, 6] ) txn_hash = await async_transact( contract=async_math_contract, contract_function="add", func_args=[5, 6] ) txn_receipt = await async_w3.eth.wait_for_transaction_receipt(txn_hash) gas_used = txn_receipt.get("gasUsed") assert abs(gas_estimate - gas_used) < 21000 @pytest.mark.asyncio async def test_async_estimate_gas_not_sending_ether_to_nonpayable_function( async_w3, async_payable_tester_contract, async_estimate_gas, async_transact ): gas_estimate = await async_estimate_gas( contract=async_payable_tester_contract, contract_function="doNoValueCall" ) txn_hash = await async_transact( contract=async_payable_tester_contract, contract_function="doNoValueCall" ) txn_receipt = await async_w3.eth.wait_for_transaction_receipt(txn_hash) gas_used = txn_receipt.get("gasUsed") assert abs(gas_estimate - gas_used) < 21000 @pytest.mark.asyncio async def test_async_estimate_gas_sending_ether_to_nonpayable_function( async_w3, async_payable_tester_contract, async_estimate_gas ): with pytest.raises(Web3ValidationError): await async_estimate_gas( contract=async_payable_tester_contract, contract_function="doNoValueCall", tx_params={"value": 1}, ) @pytest.mark.asyncio async def test_async_estimate_gas_accepts_latest_block( async_w3, async_math_contract, async_transact ): gas_estimate = await async_math_contract.functions.counter().estimate_gas( block_identifier="latest" ) txn_hash = await async_transact( contract=async_math_contract, contract_function="incrementCounter" ) txn_receipt = await async_w3.eth.wait_for_transaction_receipt(txn_hash) gas_used = txn_receipt.get("gasUsed") assert abs(gas_estimate - gas_used) < 21000 @pytest.mark.asyncio async def test_async_estimate_gas_block_identifier_unique_estimates( async_w3, async_math_contract, async_transact ): txn_hash = await async_transact( contract=async_math_contract, contract_function="incrementCounter" ) await async_w3.eth.wait_for_transaction_receipt(txn_hash) latest_gas_estimate = await async_math_contract.functions.counter().estimate_gas( block_identifier="latest" ) earliest_gas_estimate = await async_math_contract.functions.counter().estimate_gas( block_identifier="earliest" ) assert latest_gas_estimate != earliest_gas_estimate
null
479
# Copyright (c) ZenML GmbH 2022. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing # permissions and limitations under the License. """GCP secrets manager flavor.""" import re from typing import TYPE_CHECKING, ClassVar, Optional, Type from zenml.integrations.gcp import GCP_SECRETS_MANAGER_FLAVOR from zenml.secrets_managers import ( BaseSecretsManagerConfig, BaseSecretsManagerFlavor, ) from zenml.secrets_managers.base_secrets_manager import SecretsManagerScope if TYPE_CHECKING: from zenml.integrations.gcp.secrets_manager import GCPSecretsManager def validate_gcp_secret_name_or_namespace(name: str) -> None: """Validate a secret name or namespace. A Google secret ID is a string with a maximum length of 255 characters and can contain uppercase and lowercase letters, numerals, and the hyphen (-) and underscore (_) characters. For scoped secrets, we have to limit the size of the name and namespace even further to allow space for both in the Google secret ID. Given that we also save secret names and namespaces as labels, we are also limited by the limitation that Google imposes on label values: max 63 characters and must only contain lowercase letters, numerals and the hyphen (-) and underscore (_) characters Args: name: the secret name or namespace Raises: ValueError: if the secret name or namespace is invalid """ if not re.fullmatch(r"[a-z0-9_\-]+", name): raise ValueError( f"Invalid secret name or namespace '{name}'. Must contain " f"only lowercase alphanumeric characters and the hyphen (-) and " f"underscore (_) characters." ) if name and len(name) > 63: raise ValueError( f"Invalid secret name or namespace '{name}'. The length is " f"limited to maximum 63 characters." ) class GCPSecretsManagerConfig(BaseSecretsManagerConfig): """Configuration for the GCP Secrets Manager. Attributes: project_id: This is necessary to access the correct GCP project. The project_id of your GCP project space that contains the Secret Manager. """ SUPPORTS_SCOPING: ClassVar[bool] = True project_id: str @classmethod def _validate_scope( cls, scope: SecretsManagerScope, namespace: Optional[str], ) -> None: """Validate the scope and namespace value. Args: scope: Scope value. namespace: Optional namespace value. """ if namespace: validate_gcp_secret_name_or_namespace(namespace) class GCPSecretsManagerFlavor(BaseSecretsManagerFlavor): """Class for the `GCPSecretsManagerFlavor`.""" @property def name(self) -> str: """Name of the flavor. Returns: The name of the flavor. """ return GCP_SECRETS_MANAGER_FLAVOR @property def docs_url(self) -> Optional[str]: """A url to point at docs explaining this flavor. Returns: A flavor docs url. """ return self.generate_default_docs_url() @property def sdk_docs_url(self) -> Optional[str]: """A url to point at SDK docs explaining this flavor. Returns: A flavor SDK docs url. """ return self.generate_default_sdk_docs_url() @property def METHOD_NAME(self) -> str: """A url to represent the flavor in the dashboard. Returns: The flavor logo. """ return "https://public-flavor-logos.s3.eu-central-1.amazonaws.com/secrets_managers/gcp.png" @property def config_class(self) -> Type[GCPSecretsManagerConfig]: """Returns GCPSecretsManagerConfig config class. Returns: The config class. """ return GCPSecretsManagerConfig @property def implementation_class(self) -> Type["GCPSecretsManager"]: """Implementation class for this flavor. Returns: The implementation class. """ from zenml.integrations.gcp.secrets_manager import GCPSecretsManager return GCPSecretsManager
null
480
# coding: utf-8 """ OpenAPI Petstore This spec is mainly for testing Petstore server and contains fake endpoints, models. Please do not use this for any other purpose. Special characters: \" \\ # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://github.com/openapi-json-schema-tools/openapi-json-schema-generator """ from __future__ import annotations from petstore_api.shared_imports.schema_imports import * # pyright: ignore [reportWildcardImportFromLibrary] AdditionalProperties: typing_extensions.TypeAlias = schemas.NotAnyTypeSchema from petstore_api.paths.fake.get.parameters.parameter_0 import schema as schema_2 from petstore_api.paths.fake.get.parameters.parameter_1 import schema Properties = typing.TypedDict( 'Properties', { "enum_header_string": typing.Type[schema.Schema], "enum_header_string_array": typing.Type[schema_2.Schema], } ) class HeaderParametersDict(schemas.immutabledict[str, schemas.OUTPUT_BASE_TYPES]): __required_keys__: typing.FrozenSet[str] = frozenset({ }) __optional_keys__: typing.FrozenSet[str] = frozenset({ "enum_header_string", "enum_header_string_array", }) def __new__( cls, *, enum_header_string: typing.Union[ typing.Literal[ "_abc", "-efg", "(xyz)" ], schemas.Unset ] = schemas.unset, enum_header_string_array: typing.Union[ schema_2.SchemaTupleInput, schema_2.SchemaTuple, schemas.Unset ] = schemas.unset, configuration_: typing.Optional[schema_configuration.SchemaConfiguration] = None, ): arg_: typing.Dict[str, typing.Any] = {} for key, val in ( ("enum_header_string", enum_header_string), ("enum_header_string_array", enum_header_string_array), ): if isinstance(val, schemas.Unset): continue arg_[key] = val used_arg_ = typing.cast(HeaderParametersDictInput, arg_) return HeaderParameters.METHOD_NAME(used_arg_, configuration=configuration_) @staticmethod def from_dict_( arg: typing.Union[ HeaderParametersDictInput, HeaderParametersDict ], configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ) -> HeaderParametersDict: return HeaderParameters.METHOD_NAME(arg, configuration=configuration) @property def enum_header_string(self) -> typing.Union[typing.Literal["_abc", "-efg", "(xyz)"], schemas.Unset]: val = self.get("enum_header_string", schemas.unset) if isinstance(val, schemas.Unset): return val return typing.cast( typing.Literal["_abc", "-efg", "(xyz)"], val ) @property def enum_header_string_array(self) -> typing.Union[schema_2.SchemaTuple, schemas.Unset]: val = self.get("enum_header_string_array", schemas.unset) if isinstance(val, schemas.Unset): return val return typing.cast( schema_2.SchemaTuple, val ) HeaderParametersDictInput = typing.TypedDict( 'HeaderParametersDictInput', { "enum_header_string": typing.Literal[ "_abc", "-efg", "(xyz)" ], "enum_header_string_array": typing.Union[ schema_2.SchemaTupleInput, schema_2.SchemaTuple ], }, total=False ) @dataclasses.dataclass(frozen=True) class HeaderParameters( schemas.Schema[HeaderParametersDict, tuple] ): types: typing.FrozenSet[typing.Type] = frozenset({schemas.immutabledict}) properties: Properties = dataclasses.field(default_factory=lambda: schemas.typed_dict_to_instance(Properties)) # type: ignore additional_properties: typing.Type[AdditionalProperties] = dataclasses.field(default_factory=lambda: AdditionalProperties) # type: ignore type_to_output_cls: typing.Mapping[ typing.Type, typing.Type ] = dataclasses.field( default_factory=lambda: { schemas.immutabledict: HeaderParametersDict } ) @classmethod def METHOD_NAME( cls, arg: typing.Union[ HeaderParametersDictInput, HeaderParametersDict, ], configuration: typing.Optional[schema_configuration.SchemaConfiguration] = None ) -> HeaderParametersDict: return super().validate_base( arg, configuration=configuration, )
null
481
#!/usr/bin/env python3 # Copyright (c) 2018-2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the deriveaddresses rpc call.""" from test_framework.test_framework import BitcoinTestFramework from test_framework.descriptors import descsum_create from test_framework.util import assert_equal, assert_raises_rpc_error class DeriveaddressesTest(BitcoinTestFramework): def METHOD_NAME(self): self.num_nodes = 1 def run_test(self): assert_raises_rpc_error(-5, "Missing checksum", self.nodes[0].deriveaddresses, "a") descriptor = "wpkh(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/0)#t6wfjs64" address = "ert1qjqmxmkpmxt80xz4y3746zgt0q3u3ferrfpgxn5" assert_equal(self.nodes[0].deriveaddresses(descriptor), [address]) descriptor = descriptor[:-9] assert_raises_rpc_error(-5, "Missing checksum", self.nodes[0].deriveaddresses, descriptor) descriptor_pubkey = "wpkh(tpubD6NzVbkrYhZ4WaWSyoBvQwbpLkojyoTZPRsgXELWz3Popb3qkjcJyJUGLnL4qHHoQvao8ESaAstxYSnhyswJ76uZPStJRJCTKvosUCJZL5B/1/1/0)#s9ga3alw" address = "ert1qjqmxmkpmxt80xz4y3746zgt0q3u3ferrfpgxn5" assert_equal(self.nodes[0].deriveaddresses(descriptor_pubkey), [address]) ranged_descriptor = "wpkh(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/*)#kft60nuy" assert_equal(self.nodes[0].deriveaddresses(ranged_descriptor, [1, 2]), ["ert1qhku5rq7jz8ulufe2y6fkcpnlvpsta7rqdpq5ny", "ert1qpgptk2gvshyl0s9lqshsmx932l9ccsv2zq7jrq"]) assert_equal(self.nodes[0].deriveaddresses(ranged_descriptor, 2), [address, "ert1qhku5rq7jz8ulufe2y6fkcpnlvpsta7rqdpq5ny", "ert1qpgptk2gvshyl0s9lqshsmx932l9ccsv2zq7jrq"]) assert_raises_rpc_error(-8, "Range should not be specified for an un-ranged descriptor", self.nodes[0].deriveaddresses, descsum_create("wpkh(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/0)"), [0, 2]) assert_raises_rpc_error(-8, "Range must be specified for a ranged descriptor", self.nodes[0].deriveaddresses, descsum_create("wpkh(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/*)")) assert_raises_rpc_error(-8, "End of range is too high", self.nodes[0].deriveaddresses, descsum_create("wpkh(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/*)"), 10000000000) assert_raises_rpc_error(-8, "Range is too large", self.nodes[0].deriveaddresses, descsum_create("wpkh(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/*)"), [1000000000, 2000000000]) assert_raises_rpc_error(-8, "Range specified as [begin,end] must not have begin after end", self.nodes[0].deriveaddresses, descsum_create("wpkh(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/*)"), [2, 0]) assert_raises_rpc_error(-8, "Range should be greater or equal than 0", self.nodes[0].deriveaddresses, descsum_create("wpkh(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/*)"), [-1, 0]) combo_descriptor = descsum_create("combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/0)") assert_equal(self.nodes[0].deriveaddresses(combo_descriptor), ["2dnaGtwYgBhXYQGTArxKKapi52Mkf3KTQhb", "2dnaGtwYgBhXYQGTArxKKapi52Mkf3KTQhb", address, "XY2Fo8bxL1EViXjWrZ5iZrb5thmfPvWJxw"]) hardened_without_privkey_descriptor = descsum_create("wpkh(tpubD6NzVbkrYhZ4WaWSyoBvQwbpLkojyoTZPRsgXELWz3Popb3qkjcJyJUGLnL4qHHoQvao8ESaAstxYSnhyswJ76uZPStJRJCTKvosUCJZL5B/1'/1/0)") assert_raises_rpc_error(-5, "Cannot derive script without private keys", self.nodes[0].deriveaddresses, hardened_without_privkey_descriptor) bare_multisig_descriptor = descsum_create("multi(1,tpubD6NzVbkrYhZ4WaWSyoBvQwbpLkojyoTZPRsgXELWz3Popb3qkjcJyJUGLnL4qHHoQvao8ESaAstxYSnhyswJ76uZPStJRJCTKvosUCJZL5B/1/1/0,tpubD6NzVbkrYhZ4WaWSyoBvQwbpLkojyoTZPRsgXELWz3Popb3qkjcJyJUGLnL4qHHoQvao8ESaAstxYSnhyswJ76uZPStJRJCTKvosUCJZL5B/1/1/1)") assert_raises_rpc_error(-5, "Descriptor does not have a corresponding address", self.nodes[0].deriveaddresses, bare_multisig_descriptor) if __name__ == '__main__': DeriveaddressesTest().main()
