import json import logging import sys import flair import torch from typing import List from flair.data import MultiCorpus from flair.datasets import ColumnCorpus, NER_HIPE_2022, NER_ICDAR_EUROPEANA from flair.embeddings import ( TokenEmbeddings, StackedEmbeddings, TransformerWordEmbeddings ) from flair import set_seed from flair.models import SequenceTagger from flair.trainers import ModelTrainer from utils import prepare_ajmc_corpus, prepare_clef_2020_corpus, prepare_newseye_fi_sv_corpus, prepare_newseye_de_fr_corpus logger = logging.getLogger("flair") logger.setLevel(level="INFO") def run_experiment(seed: int, batch_size: int, epoch: int, learning_rate: float, subword_pooling: str, hipe_datasets: List[str], json_config: dict): hf_model = json_config["hf_model"] context_size = json_config["context_size"] layers = json_config["layers"] if "layers" in json_config else "-1" use_crf = json_config["use_crf"] if "use_crf" in json_config else False # Set seed for reproducibility set_seed(seed) corpus_list = [] # Dataset-related for dataset in hipe_datasets: dataset_name, language = dataset.split("/") # E.g. topres19th needs no special preprocessing preproc_fn = None if dataset_name == "ajmc": preproc_fn = prepare_ajmc_corpus elif dataset_name == "hipe2020": preproc_fn = prepare_clef_2020_corpus elif dataset_name == "newseye" and language in ["fi", "sv"]: preproc_fn = prepare_newseye_fi_sv_corpus elif dataset_name == "newseye" and language in ["de", "fr"]: preproc_fn = prepare_newseye_de_fr_corpus if dataset_name == "icdar": corpus_list.append(NER_ICDAR_EUROPEANA(language=language)) else: corpus_list.append(NER_HIPE_2022(dataset_name=dataset_name, language=language, preproc_fn=preproc_fn, add_document_separator=True)) if context_size == 0: context_size = False logger.info("FLERT Context: {}".format(context_size)) logger.info("Layers: {}".format(layers)) logger.info("Use CRF: {}".format(use_crf)) corpora: MultiCorpus = MultiCorpus(corpora=corpus_list, sample_missing_splits=False) label_dictionary = corpora.make_label_dictionary(label_type="ner") logger.info("Label Dictionary: {}".format(label_dictionary.get_items())) embeddings = TransformerWordEmbeddings( model=hf_model, layers=layers, subtoken_pooling=subword_pooling, fine_tune=True, use_context=context_size, ) tagger: SequenceTagger = SequenceTagger( hidden_size=256, embeddings=embeddings, tag_dictionary=label_dictionary, tag_type="ner", use_crf=use_crf, use_rnn=False, reproject_embeddings=False, ) # Trainer trainer: ModelTrainer = ModelTrainer(tagger, corpora) datasets = "-".join([dataset for dataset in hipe_datasets]) trainer.fine_tune( f"hmbench-{datasets}-{hf_model}-bs{batch_size}-ws{context_size}-e{epoch}-lr{learning_rate}-pooling{subword_pooling}-layers{layers}-crf{use_crf}-{seed}", learning_rate=learning_rate, mini_batch_size=batch_size, max_epochs=epoch, shuffle=True, embeddings_storage_mode='none', weight_decay=0., use_final_model_for_eval=False, ) # Finally, print model card for information tagger.print_model_card() if __name__ == "__main__": filename = sys.argv[1] with open(filename, "rt") as f_p: json_config = json.load(f_p) seeds = json_config["seeds"] batch_sizes = json_config["batch_sizes"] epochs = json_config["epochs"] learning_rates = json_config["learning_rates"] subword_poolings = json_config["subword_poolings"] hipe_datasets = json_config["hipe_datasets"] # Do not iterate over them cuda = json_config["cuda"] flair.device = f'cuda:{cuda}' for seed in seeds: for batch_size in batch_sizes: for epoch in epochs: for learning_rate in learning_rates: for subword_pooling in subword_poolings: run_experiment(seed, batch_size, epoch, learning_rate, subword_pooling, hipe_datasets, json_config) # pylint: disable=no-value-for-parameter