null
482
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkdas.endpoint import endpoint_data class CreateCloudBenchTasksRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'DAS', '2020-01-16', 'CreateCloudBenchTasks') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_ClientType(self): # String return self.get_query_params().get('ClientType') def set_ClientType(self, ClientType): # String self.add_query_param('ClientType', ClientType) def get_DstPort(self): # String return self.get_query_params().get('DstPort') def set_DstPort(self, DstPort): # String self.add_query_param('DstPort', DstPort) def get_Description(self): # String return self.get_query_params().get('Description') def set_Description(self, Description): # String self.add_query_param('Description', Description) def get_RequestStartTime(self): # String return self.get_query_params().get('RequestStartTime') def set_RequestStartTime(self, RequestStartTime): # String self.add_query_param('RequestStartTime', RequestStartTime) def get_DstConnectionString(self): # String return self.get_query_params().get('DstConnectionString') def set_DstConnectionString(self, DstConnectionString): # String self.add_query_param('DstConnectionString', DstConnectionString) def get_DstSuperPassword(self): # String return self.get_query_params().get('DstSuperPassword') def set_DstSuperPassword(self, DstSuperPassword): # String self.add_query_param('DstSuperPassword', DstSuperPassword) def get_DstSuperAccount(self): # String return self.get_query_params().get('DstSuperAccount') def set_DstSuperAccount(self, DstSuperAccount): # String self.add_query_param('DstSuperAccount', DstSuperAccount) def get_DstInstanceId(self): # String return self.get_query_params().get('DstInstanceId') def set_DstInstanceId(self, DstInstanceId): # String self.add_query_param('DstInstanceId', DstInstanceId) def get_Rate(self): # String return self.get_query_params().get('Rate') def set_Rate(self, Rate): # String self.add_query_param('Rate', Rate) def get_RequestDuration(self): # String return self.get_query_params().get('RequestDuration') def set_RequestDuration(self, RequestDuration): # String self.add_query_param('RequestDuration', RequestDuration) def get_DtsJobId(self): # String return self.get_query_params().get('DtsJobId') def set_DtsJobId(self, DtsJobId): # String self.add_query_param('DtsJobId', DtsJobId) def get_RequestEndTime(self): # String return self.get_query_params().get('RequestEndTime') def set_RequestEndTime(self, RequestEndTime): # String self.add_query_param('RequestEndTime', RequestEndTime) def get_Amount(self): # String return self.get_query_params().get('Amount') def set_Amount(self, Amount): # String self.add_query_param('Amount', Amount) def get_TaskType(self): # String return self.get_query_params().get('TaskType') def set_TaskType(self, TaskType): # String self.add_query_param('TaskType', TaskType) def get_EndState(self): # String return self.get_query_params().get('EndState') def METHOD_NAME(self, EndState): # String self.add_query_param('EndState', EndState) def get_BackupId(self): # String return self.get_query_params().get('BackupId') def set_BackupId(self, BackupId): # String self.add_query_param('BackupId', BackupId) def get_SrcSuperPassword(self): # String return self.get_query_params().get('SrcSuperPassword') def set_SrcSuperPassword(self, SrcSuperPassword): # String self.add_query_param('SrcSuperPassword', SrcSuperPassword) def get_BackupTime(self): # String return self.get_query_params().get('BackupTime') def set_BackupTime(self, BackupTime): # String self.add_query_param('BackupTime', BackupTime) def get_GatewayVpcIp(self): # String return self.get_query_params().get('GatewayVpcIp') def set_GatewayVpcIp(self, GatewayVpcIp): # String self.add_query_param('GatewayVpcIp', GatewayVpcIp) def get_WorkDir(self): # String return self.get_query_params().get('WorkDir') def set_WorkDir(self, WorkDir): # String self.add_query_param('WorkDir', WorkDir) def get_DtsJobClass(self): # String return self.get_query_params().get('DtsJobClass') def set_DtsJobClass(self, DtsJobClass): # String self.add_query_param('DtsJobClass', DtsJobClass) def get_SrcPublicIp(self): # String return self.get_query_params().get('SrcPublicIp') def set_SrcPublicIp(self, SrcPublicIp): # String self.add_query_param('SrcPublicIp', SrcPublicIp) def get_SrcInstanceId(self): # String return self.get_query_params().get('SrcInstanceId') def set_SrcInstanceId(self, SrcInstanceId): # String self.add_query_param('SrcInstanceId', SrcInstanceId) def get_DstType(self): # String return self.get_query_params().get('DstType') def set_DstType(self, DstType): # String self.add_query_param('DstType', DstType) def get_SrcSuperAccount(self): # String return self.get_query_params().get('SrcSuperAccount') def set_SrcSuperAccount(self, SrcSuperAccount): # String self.add_query_param('SrcSuperAccount', SrcSuperAccount) def get_GatewayVpcId(self): # String return self.get_query_params().get('GatewayVpcId') def set_GatewayVpcId(self, GatewayVpcId): # String self.add_query_param('GatewayVpcId', GatewayVpcId) def get_SmartPressureTime(self): # String return self.get_query_params().get('SmartPressureTime') def set_SmartPressureTime(self, SmartPressureTime): # String self.add_query_param('SmartPressureTime', SmartPressureTime)
null
483
# Copyright 2013 by Rackspace Hosting, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Miscellaneous deprecation utilities. This module provides decorators to mark functions and classes as deprecated. """ import functools from typing import Any from typing import Callable from typing import Optional import warnings __all__ = ( 'AttributeRemovedError', 'DeprecatedWarning', 'deprecated', 'deprecated_args', ) class AttributeRemovedError(AttributeError): """A deprecated attribute, class, or function has been subsequently removed.""" # NOTE(kgriffs): We don't want our deprecations to be ignored by default, # so create our own type. # # TODO(kgriffs): Revisit this decision if users complain. class DeprecatedWarning(UserWarning): pass def deprecated( instructions: str, is_property: bool = False, method_name: Optional[str] = None ) -> Callable[[Callable[..., Any]], Any]: """Flag a method as deprecated. This function returns a decorator which can be used to mark deprecated functions. Applying this decorator will result in a warning being emitted when the function is used. Args: instructions (str): Specific guidance for the developer, e.g.: 'Please migrate to add_proxy(...)'. is_property (bool): If the deprecated object is a property. It will omit the ``(...)`` from the generated documentation. method_name (str, optional): Set to override the name of the deprecated function or property in the generated documentation (default ``None``). This is useful when decorating an alias that carries the target's ``__name__``. """ def decorator(func: Callable[..., Any]) -> Callable[[Callable[..., Any]], Any]: object_name = 'property' if is_property else 'function' post_name = '' if is_property else '(...)' message = 'Call to deprecated {} {}{}. {}'.format( object_name, method_name or func.__name__, post_name, instructions ) @functools.wraps(func) def METHOD_NAME(*args: Any, **kwargs: Any) -> Callable[..., Any]: warnings.warn(message, category=DeprecatedWarning, stacklevel=2) return func(*args, **kwargs) return METHOD_NAME return decorator def deprecated_args( *, allowed_positional: int, is_method: bool = True ) -> Callable[..., Callable[..., Any]]: """Flag a method call with positional args as deprecated. Keyword Args: allowed_positional (int): Number of allowed positional arguments is_method (bool, optional): The decorated function is a method. Will add one to the number of allowed positional args to account for ``self``. Defaults to True. """ template = ( 'Calls to {{fn}}(...) with{arg_text} positional args are deprecated.' ' Please specify them as keyword arguments instead.' ) text = ' more than {}'.format(allowed_positional) if allowed_positional else '' warn_text = template.format(arg_text=text) if is_method: allowed_positional += 1 def deprecated_args(fn: Callable[..., Any]) -> Callable[..., Callable[..., Any]]: @functools.wraps(fn) def wraps(*args: Any, **kwargs: Any) -> Callable[..., Any]: if len(args) > allowed_positional: warnings.warn( warn_text.format(fn=fn.__qualname__), DeprecatedWarning, stacklevel=2, ) return fn(*args, **kwargs) return wraps return deprecated_args
null
484
import pytest from simulation.errors import NoNearbyArtefactsError from simulation.location import Location from simulation.utils import NearbyArtefactsList from simulation.world_map import ARTEFACT_TYPES, WorldMapCreator @pytest.fixture def METHOD_NAME(): return {"location": {"x": 0, "y": 0}, "backpack": [{"type": "key"}]} def _generate_cells(columns=3, rows=3): cells = [ { "location": {"x": x, "y": y}, "habitable": True, "avatar": None, "interactable": None, } for x in range(-columns // 2 + 1, 1 + columns // 2) for y in range(-rows // 2 + 1, 1 + rows // 2) ] return cells def assertGridSize(map, expected_rows, expected_columns=None): if expected_columns is None: expected_columns = expected_rows assert len(list(map.all_cells())) == expected_rows * expected_columns def assertLocationsEqual(actual_cells, expected_locations): actual_cells = list(actual_cells) actual = frozenset(cell.location for cell in actual_cells) assert actual == frozenset(expected_locations) assert len(actual_cells) == len(list(expected_locations)) def test_grid_size(): map = WorldMapCreator.generate_world_map_from_cells_data(_generate_cells(1, 3)) assertGridSize(map, 1, 3) def test_all_cells(): map = WorldMapCreator.generate_world_map_from_cells_data(_generate_cells()) assertLocationsEqual( map.all_cells(), [Location(x, y) for x in range(-1, 2) for y in range(-1, 2)], ) def test_score_cells(): cells = _generate_cells() cells[0]["interactable"] = {"type": "score"} cells[8]["interactable"] = {"type": "score"} map = WorldMapCreator.generate_world_map_from_cells_data(cells) assertLocationsEqual(map.score_cells(), (Location(-1, -1), Location(1, 1))) def test_interactable_cells(): cells = _generate_cells() cells[0]["interactable"] = {"type": "health"} cells[8]["interactable"] = {"type": "damage_boost"} map = WorldMapCreator.generate_world_map_from_cells_data(cells) assertLocationsEqual(map.interactable_cells(), (Location(-1, -1), Location(1, 1))) def test_artefact_cell(): cells = _generate_cells() cells[0]["interactable"] = {"type": ARTEFACT_TYPES[0]} map = WorldMapCreator.generate_world_map_from_cells_data(cells) assert map.get_cell(Location(-1, -1)).has_artefact() == True def test_location_is_visible(): map = WorldMapCreator.generate_world_map_from_cells_data(_generate_cells()) for x in (0, 1): for y in (0, 1): assert map.is_visible(Location(x, y)) == True def test_x_off_map_is_not_visible(): map = WorldMapCreator.generate_world_map_from_cells_data(_generate_cells()) for y in (0, 1): assert map.is_visible(Location(-2, y)) == False assert map.is_visible(Location(2, y)) == False def test_y_off_map_is_not_visible(): map = WorldMapCreator.generate_world_map_from_cells_data(_generate_cells()) for x in (0, 1): assert map.is_visible(Location(x, -2)) == False assert map.is_visible(Location(x, 2)) == False def test_get_valid_cell(): map = WorldMapCreator.generate_world_map_from_cells_data(_generate_cells()) for x in (0, 1): for y in (0, 1): location = Location(x, y) assert map.get_cell(location).location == location def test_get_x_off_map(): map = WorldMapCreator.generate_world_map_from_cells_data(_generate_cells()) for y in (0, 1): with pytest.raises(KeyError): map.get_cell(Location(-2, y)) with pytest.raises(KeyError): map.get_cell(Location(2, y)) def test_get_y_off_map(): map = WorldMapCreator.generate_world_map_from_cells_data(_generate_cells()) for x in (0, 1): with pytest.raises(KeyError): map.get_cell(Location(x, -2)) with pytest.raises(KeyError): map.get_cell(Location(x, 2)) def test_can_move_to(): map = WorldMapCreator.generate_world_map_from_cells_data(_generate_cells()) target = Location(1, 1) assert map.can_move_to(target) == True def test_cannot_move_to_cell_off_grid(): map = WorldMapCreator.generate_world_map_from_cells_data(_generate_cells()) target = Location(4, 1) assert map.can_move_to(target) == False def test_cannot_move_to_uninhabitable_cell(): cells = _generate_cells() cells[0]["obstacle"] = {"location": {"x": -1, "y": -1}} map = WorldMapCreator.generate_world_map_from_cells_data(cells) assert map.can_move_to(Location(-1, -1)) == False def test_cannot_move_to_inhabited_cell(METHOD_NAME): cells = _generate_cells() cells[1]["avatar"] = METHOD_NAME map = WorldMapCreator.generate_world_map_from_cells_data(cells) assert map.can_move_to(Location(-1, 0)) == False def test_scan_nearby(METHOD_NAME, capsys): cells = _generate_cells(5, 5) cells[0]["avatar"] = METHOD_NAME cells[2]["obstacle"] = {"location": {"x": 0, "y": 0}} cells[4]["interactable"] = {"type": ARTEFACT_TYPES[-1]} map = WorldMapCreator.generate_world_map_from_cells_data(cells) artefacts = map.scan_nearby(Location(-1, 0)) assert type(artefacts) == NearbyArtefactsList assert len(artefacts) == 1 with pytest.raises(IndexError): artefacts[1] # Test NoNearbyArtefactsError artefacts = map.scan_nearby(Location(5, 5), radius=1) assert type(artefacts) == NearbyArtefactsList assert len(artefacts) == 0 artefacts[0] captured = capsys.readouterr() # check the print statement matches assert captured.out == "There aren't any nearby artefacts, you need to move closer!\n"
null
485
from __future__ import print_function from threading import Thread from time import sleep from acq4.drivers.sensapex import UMP from acq4.util import Qt from .PressureControl import PressureControl, PressureControlWidget from ..util.debug import logExc class SensapexPressureControl(PressureControl): """Pressure control device driven by Sensapex analog/digital channels. User and Atmosphere are the same port for this device. Additional config options:: deviceId : int address : str group : int pressureChannel : int pollInterval : float """ sigMeasuredPressureChanged = Qt.Signal(object, object) # self, pressure def __init__(self, manager, config, name): self.devId = config.get('deviceId') address = config.pop('address', None) group = config.pop('group', None) self._pollInterval = config.get('pollInterval', 1) ump = UMP.get_ump(address=address, group=group) self.dev = ump.get_device(self.devId) config.setdefault("maximum", 7e4) config.setdefault("minimum", -7e4) PressureControl.__init__(self, manager, config, name) self.pressureChannel = config.pop('pressureChannel') self._valveValueBySource = {"regulator": 1, "atmosphere": 0, "user": 0} self.sources = tuple(self._valveValueBySource.keys()) self._busy = self.dev.is_busy() self._measurement = self.dev.measure_pressure(self.pressureChannel) # 'user' and 'atmosphere' are the same channel on this device, so # we remember what channel was requested rather than relying entirely on the valve state self._source = None self.source = self.METHOD_NAME() self.pressure = self.getPressure() self._pollThread = Thread(target=self._poll) self._pollThread.daemon = True self._pollThread.start() def _poll(self): while True: try: self.getBusyStatus() self.measurePressure() except Exception: logExc("Pressure poller thread hit an error; retrying") finally: sleep(self._pollInterval) def _setPressure(self, p): self.dev.set_pressure(self.pressureChannel, p / 1000.) def getPressure(self): return self.dev.get_pressure(self.pressureChannel) * 1000 def measurePressure(self): pressure = self.dev.measure_pressure(self.pressureChannel) if pressure != self._measurement: self._measurement = pressure self.sigMeasuredPressureChanged.emit(self, pressure) return pressure def METHOD_NAME(self): valveIsReg = self.dev.get_valve(self.pressureChannel) == 1 if valveIsReg: return "regulator" else: return self._source or "atmosphere" def _setSource(self, source): self._source = source self.dev.set_valve(self.pressureChannel, self._valveValueBySource[source]) def calibrate(self): self.dev.calibrate_pressure(self.pressureChannel) def getBusyStatus(self): busy = self.dev.is_busy() if busy != self._busy: self._busy = busy self.sigBusyChanged.emit(self, busy) return busy def deviceInterface(self, win): return SensapexPressureControlWidget(dev=self) class SensapexPressureControlWidget(Qt.QWidget): """Supports measured pressure display and calibration""" def __init__(self, dev): super(SensapexPressureControlWidget, self).__init__() self.dev = dev self.layout = Qt.QGridLayout() self.setLayout(self.layout) self.layout.setContentsMargins(0, 0, 0, 0) self.calibrateButton = Qt.QPushButton("Calibrate") self.calibrateButton.clicked.connect(self.dev.calibrate) self.layout.addWidget(self.calibrateButton, 0, 0) self.controlWidget = PressureControlWidget(self, dev) self.layout.addWidget(self.controlWidget, 0, 1) self.measurement = Qt.QLineEdit() self.measurement.setPlaceholderText("-") self.measurement.setReadOnly(True) self.measurement.setTextMargins(20, 4, 20, 4) self.layout.addWidget(self.measurement, 0, 2) self._measurementChanged(dev, dev.measurePressure()) dev.sigMeasuredPressureChanged.connect(self._measurementChanged) self._busyChanged(dev, dev.getBusyStatus()) dev.sigBusyChanged.connect(self._busyChanged) def _measurementChanged(self, dev, pressure): self.measurement.setText(f"{pressure:+.04f} kPa") def _busyChanged(self, dev, isBusy): self.calibrateButton.setEnabled(not isBusy)
null
486
# Support for a manual controlled stepper # # Copyright (C) 2019-2021 Kevin O'Connor <[email protected]> # # This file may be distributed under the terms of the GNU GPLv3 license. import stepper, chelper from . import force_move class ManualStepper: def __init__(self, config): self.printer = config.get_printer() if config.get('endstop_pin', None) is not None: self.can_home = True self.rail = stepper.PrinterRail( config, need_position_minmax=False, default_position_endstop=0.) self.steppers = self.rail.get_steppers() else: self.can_home = False self.rail = stepper.PrinterStepper(config) self.steppers = [self.rail] self.velocity = config.getfloat('velocity', 5., above=0.) self.accel = self.homing_accel = config.getfloat('accel', 0., minval=0.) self.next_cmd_time = 0. # Setup iterative solver ffi_main, ffi_lib = chelper.get_ffi() self.trapq = ffi_main.gc(ffi_lib.trapq_alloc(), ffi_lib.trapq_free) self.trapq_append = ffi_lib.trapq_append self.trapq_finalize_moves = ffi_lib.trapq_finalize_moves self.rail.setup_itersolve('cartesian_stepper_alloc', b'x') self.rail.set_trapq(self.trapq) # Register commands stepper_name = config.get_name().split()[1] gcode = self.printer.lookup_object('gcode') gcode.register_mux_command('MANUAL_STEPPER', "STEPPER", stepper_name, self.cmd_MANUAL_STEPPER, desc=self.cmd_MANUAL_STEPPER_help) def METHOD_NAME(self): toolhead = self.printer.lookup_object('toolhead') print_time = toolhead.get_last_move_time() if self.next_cmd_time > print_time: toolhead.dwell(self.next_cmd_time - print_time) else: self.next_cmd_time = print_time def do_enable(self, enable): self.METHOD_NAME() stepper_enable = self.printer.lookup_object('stepper_enable') if enable: for s in self.steppers: se = stepper_enable.lookup_enable(s.get_name()) se.motor_enable(self.next_cmd_time) else: for s in self.steppers: se = stepper_enable.lookup_enable(s.get_name()) se.motor_disable(self.next_cmd_time) self.METHOD_NAME() def do_set_position(self, setpos): self.rail.set_position([setpos, 0., 0.]) def do_move(self, movepos, speed, accel, sync=True): self.METHOD_NAME() cp = self.rail.get_commanded_position() dist = movepos - cp axis_r, accel_t, cruise_t, cruise_v = force_move.calc_move_time( dist, speed, accel) self.trapq_append(self.trapq, self.next_cmd_time, accel_t, cruise_t, accel_t, cp, 0., 0., axis_r, 0., 0., 0., cruise_v, accel) self.next_cmd_time = self.next_cmd_time + accel_t + cruise_t + accel_t self.rail.generate_steps(self.next_cmd_time) self.trapq_finalize_moves(self.trapq, self.next_cmd_time + 99999.9) toolhead = self.printer.lookup_object('toolhead') toolhead.note_kinematic_activity(self.next_cmd_time) if sync: self.METHOD_NAME() def do_homing_move(self, movepos, speed, accel, triggered, check_trigger): if not self.can_home: raise self.printer.command_error( "No endstop for this manual stepper") self.homing_accel = accel pos = [movepos, 0., 0., 0.] endstops = self.rail.get_endstops() phoming = self.printer.lookup_object('homing') phoming.manual_home(self, endstops, pos, speed, triggered, check_trigger) cmd_MANUAL_STEPPER_help = "Command a manually configured stepper" def cmd_MANUAL_STEPPER(self, gcmd): enable = gcmd.get_int('ENABLE', None) if enable is not None: self.do_enable(enable) setpos = gcmd.get_float('SET_POSITION', None) if setpos is not None: self.do_set_position(setpos) speed = gcmd.get_float('SPEED', self.velocity, above=0.) accel = gcmd.get_float('ACCEL', self.accel, minval=0.) homing_move = gcmd.get_int('STOP_ON_ENDSTOP', 0) if homing_move: movepos = gcmd.get_float('MOVE') self.do_homing_move(movepos, speed, accel, homing_move > 0, abs(homing_move) == 1) elif gcmd.get_float('MOVE', None) is not None: movepos = gcmd.get_float('MOVE') sync = gcmd.get_int('SYNC', 1) self.do_move(movepos, speed, accel, sync) elif gcmd.get_int('SYNC', 0): self.METHOD_NAME() # Toolhead wrappers to support homing def flush_step_generation(self): self.METHOD_NAME() def get_position(self): return [self.rail.get_commanded_position(), 0., 0., 0.] def set_position(self, newpos, homing_axes=()): self.do_set_position(newpos[0]) def get_last_move_time(self): self.METHOD_NAME() return self.next_cmd_time def dwell(self, delay): self.next_cmd_time += max(0., delay) def drip_move(self, newpos, speed, drip_completion): self.do_move(newpos[0], speed, self.homing_accel) def get_kinematics(self): return self def get_steppers(self): return self.steppers def calc_position(self, stepper_positions): return [stepper_positions[self.rail.get_name()], 0., 0.] def load_config_prefix(config): return ManualStepper(config)
null
487
''' Copyright (C) 2017-2023 Bryant Moscon - [email protected] Please see the LICENSE file for the terms and conditions associated with this software. ''' import asyncio from decimal import Decimal import logging from yapic import json from cryptofeed.defines import BALANCES, BUY, CANCELLED, CANCEL_ORDER, FILLED, FILL_OR_KILL, IMMEDIATE_OR_CANCEL, L2_BOOK, LIMIT, MAKER_OR_CANCEL, OPEN, ORDER_STATUS, PARTIAL, PLACE_ORDER, SELL, TICKER, TRADES, TRADE_HISTORY from cryptofeed.exchange import RestExchange from cryptofeed.types import OrderBook LOG = logging.getLogger('feedhandler') class GeminiRestMixin(RestExchange): api = "https://api.gemini.com" sandbox_api = "https://api.sandbox.gemini.com" rest_channels = ( TRADES, TICKER, L2_BOOK, ORDER_STATUS, CANCEL_ORDER, PLACE_ORDER, BALANCES, TRADE_HISTORY ) order_options = { LIMIT: 'exchange limit', FILL_OR_KILL: 'fill-or-kill', IMMEDIATE_OR_CANCEL: 'immediate-or-cancel', MAKER_OR_CANCEL: 'maker-or-cancel', } def _order_status(self, data): status = PARTIAL if data['is_cancelled']: status = CANCELLED elif Decimal(data['remaining_amount']) == 0: status = FILLED elif Decimal(data['executed_amount']) == 0: status = OPEN price = Decimal(data['price']) if Decimal(data['avg_execution_price']) == 0 else Decimal(data['avg_execution_price']) return { 'order_id': data['order_id'], 'symbol': self.exchange_symbol_to_std_symbol(data['symbol'].upper()), # Gemini uses lowercase symbols for REST and uppercase for WS 'side': BUY if data['side'] == 'buy' else SELL, 'order_type': LIMIT, 'price': price, 'total': Decimal(data['original_amount']), 'executed': Decimal(data['executed_amount']), 'pending': Decimal(data['remaining_amount']), 'timestamp': data['timestampms'] / 1000, 'order_status': status } async def _get(self, command: str, retry_count, retry_delay, params=''): api = self.api if not self.sandbox else self.sandbox_api resp = await self.http_conn.read(f"{api}{command}{params}", retry_count=retry_count, retry_delay=retry_delay) return json.loads(resp, parse_float=Decimal) async def _post(self, command: str, payload=None): headers = self.generate_token(command, payload=payload) headers['Content-Type'] = "text/plain" headers['Content-Length'] = "0" headers['Cache-Control'] = "no-cache" api = self.api if not self.sandbox else self.sandbox_api api = f"{api}{command}" resp = await self.http_conn.write(api, header=headers) return json.loads(resp, parse_float=Decimal) # Public Routes async def ticker(self, symbol: str, retry_count=1, retry_delay=60): sym = self.std_symbol_to_exchange_symbol(symbol) data = await self._get(f"/v1/pubticker/{sym}", retry_count, retry_delay) return {'symbol': symbol, 'feed': self.id, 'bid': Decimal(data['bid']), 'ask': Decimal(data['ask']) } async def l2_book(self, symbol: str, retry_count=1, retry_delay=60): ret = OrderBook(self.id, symbol) sym = self.std_symbol_to_exchange_symbol(symbol) data = await self._get(f"/v1/book/{sym}", retry_count, retry_delay) ret.book.bids = {Decimal(u['price']): Decimal(u['amount']) for u in data['bids']} ret.book.asks = {Decimal(u['price']): Decimal(u['amount']) for u in data['asks']} return ret async def trades(self, symbol: str, start=None, end=None, retry_count=1, retry_delay=60): sym = self.std_symbol_to_exchange_symbol(symbol) start, end = self._interval_normalize(start, end) params = "&limit_trades=500" if start: end_ts = int(end * 1000) params += f"&since={int(start * 1000)}" def METHOD_NAME(trade): return { 'feed': self.id, 'order_id': trade['tid'], 'symbol': self.exchange_symbol_to_std_symbol(sym), 'side': trade['type'], 'amount': Decimal(trade['amount']), 'price': Decimal(trade['price']), 'timestamp': trade['timestampms'] / 1000.0 } while True: data = reversed(await self._get(f"/v1/trades/{sym}?", retry_count, retry_delay, params=params)) if end: data = [METHOD_NAME(d) for d in data if d['timestampms'] <= end_ts] else: data = [METHOD_NAME(d) for d in data] yield data if start: params['since'] = int(data[-1]['timestamp'] * 1000) + 1 if len(data) < 500 or not start: break await asyncio.sleep(1 / self.request_limit) # Trading APIs async def place_order(self, symbol: str, side: str, order_type: str, amount: Decimal, price=None, client_order_id=None, options=None): if not price: raise ValueError('Gemini only supports limit orders, must specify price') ot = self.normalize_order_options(order_type) sym = self.std_symbol_to_exchange_symbol(symbol) parameters = { 'type': ot, 'symbol': sym, 'side': side, 'amount': str(amount), 'price': str(price), 'options': [self.normalize_order_options(o) for o in options] if options else [] } if client_order_id: parameters['client_order_id'] = client_order_id data = await self._post("/v1/order/new", parameters) return await self._order_status(data) async def cancel_order(self, order_id: str): data = await self._post("/v1/order/cancel", {'order_id': int(order_id)}) return await self._order_status(data) async def order_status(self, order_id: str): data = await self._post("/v1/order/status", {'order_id': int(order_id)}) return await self._order_status(data) async def orders(self): data = await self._post("/v1/orders") return [await self._order_status(d) for d in data] async def trade_history(self, symbol: str, start=None, end=None): sym = self.std_symbol_to_exchange_symbol(symbol) params = { 'symbol': sym, 'limit_trades': 500 } if start: params['timestamp'] = self._datetime_normalize(start) * 1000 data = await self._post("/v1/mytrades", params) return [ { 'price': Decimal(trade['price']), 'amount': Decimal(trade['amount']), 'timestamp': trade['timestampms'] / 1000, 'side': BUY if trade['type'].lower() == 'buy' else SELL, 'fee_currency': trade['fee_currency'], 'fee_amount': trade['fee_amount'], 'trade_id': trade['tid'], 'order_id': trade['order_id'] } for trade in data ] async def balances(self): data = await self._post("/v1/balances") return { entry['currency']: { 'total': Decimal(entry['amount']), 'available': Decimal(entry['available']) } for entry in data}
null
488
#!/usr/bin/env python # # Copyright 2008, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. r"""Tests the text output of Google C++ Mocking Framework. To update the golden file: gmock_output_test.py --build_dir=BUILD/DIR --gengolden where BUILD/DIR contains the built gmock_output_test_ file. gmock_output_test.py --gengolden gmock_output_test.py """ from io import open # pylint: disable=redefined-builtin, g-importing-member import os import re import sys from googlemock.test import gmock_test_utils # The flag for generating the golden file GENGOLDEN_FLAG = '--gengolden' PROGRAM_PATH = gmock_test_utils.GetTestExecutablePath('gmock_output_test_') COMMAND = [PROGRAM_PATH, '--gtest_stack_trace_depth=0', '--gtest_print_time=0'] GOLDEN_NAME = 'gmock_output_test_golden.txt' GOLDEN_PATH = os.path.join(gmock_test_utils.GetSourceDir(), GOLDEN_NAME) def ToUnixLineEnding(s): """Changes all Windows/Mac line endings in s to UNIX line endings.""" return s.replace('\r\n', '\n').replace('\r', '\n') def RemoveReportHeaderAndFooter(output): """Removes Google Test result report's header and footer from the output.""" output = re.sub(r'.*gtest_main.*\n', '', output) output = re.sub(r'\[.*\d+ tests.*\n', '', output) output = re.sub(r'\[.* test environment .*\n', '', output) output = re.sub(r'\[=+\] \d+ tests .* ran.*', '', output) output = re.sub(r'.* FAILED TESTS\n', '', output) return output def RemoveLocations(output): """Removes all file location info from a Google Test program's output. Args: output: the output of a Google Test program. Returns: output with all file location info (in the form of 'DIRECTORY/FILE_NAME:LINE_NUMBER: 'or 'DIRECTORY\\FILE_NAME(LINE_NUMBER): ') replaced by 'FILE:#: '. """ return re.sub(r'.*[/\\](.+)(\:\d+|\(\d+\))\:', 'FILE:#:', output) def METHOD_NAME(output): """Normalizes the error marker, which is different on Windows vs on Linux.""" return re.sub(r' error: ', ' Failure\n', output) def RemoveMemoryAddresses(output): """Removes memory addresses from the test output.""" return re.sub(r'@\w+', '@0x#', output) def RemoveTestNamesOfLeakedMocks(output): """Removes the test names of leaked mock objects from the test output.""" return re.sub(r'\(used in test .+\) ', '', output) def GetLeakyTests(output): """Returns a list of test names that leak mock objects.""" # findall() returns a list of all matches of the regex in output. # For example, if '(used in test FooTest.Bar)' is in output, the # list will contain 'FooTest.Bar'. return re.findall(r'\(used in test (.+)\)', output) def GetNormalizedOutputAndLeakyTests(output): """Normalizes the output of gmock_output_test_. Args: output: The test output. Returns: A tuple (the normalized test output, the list of test names that have leaked mocks). """ output = ToUnixLineEnding(output) output = RemoveReportHeaderAndFooter(output) output = METHOD_NAME(output) output = RemoveLocations(output) output = RemoveMemoryAddresses(output) return (RemoveTestNamesOfLeakedMocks(output), GetLeakyTests(output)) def GetShellCommandOutput(cmd): """Runs a command in a sub-process, and returns its STDOUT in a string.""" return gmock_test_utils.Subprocess(cmd, capture_stderr=False).output def GetNormalizedCommandOutputAndLeakyTests(cmd): """Runs a command and returns its normalized output and a list of leaky tests. Args: cmd: the shell command. """ # Disables exception pop-ups on Windows. os.environ['GTEST_CATCH_EXCEPTIONS'] = '1' return GetNormalizedOutputAndLeakyTests(GetShellCommandOutput(cmd)) class GMockOutputTest(gmock_test_utils.TestCase): def testOutput(self): (output, leaky_tests) = GetNormalizedCommandOutputAndLeakyTests(COMMAND) golden_file = open(GOLDEN_PATH, 'rb') golden = golden_file.read().decode('utf-8') golden_file.close() # The normalized output should match the golden file. self.assertEqual(golden, output) # The raw output should contain 2 leaked mock object errors for # test GMockOutputTest.CatchesLeakedMocks. self.assertEqual(['GMockOutputTest.CatchesLeakedMocks', 'GMockOutputTest.CatchesLeakedMocks'], leaky_tests) if __name__ == '__main__': if sys.argv[1:] == [GENGOLDEN_FLAG]: (output, _) = GetNormalizedCommandOutputAndLeakyTests(COMMAND) golden_file = open(GOLDEN_PATH, 'wb') golden_file.write(output) golden_file.close() # Suppress the error "googletest was imported but a call to its main() # was never detected." os._exit(0) else: gmock_test_utils.Main()
null
489
#! /usr/bin/env python3 import asyncio import json import logging import os import re import smtplib import subprocess import weakref from email.mime.text import MIMEText _send_mail_tasks = weakref.WeakSet() _rx_term_escapes = re.compile(r"(\x9b|\x1b\[)[0-?]*[ -\/]*[@-~]") log = logging.getLogger("ai.backend.manager.monitor") SMTP_HOST = "127.0.0.1" SMTP_PORT = 25 SENDER_EMAIL = "[email protected]" async def monitor_events(): # This script assumes that .env is already configured as a super-admin account with API-mode access. args = [ "backend.ai", "session", "events", "*", # monitor all session events ] try: while True: log.info("(re)starting 'session events' command") proc = await asyncio.create_subprocess_exec( *args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, env={**os.environb, b"PYTHONUNBUFFERED": b"1"}, ) try: while True: line = await proc.stdout.readline() if not line: # terminated break event_raw_name, event_raw_data = line.split(b" ", maxsplit=1) event_name = _rx_term_escapes.sub("", event_raw_name.decode()) try: event_data = json.loads(event_raw_data) task = asyncio.create_task(METHOD_NAME(event_name, event_data)) _send_mail_tasks.add(task) except Exception: log.exception("ooops") finally: await proc.wait() finally: # cancel any ongoing send_email() task remaining_tasks = {*_send_mail_tasks} cancelled_tasks = [] for task in remaining_tasks: if not task.done() and not task.cancelled(): task.cancel() cancelled_tasks.append(task) await asyncio.gather(*cancelled_tasks, return_exceptions=True) async def METHOD_NAME(event_name, event_data): # reference for event_name: https://github.com/lablup/backend.ai/blob/f5bb6c1/src/ai/backend/common/events.py # reference for event_data: https://github.com/lablup/backend.ai/blob/f5bb6c1/src/ai/backend/manager/api/events.py#L149-L155 session_name = event_data["sessionName"] session_id = event_data["sessionId"] match event_name: case "session_terminated" | "session_success" | "session_failure": user_email = await extract_user_email(event_data["ownerAccessKey"]) reason = event_data["reason"] exit_code = event_data["exitCode"] if user_email is None: log.info( f"{event_name} for {session_name} -> skipped due to the missing user email" ) return else: log.info(f"{event_name} for {session_name} -> notifying to {user_email}") await send_mail( SENDER_EMAIL, [user_email], f"[Backend.AI] {event_name} in your session {session_name}", ( f"This is a notification for a lifecycle event of your session.\n\n" f"Session ID: {session_id}\n" f"Session Name: {session_name}\n" f"Reason: {reason}\n" f"Exit Code: {exit_code}\n" ), ) case _: log.debug(f"{event_name} for {session_name} -> skipped") async def extract_user_email(access_key): args = [ "backend.ai", "--output", "json", "admin", "keypair", "list", "--filter", f'access_key == "{access_key}"', ] proc = await asyncio.create_subprocess_exec(*args, stdout=subprocess.PIPE) data = json.loads(await proc.stdout.read()) try: return data["items"][0]["user_id"] except (IndexError, KeyError): return None async def send_mail(from_addr, to_addrs, subject, body): def _send_mail(from_addr, to_addrs, subject, body): # To use SSL, replace smtplib.SMTP with smtplib.SMTP_SSL server = smtplib.SMTP(SMTP_HOST, SMTP_PORT) # server.set_debuglevel(1) # for diagnosis with smtp issues msg = MIMEText(body) msg["From"] = from_addr msg["To"] = ", ".join(to_addrs) msg["Subject"] = subject server.sendmail(from_addr, to_addrs, msg.as_string()) server.quit() loop = asyncio.get_running_loop() await loop.run_in_executor(None, _send_mail, from_addr, to_addrs, subject, body) async def main(): try: log.info("starting monitoring of session events...") await monitor_events() finally: await asyncio.sleep(0) log.info("terminated") if __name__ == "__main__": logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(name)s %(message)s") try: asyncio.run(main()) except (KeyboardInterrupt, SystemExit): pass # vim: sts=4 sw=4 et
null
490
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkoutboundbot.endpoint import endpoint_data class CreateTaskExportTaskRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'OutboundBot', '2019-12-26', 'CreateTaskExportTask') self.set_method('GET') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_HasAnswered(self): # Boolean return self.get_query_params().get('HasAnswered') def set_HasAnswered(self, HasAnswered): # Boolean self.add_query_param('HasAnswered', HasAnswered) def get_ActualTimeLte(self): # Long return self.get_query_params().get('ActualTimeLte') def set_ActualTimeLte(self, ActualTimeLte): # Long self.add_query_param('ActualTimeLte', ActualTimeLte) def get_OtherId(self): # String return self.get_query_params().get('OtherId') def set_OtherId(self, OtherId): # String self.add_query_param('OtherId', OtherId) def get_TaskCreateTimeLte(self): # Long return self.get_query_params().get('TaskCreateTimeLte') def set_TaskCreateTimeLte(self, TaskCreateTimeLte): # Long self.add_query_param('TaskCreateTimeLte', TaskCreateTimeLte) def get_JobId(self): # String return self.get_query_params().get('JobId') def set_JobId(self, JobId): # String self.add_query_param('JobId', JobId) def get_TaskCreateTimeGte(self): # Long return self.get_query_params().get('TaskCreateTimeGte') def set_TaskCreateTimeGte(self, TaskCreateTimeGte): # Long self.add_query_param('TaskCreateTimeGte', TaskCreateTimeGte) def get_CalledNumber(self): # String return self.get_query_params().get('CalledNumber') def set_CalledNumber(self, CalledNumber): # String self.add_query_param('CalledNumber', CalledNumber) def get_UserIdMatch(self): # String return self.get_query_params().get('UserIdMatch') def set_UserIdMatch(self, UserIdMatch): # String self.add_query_param('UserIdMatch', UserIdMatch) def get_PageSize(self): # Integer return self.get_query_params().get('PageSize') def set_PageSize(self, PageSize): # Integer self.add_query_param('PageSize', PageSize) def get_ScriptNameQuery(self): # String return self.get_query_params().get('ScriptNameQuery') def set_ScriptNameQuery(self, ScriptNameQuery): # String self.add_query_param('ScriptNameQuery', ScriptNameQuery) def get_PageIndex(self): # Integer return self.get_query_params().get('PageIndex') def set_PageIndex(self, PageIndex): # Integer self.add_query_param('PageIndex', PageIndex) def get_SortOrder(self): # String return self.get_query_params().get('SortOrder') def set_SortOrder(self, SortOrder): # String self.add_query_param('SortOrder', SortOrder) def get_TaskStatusStringList(self): # String return self.get_query_params().get('TaskStatusStringList') def set_TaskStatusStringList(self, TaskStatusStringList): # String self.add_query_param('TaskStatusStringList', TaskStatusStringList) def METHOD_NAME(self): # String return self.get_query_params().get('JobGroupNameQuery') def set_JobGroupNameQuery(self, JobGroupNameQuery): # String self.add_query_param('JobGroupNameQuery', JobGroupNameQuery) def get_TaskId(self): # String return self.get_query_params().get('TaskId') def set_TaskId(self, TaskId): # String self.add_query_param('TaskId', TaskId) def get_HasHangUpByRejection(self): # Boolean return self.get_query_params().get('HasHangUpByRejection') def set_HasHangUpByRejection(self, HasHangUpByRejection): # Boolean self.add_query_param('HasHangUpByRejection', HasHangUpByRejection) def get_HasReachedEndOfFlow(self): # Boolean return self.get_query_params().get('HasReachedEndOfFlow') def set_HasReachedEndOfFlow(self, HasReachedEndOfFlow): # Boolean self.add_query_param('HasReachedEndOfFlow', HasReachedEndOfFlow) def get_InstanceId(self): # String return self.get_query_params().get('InstanceId') def set_InstanceId(self, InstanceId): # String self.add_query_param('InstanceId', InstanceId) def get_RecordingDurationGte(self): # Long return self.get_query_params().get('RecordingDurationGte') def set_RecordingDurationGte(self, RecordingDurationGte): # Long self.add_query_param('RecordingDurationGte', RecordingDurationGte) def get_CallDurationLte(self): # Long return self.get_query_params().get('CallDurationLte') def set_CallDurationLte(self, CallDurationLte): # Long self.add_query_param('CallDurationLte', CallDurationLte) def get_JobGroupId(self): # String return self.get_query_params().get('JobGroupId') def set_JobGroupId(self, JobGroupId): # String self.add_query_param('JobGroupId', JobGroupId) def get_SortBy(self): # String return self.get_query_params().get('SortBy') def set_SortBy(self, SortBy): # String self.add_query_param('SortBy', SortBy) def get_JobStatusStringList(self): # String return self.get_query_params().get('JobStatusStringList') def set_JobStatusStringList(self, JobStatusStringList): # String self.add_query_param('JobStatusStringList', JobStatusStringList) def get_ActualTimeGte(self): # Long return self.get_query_params().get('ActualTimeGte') def set_ActualTimeGte(self, ActualTimeGte): # Long self.add_query_param('ActualTimeGte', ActualTimeGte) def get_CallDurationGte(self): # Long return self.get_query_params().get('CallDurationGte') def set_CallDurationGte(self, CallDurationGte): # Long self.add_query_param('CallDurationGte', CallDurationGte) def get_RecordingDurationLte(self): # Long return self.get_query_params().get('RecordingDurationLte') def set_RecordingDurationLte(self, RecordingDurationLte): # Long self.add_query_param('RecordingDurationLte', RecordingDurationLte)
null
491
# -*- coding: utf-8 -*- import pytest from django.utils.timezone import now from api.base.settings.defaults import API_BASE from api_tests.registrations.filters.test_filters import RegistrationListFilteringMixin from osf_tests.factories import ( AuthUserFactory, CollectionFactory, ProjectFactory, RegistrationFactory, OSFGroupFactory ) from osf.utils import permissions from tests.base import ApiTestCase from website.views import find_bookmark_collection @pytest.mark.django_db class TestUserRegistrations: @pytest.fixture() def user_one(self): user_one = AuthUserFactory() user_one.social['twitter'] = 'rheisendennis' user_one.save() return user_one @pytest.fixture() def user_two(self): return AuthUserFactory() @pytest.fixture() def group_member(self): return AuthUserFactory() @pytest.fixture() def METHOD_NAME(self, group_member): return OSFGroupFactory(creator=group_member) @pytest.fixture() def project_public_user_one(self, user_one): return ProjectFactory( title='Public Project User One', is_public=True, creator=user_one) @pytest.fixture() def project_private_user_one(self, user_one): return ProjectFactory( title='Private Project User One', is_public=False, creator=user_one) @pytest.fixture() def project_public_user_two(self, user_two): return ProjectFactory( title='Public Project User Two', is_public=True, creator=user_two) @pytest.fixture() def project_private_user_two(self, user_two): return ProjectFactory( title='Private Project User Two', is_public=False, creator=user_two) @pytest.fixture() def project_private_group_member(self, user_one, METHOD_NAME): project = ProjectFactory( title='Private Project Group Member', is_public=False, creator=user_one ) project.add_osf_group(METHOD_NAME, permissions.ADMIN) return project @pytest.fixture() def project_deleted_user_one(self, user_one): return CollectionFactory( title='Deleted Project User One', is_public=False, creator=user_one, deleted=now()) @pytest.fixture() def folder(self): return CollectionFactory() @pytest.fixture() def folder_deleted(self, user_one): return CollectionFactory( title='Deleted Folder User One', is_public=False, creator=user_one, deleted=now()) @pytest.fixture() def bookmark_collection(self, user_one): return find_bookmark_collection(user_one) @pytest.fixture() def reg_project_public_user_one(self, user_one, project_public_user_one): return RegistrationFactory( project=project_public_user_one, creator=user_one, is_public=True) @pytest.fixture() def reg_project_private_user_one(self, user_one, project_private_user_one): return RegistrationFactory( project=project_private_user_one, creator=user_one, is_private=True) @pytest.fixture() def reg_project_public_user_two(self, user_two, project_public_user_two): return RegistrationFactory( project=project_public_user_two, creator=user_two, is_public=True) @pytest.fixture() def reg_project_private_user_two(self, user_two, project_private_user_two): return RegistrationFactory( project=project_private_user_two, creator=user_two, is_private=True) @pytest.fixture() def reg_project_private_group_member(self, user_one, project_private_group_member): return RegistrationFactory( project=project_private_group_member, creator=user_one, is_private=True) def test_user_registrations( self, app, user_one, user_two, group_member, reg_project_public_user_one, reg_project_public_user_two, reg_project_private_user_one, reg_project_private_user_two, reg_project_private_group_member, folder, folder_deleted, project_deleted_user_one): # test_authorized_in_gets_200 url = '/{}users/{}/registrations/'.format(API_BASE, user_one._id) res = app.get(url, auth=user_one.auth) assert res.status_code == 200 assert res.content_type == 'application/vnd.api+json' # test_anonymous_gets_200 url = '/{}users/{}/registrations/'.format(API_BASE, user_one._id) res = app.get(url) assert res.status_code == 200 assert res.content_type == 'application/vnd.api+json' # test_get_registrations_logged_in url = '/{}users/{}/registrations/'.format(API_BASE, user_one._id) res = app.get(url, auth=user_one.auth) node_json = res.json['data'] ids = [each['id'] for each in node_json] assert reg_project_public_user_one._id in ids assert reg_project_private_user_one._id in ids assert reg_project_public_user_two._id not in ids assert reg_project_private_user_two._id not in ids assert folder._id not in ids assert folder_deleted._id not in ids assert project_deleted_user_one._id not in ids # test_get_registrations_not_logged_in url = '/{}users/{}/registrations/'.format(API_BASE, user_one._id) res = app.get(url) node_json = res.json['data'] ids = [each['id'] for each in node_json] assert reg_project_public_user_one._id in ids assert reg_project_private_user_one._id not in ids assert reg_project_public_user_two._id not in ids assert reg_project_private_user_two._id not in ids assert folder._id not in ids assert folder_deleted._id not in ids assert project_deleted_user_one._id not in ids # test_get_registrations_logged_in_as_different_user url = '/{}users/{}/registrations/'.format(API_BASE, user_two._id) res = app.get(url, auth=user_one.auth) node_json = res.json['data'] ids = [each['id'] for each in node_json] assert reg_project_public_user_one._id not in ids assert reg_project_private_user_one._id not in ids assert reg_project_public_user_two._id in ids assert reg_project_private_user_two._id not in ids assert folder._id not in ids assert folder_deleted._id not in ids assert project_deleted_user_one._id not in ids # test_get_registrations_logged_in_group_member url = '/{}users/{}/registrations/'.format(API_BASE, group_member._id) res = app.get(url, auth=group_member.auth) node_json = res.json['data'] ids = [each['id'] for each in node_json] assert reg_project_public_user_one._id not in ids assert reg_project_private_user_one._id not in ids assert reg_project_public_user_two._id not in ids assert reg_project_private_user_two._id not in ids assert folder._id not in ids assert folder_deleted._id not in ids assert project_deleted_user_one._id not in ids # project group members not copied to registration. assert reg_project_private_group_member not in ids class TestRegistrationListFiltering( RegistrationListFilteringMixin, ApiTestCase): url = '/{}users/me/registrations/?'.format(API_BASE)
null
492
# Copyright 2016 Pinterest, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -*- coding: utf-8 -*- """Collection of all deploy related views """ from deploy_board.settings import SITE_METRICS_CONFIGS, TELETRAAN_DISABLE_CREATE_ENV_PAGE, TELETRAAN_REDIRECT_CREATE_ENV_PAGE_URL from django.middleware.csrf import get_token import json from django.shortcuts import render from django.views.generic import View from django.template.loader import render_to_string from django.http import HttpResponse from helpers import builds_helper, deploys_helper, environs_helper, tags_helper DEFAULT_PAGE_SIZE = 30 DEFAULT_ONGOING_DEPLOY_SIZE = 10 def _get_running_deploys_count(request): deploy_states = ["RUNNING"] # current running deploys page_size = 1 # only need to return 1 detail, the return structure has the "total" value deployResult = deploys_helper.get_all(request, deployState=deploy_states, pageSize=page_size) return deployResult['total'] def _get_sidecars(request): # returns a list of env id for sidecars which are identified by having a system priority envs = environs_helper.get_all_sidecar_envs(request) env_ids = [] for env in envs: env_ids.append(env['id']) return env_ids def _get_ongoing_sidecar_deploys(request): deploy_summaries = [] env_ids = _get_sidecars(request) if env_ids: deploy_states = ["RUNNING", "FAILING"] deployResult = deploys_helper.get_all(request, envId=env_ids, deployState=deploy_states) for deploy in deployResult['deploys']: env = environs_helper.get(request, deploy['envId']) build = builds_helper.get_build(request, deploy['buildId']) summary = {} summary['deploy'] = deploy summary['env'] = env summary['build'] = build deploy_summaries.append(summary) return deploy_summaries def METHOD_NAME(request, index, size): # ongoing deploys are defined as deploys with states as: deploy_states = ["RUNNING", "FAILING"] deployResult = deploys_helper.get_all(request, deployState=deploy_states, pageIndex=index, pageSize=size) deploy_summaries = [] for deploy in deployResult['deploys']: env = environs_helper.get(request, deploy['envId']) build = builds_helper.get_build(request, deploy['buildId']) summary = {} summary['deploy'] = deploy summary['env'] = env summary['build'] = build deploy_summaries.append(summary) return deploy_summaries def get_landing_page(request): envs_tag = tags_helper.get_latest_by_target_id(request, 'TELETRAAN') metrics = SITE_METRICS_CONFIGS return render(request, 'landing.html', { "metrics": metrics, 'envs_tag': envs_tag, "disable_create_env_page": TELETRAAN_DISABLE_CREATE_ENV_PAGE, "redirect_create_env_page_url": TELETRAAN_REDIRECT_CREATE_ENV_PAGE_URL }) def get_ongoing_sidecar_deploys(request): deploy_summeries = _get_ongoing_sidecar_deploys(request) html = render_to_string('deploys/ongoing_deploys.tmpl', { "deploy_summaries": deploy_summeries, "pageIndex": 1, "pageSize": 100, "disablePrevious": True, "disableNext": True, }) return HttpResponse(html) def get_ongoing_deploys(request): index = int(request.GET.get('page_index', '1')) size = int(request.GET.get('page_size', DEFAULT_ONGOING_DEPLOY_SIZE)) deploy_summeries = METHOD_NAME(request, index, size) html = render_to_string('deploys/ongoing_deploys.tmpl', { "deploy_summaries": deploy_summeries, "pageIndex": index, "pageSize": size, "disablePrevious": index <= 1, "disableNext": len(deploy_summeries) < DEFAULT_ONGOING_DEPLOY_SIZE, }) return HttpResponse(html) def get_daily_deploy_count(request): daily_deploy_count = deploys_helper.get_daily_deploy_count(request) running_deploy_count = _get_running_deploys_count(request) html = render_to_string('deploys/daily_deploy_count.tmpl', { "daily_deploy_count": daily_deploy_count, "running_deploy_count": running_deploy_count }) return HttpResponse(html) def get_duplicate_commit_deploy_message(request, name, stage, buildId): env = environs_helper.get_env_by_stage(request, name, stage) if env.get('deployId') is None: return HttpResponse('') current_deploy = deploys_helper.get_current(request, name, stage) current_build = builds_helper.get_build(request, current_deploy['buildId']) current_commit = current_build['commit'] next_build = builds_helper.get_build(request, buildId) next_commit = next_build['commit'] if current_commit == next_commit: return render(request, 'deploys/duplicate_commit_deploy_message.tmpl',{ "commit":next_build['commitShort']}) return HttpResponse('') class DeployView(View): def get(self, request, deploy_id): deploy = deploys_helper.get(request, deploy_id) build = builds_helper.get_build(request, deploy['buildId']) env = None if deploy.get('envId'): env = environs_helper.get(request, deploy['envId']) return render(request, 'deploys/deploy_details.html', { "deploy": deploy, "build": build, "csrf_token": get_token(request), "env": env, }) def inline_update(request): query_dict = request.POST name = query_dict["name"] value = query_dict["value"] deploy_id = query_dict["deploy_id"] if name == "description": deploys_helper.update(request, deploy_id, {"description": value}) else: log.error("Unsupport deploy update on field " + name) return HttpResponse(json.dumps({'html': ''}), content_type="application/json")
null
493
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest class CreateLoadBalancerHTTPListenerRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Ens', '2017-11-10', 'CreateLoadBalancerHTTPListener','ens') self.set_method('POST') def get_ListenerForward(self): # String return self.get_query_params().get('ListenerForward') def set_ListenerForward(self, ListenerForward): # String self.add_query_param('ListenerForward', ListenerForward) def get_HealthCheckTimeout(self): # Integer return self.get_query_params().get('HealthCheckTimeout') def set_HealthCheckTimeout(self, HealthCheckTimeout): # Integer self.add_query_param('HealthCheckTimeout', HealthCheckTimeout) def get_XForwardedFor(self): # String return self.get_query_params().get('XForwardedFor') def set_XForwardedFor(self, XForwardedFor): # String self.add_query_param('XForwardedFor', XForwardedFor) def get_HealthCheckURI(self): # String return self.get_query_params().get('HealthCheckURI') def set_HealthCheckURI(self, HealthCheckURI): # String self.add_query_param('HealthCheckURI', HealthCheckURI) def get_HealthCheck(self): # String return self.get_query_params().get('HealthCheck') def set_HealthCheck(self, HealthCheck): # String self.add_query_param('HealthCheck', HealthCheck) def get_HealthCheckMethod(self): # String return self.get_query_params().get('HealthCheckMethod') def set_HealthCheckMethod(self, HealthCheckMethod): # String self.add_query_param('HealthCheckMethod', HealthCheckMethod) def get_HealthCheckDomain(self): # String return self.get_query_params().get('HealthCheckDomain') def set_HealthCheckDomain(self, HealthCheckDomain): # String self.add_query_param('HealthCheckDomain', HealthCheckDomain) def get_RequestTimeout(self): # Integer return self.get_query_params().get('RequestTimeout') def set_RequestTimeout(self, RequestTimeout): # Integer self.add_query_param('RequestTimeout', RequestTimeout) def get_LoadBalancerId(self): # String return self.get_query_params().get('LoadBalancerId') def set_LoadBalancerId(self, LoadBalancerId): # String self.add_query_param('LoadBalancerId', LoadBalancerId) def get_HealthCheckInterval(self): # Integer return self.get_query_params().get('HealthCheckInterval') def set_HealthCheckInterval(self, HealthCheckInterval): # Integer self.add_query_param('HealthCheckInterval', HealthCheckInterval) def METHOD_NAME(self): # String return self.get_query_params().get('Description') def set_Description(self, Description): # String self.add_query_param('Description', Description) def get_UnhealthyThreshold(self): # Integer return self.get_query_params().get('UnhealthyThreshold') def set_UnhealthyThreshold(self, UnhealthyThreshold): # Integer self.add_query_param('UnhealthyThreshold', UnhealthyThreshold) def get_HealthyThreshold(self): # Integer return self.get_query_params().get('HealthyThreshold') def set_HealthyThreshold(self, HealthyThreshold): # Integer self.add_query_param('HealthyThreshold', HealthyThreshold) def get_Scheduler(self): # String return self.get_query_params().get('Scheduler') def set_Scheduler(self, Scheduler): # String self.add_query_param('Scheduler', Scheduler) def get_ForwardPort(self): # Integer return self.get_query_params().get('ForwardPort') def set_ForwardPort(self, ForwardPort): # Integer self.add_query_param('ForwardPort', ForwardPort) def get_ListenerPort(self): # Integer return self.get_query_params().get('ListenerPort') def set_ListenerPort(self, ListenerPort): # Integer self.add_query_param('ListenerPort', ListenerPort) def get_IdleTimeout(self): # Integer return self.get_query_params().get('IdleTimeout') def set_IdleTimeout(self, IdleTimeout): # Integer self.add_query_param('IdleTimeout', IdleTimeout) def get_HealthCheckConnectPort(self): # Integer return self.get_query_params().get('HealthCheckConnectPort') def set_HealthCheckConnectPort(self, HealthCheckConnectPort): # Integer self.add_query_param('HealthCheckConnectPort', HealthCheckConnectPort) def get_HealthCheckHttpCode(self): # String return self.get_query_params().get('HealthCheckHttpCode') def set_HealthCheckHttpCode(self, HealthCheckHttpCode): # String self.add_query_param('HealthCheckHttpCode', HealthCheckHttpCode)
null
494
# Copyright 2016 Pinterest, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -*- coding: utf-8 -*- from deploy_board.webapp.helpers.rodimus_client import RodimusClient rodimus_client = RodimusClient() MAX_BASE_IMAGE_UPDATE_EVENTS = 1e4 def promote_image(request, image_id, tag): params = [('stage', tag)] return rodimus_client.put("/base_images/%s/golden" % image_id, request.teletraan_user_id.token, params=params) def demote_image(request, image_id): return rodimus_client.delete("/base_images/%s/golden" % image_id, request.teletraan_user_id.token) def cancel_image_update(request, image_id): return rodimus_client.put("/base_images/%s/golden/cancel" % image_id, request.teletraan_user_id.token) def get_image_tag_by_id(request, image_id): return rodimus_client.get("/base_images/%s/tags" % image_id, request.teletraan_user_id.token) def create_base_image(request, base_image_info): return rodimus_client.post("/base_images", request.teletraan_user_id.token, data=base_image_info) def get_all(request, index, size): params = [('pageIndex', index), ('pageSize', size)] return rodimus_client.get("/base_images", request.teletraan_user_id.token, params=params) def get_all_with_acceptance(request, index, size): base_images = get_all(request, index, size) fetched_names = set() golden = dict() name_acceptance_map = {} for img in base_images: name = img['abstract_name'] cell = img['cell_name'] if name not in fetched_names and name.startswith('cmp_base'): fetched_names.add(name) base_image_infos = get_acceptance_by_name(request, name, img.get('cell', None)) for img_info in base_image_infos: name_acceptance_map[img_info['baseImage'][ 'provider_name']] = img_info.get('acceptance') or 'UNKNOWN' img['acceptance'] = name_acceptance_map.get(img['provider_name'], 'N/A') if name.startswith('cmp_base'): key = (name, cell) if key not in golden: golden_image = get_current_golden_image(request, name, cell) golden[key] = golden_image['id'] if golden_image else None if img['id'] == golden[key]: img['current_golden'] = True return base_images def get_image_names(request, provider, cell_name): params = [('provider', provider), ('cellName', cell_name)] return rodimus_client.get("/base_images/names", request.teletraan_user_id.token, params=params) def METHOD_NAME(request, provider, cell_name, arch_name): params = [('provider', provider), ('cellName', cell_name), ('archName', arch_name)] return rodimus_client.get("/base_images/names", request.teletraan_user_id.token, params=params) def get_all_by(request, provider, cell_name): if cell_name: return rodimus_client.get("/base_images/cell/%s" % cell_name, request.teletraan_user_id.token) params = [('provider', provider)] return rodimus_client.get("/base_images", request.teletraan_user_id.token, params=params) def get_by_name(request, name, cell_name): params = [('cellName', cell_name)] return rodimus_client.get("/base_images/names/%s" % name, request.teletraan_user_id.token, params=params) def get_acceptance_by_name(request, name, cell_name): params = [('cellName', cell_name)] return rodimus_client.get("/base_images/acceptances/%s" % name, request.teletraan_user_id.token, params=params) def get_current_golden_image(request, name, cell): return rodimus_client.get("/base_images/names/%s/cells/%s/golden" % (name, cell), request.teletraan_user_id.token) def get_by_provider_name(request, name): return rodimus_client.get("/base_images/provider_names/%s" % name, request.teletraan_user_id.token) def get_by_id(request, image_id): return rodimus_client.get("/base_images/%s" % image_id, request.teletraan_user_id.token) def get_all_providers(request): return rodimus_client.get("/base_images/provider", request.teletraan_user_id.token) def get_image_update_events_by_new_id(request, image_id): events = rodimus_client.get("/base_images/updates/%s" % image_id, request.teletraan_user_id.token) for event in events: event['status'] = generate_image_update_event_status(event) return events # Heuristic way to get the latest update events batch # TODO: update rodimus for better update events batching def get_latest_image_update_events(events): if not events: return events # Group update events batch by create_time. # Events are sorted by create_time # create_time is milisecond timestamp and gets increased by 1 per cluster. # The total number of clusters should not be 10K. lastest_timestamp = events[0]['create_time'] latest_events = [event for event in events if abs( event['create_time'] - lastest_timestamp) < MAX_BASE_IMAGE_UPDATE_EVENTS] return latest_events def get_image_update_events_by_cluster(request, cluster_name): events = rodimus_client.get("/base_images/updates/cluster/%s" % cluster_name, request.teletraan_user_id.token) for event in events: event['status'] = generate_image_update_event_status(event) return events def generate_image_update_event_status(event): if event['state'] == 'INIT': if event['start_time']: return 'UPDATING' else: return 'INIT' elif event['state'] == 'COMPLETED': if event['error_message']: return 'FAILED' else: return 'SUCCEEDED' return event['state'] def get_base_image_update_progress(events): if not events: return None total = len(events) succeeded = len([event for event in events if event['status'] == 'SUCCEEDED']) state = 'COMPLETED' if all(event["state"] == 'COMPLETED' for event in events) else 'IN PROGRESS' success_rate = succeeded * 100 / total return { 'state': state, 'total': total, 'succeeded': succeeded, 'progressTip': 'Among total {} clusters, {} successfully updated, {} failed or are pending.'.format( total, succeeded, total - succeeded), 'successRatePercentage': success_rate, 'successRate': '{}% ({}/{})'.format(success_rate, succeeded, total), }
null
495
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkdts.endpoint import endpoint_data class DescribeDtsJobsRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Dts', '2020-01-01', 'DescribeDtsJobs','dts') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_WithoutDbList(self): # Boolean return self.get_query_params().get('WithoutDbList') def set_WithoutDbList(self, WithoutDbList): # Boolean self.add_query_param('WithoutDbList', WithoutDbList) def get_OrderDirection(self): # String return self.get_query_params().get('OrderDirection') def set_OrderDirection(self, OrderDirection): # String self.add_query_param('OrderDirection', OrderDirection) def get_DedicatedClusterId(self): # String return self.get_query_params().get('DedicatedClusterId') def set_DedicatedClusterId(self, DedicatedClusterId): # String self.add_query_param('DedicatedClusterId', DedicatedClusterId) def get_Type(self): # String return self.get_query_params().get('Type') def set_Type(self, Type): # String self.add_query_param('Type', Type) def get_PageNumber(self): # Integer return self.get_query_params().get('PageNumber') def set_PageNumber(self, PageNumber): # Integer self.add_query_param('PageNumber', PageNumber) def get_OrderColumn(self): # String return self.get_query_params().get('OrderColumn') def set_OrderColumn(self, OrderColumn): # String self.add_query_param('OrderColumn', OrderColumn) def get_ResourceGroupId(self): # String return self.get_query_params().get('ResourceGroupId') def set_ResourceGroupId(self, ResourceGroupId): # String self.add_query_param('ResourceGroupId', ResourceGroupId) def get_DtsBisLabel(self): # String return self.get_query_params().get('DtsBisLabel') def set_DtsBisLabel(self, DtsBisLabel): # String self.add_query_param('DtsBisLabel', DtsBisLabel) def get_PageSize(self): # Integer return self.get_query_params().get('PageSize') def set_PageSize(self, PageSize): # Integer self.add_query_param('PageSize', PageSize) def get_DtsJobId(self): # String return self.get_query_params().get('DtsJobId') def set_DtsJobId(self, DtsJobId): # String self.add_query_param('DtsJobId', DtsJobId) def get_GroupId(self): # String return self.get_query_params().get('GroupId') def set_GroupId(self, GroupId): # String self.add_query_param('GroupId', GroupId) def get_Params(self): # String return self.get_query_params().get('Params') def set_Params(self, Params): # String self.add_query_param('Params', Params) def get_OwnerId(self): # String return self.get_query_params().get('OwnerId') def METHOD_NAME(self, OwnerId): # String self.add_query_param('OwnerId', OwnerId) def get_JobType(self): # String return self.get_query_params().get('JobType') def set_JobType(self, JobType): # String self.add_query_param('JobType', JobType) def get_Tags(self): # String return self.get_query_params().get('Tags') def set_Tags(self, Tags): # String self.add_query_param('Tags', Tags) def get_Region(self): # String return self.get_query_params().get('Region') def set_Region(self, Region): # String self.add_query_param('Region', Region) def get_DtsInstanceId(self): # String return self.get_query_params().get('DtsInstanceId') def set_DtsInstanceId(self, DtsInstanceId): # String self.add_query_param('DtsInstanceId', DtsInstanceId) def get_Status(self): # String return self.get_query_params().get('Status') def set_Status(self, Status): # String self.add_query_param('Status', Status)
null
496
import unittest from unittest import TestCase import pytest import torch import torch.nn.functional as F from pytest_mock import MockerFixture from torch import distributed as dist from torch import nn from torch.optim import SGD from lightly.loss import msn_loss from lightly.loss.msn_loss import MSNLoss from lightly.models.modules.heads import MSNProjectionHead class TestMSNLoss: def test__gather_distributed(self, mocker: MockerFixture) -> None: mock_is_available = mocker.patch.object(dist, "is_available", return_value=True) MSNLoss(gather_distributed=True) mock_is_available.assert_called_once() def test__gather_distributed_dist_not_available( self, mocker: MockerFixture ) -> None: mock_is_available = mocker.patch.object( dist, "is_available", return_value=False ) with pytest.raises(ValueError): MSNLoss(gather_distributed=True) mock_is_available.assert_called_once() class TestMSNLossUnitTest(TestCase): # Old tests in unittest style, please add new tests to TestMSNLoss using pytest. def METHOD_NAME(self) -> None: MSNLoss(temperature=1.0) with self.assertRaises(ValueError): MSNLoss(temperature=0.0) with self.assertRaises(ValueError): MSNLoss(temperature=-1.0) def test__init__sinkhorn_iterations(self) -> None: MSNLoss(sinkhorn_iterations=0) with self.assertRaises(ValueError): MSNLoss(sinkhorn_iterations=-1) def test__init__me_max_weight(self) -> None: criterion = MSNLoss(regularization_weight=0.0, me_max_weight=0.5) assert criterion.regularization_weight == 0.5 def test_prototype_probabilitiy(self) -> None: torch.manual_seed(0) queries = F.normalize(torch.rand((8, 10)), dim=1) prototypes = F.normalize(torch.rand((4, 10)), dim=1) prob = msn_loss.prototype_probabilities(queries, prototypes, temperature=0.5) self.assertEqual(prob.shape, (8, 4)) self.assertLessEqual(prob.max(), 1.0) self.assertGreater(prob.min(), 0.0) # verify sharpening prob1 = msn_loss.prototype_probabilities(queries, prototypes, temperature=0.1) # same prototypes should be assigned regardless of temperature self.assertTrue(torch.all(prob.argmax(dim=1) == prob1.argmax(dim=1))) # probabilities of selected prototypes should be higher for lower temperature self.assertTrue(torch.all(prob.max(dim=1)[0] < prob1.max(dim=1)[0])) def test_sharpen(self) -> None: torch.manual_seed(0) prob = torch.rand((8, 10)) p0 = msn_loss.sharpen(prob, temperature=0.5) p1 = msn_loss.sharpen(prob, temperature=0.1) # indices of max probabilities should be the same regardless of temperature self.assertTrue(torch.all(p0.argmax(dim=1) == p1.argmax(dim=1))) # max probabilities should be higher for lower temperature self.assertTrue(torch.all(p0.max(dim=1)[0] < p1.max(dim=1)[0])) def test_sinkhorn(self) -> None: torch.manual_seed(0) prob = torch.rand((8, 10)) out = msn_loss.sinkhorn(prob) self.assertTrue(torch.all(prob != out)) def test_sinkhorn_no_iter(self) -> None: torch.manual_seed(0) prob = torch.rand((8, 10)) out = msn_loss.sinkhorn(prob, iterations=0) self.assertTrue(torch.all(prob == out)) def test_forward(self) -> None: torch.manual_seed(0) for num_target_views in range(1, 4): with self.subTest(num_views=num_target_views): criterion = MSNLoss() anchors = torch.rand((8 * num_target_views, 10)) targets = torch.rand((8, 10)) prototypes = torch.rand((4, 10), requires_grad=True) criterion(anchors, targets, prototypes) @unittest.skipUnless(torch.cuda.is_available(), "cuda not available") def test_forward_cuda(self) -> None: torch.manual_seed(0) criterion = MSNLoss() anchors = torch.rand((8 * 2, 10)).cuda() targets = torch.rand((8, 10)).cuda() prototypes = torch.rand((4, 10), requires_grad=True).cuda() criterion(anchors, targets, prototypes) def test_backward(self) -> None: torch.manual_seed(0) head = MSNProjectionHead(5, 16, 6) criterion = MSNLoss() optimizer = SGD(head.parameters(), lr=0.1) anchors = torch.rand((8 * 4, 5)) targets = torch.rand((8, 5)) prototypes = nn.Linear(6, 4).weight # 4 prototypes with dim 6 optimizer.zero_grad() anchors = head(anchors) with torch.no_grad(): targets = head(targets) loss = criterion(anchors, targets, prototypes) loss.backward() weights_before = head.layers[0].weight.data.clone() optimizer.step() weights_after = head.layers[0].weight.data # backward pass should update weights self.assertTrue(torch.any(weights_before != weights_after)) @unittest.skipUnless(torch.cuda.is_available(), "cuda not available") def test_backward_cuda(self) -> None: torch.manual_seed(0) head = MSNProjectionHead(5, 16, 6) head.to("cuda") criterion = MSNLoss() optimizer = SGD(head.parameters(), lr=0.1) anchors = torch.rand((8 * 4, 5)).cuda() targets = torch.rand((8, 5)).cuda() prototypes = nn.Linear(6, 4).weight.cuda() # 4 prototypes with dim 6 optimizer.zero_grad() anchors = head(anchors) with torch.no_grad(): targets = head(targets) loss = criterion(anchors, targets, prototypes) loss.backward() weights_before = head.layers[0].weight.data.clone() optimizer.step() weights_after = head.layers[0].weight.data # backward pass should update weights self.assertTrue(torch.any(weights_before != weights_after))
null
497
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkvpc.endpoint import endpoint_data class CreateFullNatEntryRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Vpc', '2016-04-28', 'CreateFullNatEntry','vpc') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_FullNatEntryDescription(self): # String return self.get_query_params().get('FullNatEntryDescription') def set_FullNatEntryDescription(self, FullNatEntryDescription): # String self.add_query_param('FullNatEntryDescription', FullNatEntryDescription) def get_ResourceOwnerId(self): # Long return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self, ResourceOwnerId): # Long self.add_query_param('ResourceOwnerId', ResourceOwnerId) def get_AccessIp(self): # String return self.get_query_params().get('AccessIp') def set_AccessIp(self, AccessIp): # String self.add_query_param('AccessIp', AccessIp) def get_ClientToken(self): # String return self.get_query_params().get('ClientToken') def set_ClientToken(self, ClientToken): # String self.add_query_param('ClientToken', ClientToken) def get_NatIpPort(self): # String return self.get_query_params().get('NatIpPort') def set_NatIpPort(self, NatIpPort): # String self.add_query_param('NatIpPort', NatIpPort) def get_FullNatTableId(self): # String return self.get_query_params().get('FullNatTableId') def set_FullNatTableId(self, FullNatTableId): # String self.add_query_param('FullNatTableId', FullNatTableId) def get_AccessPort(self): # String return self.get_query_params().get('AccessPort') def set_AccessPort(self, AccessPort): # String self.add_query_param('AccessPort', AccessPort) def get_DryRun(self): # Boolean return self.get_query_params().get('DryRun') def set_DryRun(self, DryRun): # Boolean self.add_query_param('DryRun', DryRun) def get_ResourceOwnerAccount(self): # String return self.get_query_params().get('ResourceOwnerAccount') def set_ResourceOwnerAccount(self, ResourceOwnerAccount): # String self.add_query_param('ResourceOwnerAccount', ResourceOwnerAccount) def get_IpProtocol(self): # String return self.get_query_params().get('IpProtocol') def set_IpProtocol(self, IpProtocol): # String self.add_query_param('IpProtocol', IpProtocol) def get_OwnerAccount(self): # String return self.get_query_params().get('OwnerAccount') def set_OwnerAccount(self, OwnerAccount): # String self.add_query_param('OwnerAccount', OwnerAccount) def get_OwnerId(self): # Long return self.get_query_params().get('OwnerId') def set_OwnerId(self, OwnerId): # Long self.add_query_param('OwnerId', OwnerId) def get_FullNatEntryName(self): # String return self.get_query_params().get('FullNatEntryName') def set_FullNatEntryName(self, FullNatEntryName): # String self.add_query_param('FullNatEntryName', FullNatEntryName) def get_NatIp(self): # String return self.get_query_params().get('NatIp') def set_NatIp(self, NatIp): # String self.add_query_param('NatIp', NatIp) def METHOD_NAME(self): # String return self.get_query_params().get('NetworkInterfaceId') def set_NetworkInterfaceId(self, NetworkInterfaceId): # String self.add_query_param('NetworkInterfaceId', NetworkInterfaceId)
null
498
import datetime import logging import re from flask_sqlalchemy import ( _QueryProperty, DefaultMeta, get_state, SessionBase, SignallingSession, SQLAlchemy, ) from sqlalchemy import orm try: from sqlalchemy.ext.declarative import as_declarative except ImportError: from sqlalchemy.ext.declarative.api import as_declarative try: from sqlalchemy.orm.util import identity_key # noqa has_identity_key = True except ImportError: has_identity_key = False log = logging.getLogger(__name__) _camelcase_re = re.compile(r"([A-Z]+)(?=[a-z0-9])") class CustomSignallingSession(SignallingSession): """ Custom Signaling Session to support SQLALchemy>=1.4 with flask-sqlalchemy 2.X https://github.com/pallets/flask-sqlalchemy/issues/953 """ def get_bind(self, mapper=None, *args, **kwargs): """Return the engine or connection for a given model or table, using the ``__bind_key__`` if it is set. Patch from https://github.com/pallets/flask-sqlalchemy/pull/1001 """ # mapper is None if someone tries to just get a connection if mapper is not None: try: # SA >= 1.3 persist_selectable = mapper.persist_selectable except AttributeError: # SA < 1.3 persist_selectable = mapper.mapped_table info = getattr(persist_selectable, "info", {}) bind_key = info.get("bind_key") if bind_key is not None: state = get_state(self.app) return state.db.get_engine(self.app, bind=bind_key) return SessionBase.get_bind(self, mapper, *args, **kwargs) class SQLA(SQLAlchemy): """ This is a child class of flask_SQLAlchemy It's purpose is to override the declarative base of the original package. So that it is bound to F.A.B. Model class allowing the dev to be in the same namespace of the security tables (and others) and can use AuditMixin class alike. Use it and configure it just like flask_SQLAlchemy """ def make_declarative_base(self, model, metadata=None): base = Model base.query = _QueryProperty(self) return base def get_tables_for_bind(self, bind=None): """Returns a list of all tables relevant for a bind.""" result = [] tables = Model.metadata.tables for key in tables: if tables[key].info.get("bind_key") == bind: result.append(tables[key]) return result def METHOD_NAME(self, options): """ Custom Session factory to support SQLALchemy>=1.4 with flask-sqlalchemy 2.X https://github.com/pallets/flask-sqlalchemy/issues/953 :param options: dict of keyword arguments passed to session class """ return orm.sessionmaker(class_=CustomSignallingSession, db=self, **options) class ModelDeclarativeMeta(DefaultMeta): """ Base Model declarative meta for all Models definitions. Setups bind_keys to support multiple databases. Setup the table name based on the class camelcase name. """ @as_declarative(name="Model", metaclass=ModelDeclarativeMeta) class Model(object): """ Use this class has the base for your models, it will define your table names automatically MyModel will be called my_model on the database. :: from sqlalchemy import Integer, String from flask_appbuilder import Model class MyModel(Model): id = Column(Integer, primary_key=True) name = Column(String(50), unique = True, nullable=False) """ __table_args__ = {"extend_existing": True} def to_json(self): result = dict() for key in self.__mapper__.c.keys(): col = getattr(self, key) if isinstance(col, datetime.datetime) or isinstance(col, datetime.date): col = col.isoformat() result[key] = col return result """ This is for retro compatibility """ Base = Model
null
499
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkecs.endpoint import endpoint_data class DescribeSecurityGroupsRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Ecs', '2014-05-26', 'DescribeSecurityGroups','ecs') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_ResourceOwnerId(self): # Long return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self, ResourceOwnerId): # Long self.add_query_param('ResourceOwnerId', ResourceOwnerId) def get_FuzzyQuery(self): # Boolean return self.get_query_params().get('FuzzyQuery') def set_FuzzyQuery(self, FuzzyQuery): # Boolean self.add_query_param('FuzzyQuery', FuzzyQuery) def get_SecurityGroupId(self): # String return self.get_query_params().get('SecurityGroupId') def set_SecurityGroupId(self, SecurityGroupId): # String self.add_query_param('SecurityGroupId', SecurityGroupId) def get_IsQueryEcsCount(self): # Boolean return self.get_query_params().get('IsQueryEcsCount') def set_IsQueryEcsCount(self, IsQueryEcsCount): # Boolean self.add_query_param('IsQueryEcsCount', IsQueryEcsCount) def get_NetworkType(self): # String return self.get_query_params().get('NetworkType') def set_NetworkType(self, NetworkType): # String self.add_query_param('NetworkType', NetworkType) def get_SecurityGroupName(self): # String return self.get_query_params().get('SecurityGroupName') def set_SecurityGroupName(self, SecurityGroupName): # String self.add_query_param('SecurityGroupName', SecurityGroupName) def get_PageNumber(self): # Integer return self.get_query_params().get('PageNumber') def set_PageNumber(self, PageNumber): # Integer self.add_query_param('PageNumber', PageNumber) def get_ResourceGroupId(self): # String return self.get_query_params().get('ResourceGroupId') def set_ResourceGroupId(self, ResourceGroupId): # String self.add_query_param('ResourceGroupId', ResourceGroupId) def get_NextToken(self): # String return self.get_query_params().get('NextToken') def set_NextToken(self, NextToken): # String self.add_query_param('NextToken', NextToken) def get_PageSize(self): # Integer return self.get_query_params().get('PageSize') def set_PageSize(self, PageSize): # Integer self.add_query_param('PageSize', PageSize) def get_Tags(self): # RepeatList return self.get_query_params().get('Tag') def set_Tags(self, Tag): # RepeatList for depth1 in range(len(Tag)): if Tag[depth1].get('Value') is not None: self.add_query_param('Tag.' + str(depth1 + 1) + '.Value', Tag[depth1].get('Value')) if Tag[depth1].get('Key') is not None: self.add_query_param('Tag.' + str(depth1 + 1) + '.Key', Tag[depth1].get('Key')) def get_DryRun(self): # Boolean return self.get_query_params().get('DryRun') def set_DryRun(self, DryRun): # Boolean self.add_query_param('DryRun', DryRun) def get_ResourceOwnerAccount(self): # String return self.get_query_params().get('ResourceOwnerAccount') def set_ResourceOwnerAccount(self, ResourceOwnerAccount): # String self.add_query_param('ResourceOwnerAccount', ResourceOwnerAccount) def get_OwnerAccount(self): # String return self.get_query_params().get('OwnerAccount') def set_OwnerAccount(self, OwnerAccount): # String self.add_query_param('OwnerAccount', OwnerAccount) def METHOD_NAME(self): # Long return self.get_query_params().get('OwnerId') def set_OwnerId(self, OwnerId): # Long self.add_query_param('OwnerId', OwnerId) def get_SecurityGroupIds(self): # String return self.get_query_params().get('SecurityGroupIds') def set_SecurityGroupIds(self, SecurityGroupIds): # String self.add_query_param('SecurityGroupIds', SecurityGroupIds) def get_SecurityGroupType(self): # String return self.get_query_params().get('SecurityGroupType') def set_SecurityGroupType(self, SecurityGroupType): # String self.add_query_param('SecurityGroupType', SecurityGroupType) def get_VpcId(self): # String return self.get_query_params().get('VpcId') def set_VpcId(self, VpcId): # String self.add_query_param('VpcId', VpcId) def get_MaxResults(self): # Integer return self.get_query_params().get('MaxResults') def set_MaxResults(self, MaxResults): # Integer self.add_query_param('MaxResults', MaxResults)
null