Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
stemdataset commited on
Commit
5cece05
β€’
1 Parent(s): b8b734d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +117 -43
README.md CHANGED
@@ -1,45 +1,119 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: subject
5
- dtype: string
6
- - name: grade
7
- dtype: string
8
- - name: skill
9
- dtype: string
10
- - name: pic_choice
11
- dtype: bool
12
- - name: pic_prob
13
- dtype: bool
14
- - name: problem
15
- dtype: string
16
- - name: problem_pic
17
- dtype: binary
18
- - name: choices
19
- sequence: string
20
- - name: choices_pic
21
- sequence: binary
22
- - name: answer_idx
23
- dtype: int64
24
- splits:
25
- - name: train
26
- num_bytes: 28874513377
27
- num_examples: 644797
28
- - name: valid
29
- num_bytes: 9606268196
30
- num_examples: 214272
31
- - name: test
32
- num_bytes: 9539195843
33
- num_examples: 214077
34
- download_size: 47733024813
35
- dataset_size: 48019977416
36
- configs:
37
- - config_name: default
38
- data_files:
39
- - split: train
40
- path: data/train-*
41
- - split: valid
42
- path: data/valid-*
43
- - split: test
44
- path: data/test-*
45
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ pretty_name: STEM
6
+ size_categories:
7
+ - 1M<n<10M
8
+ tags:
9
+ - stem
10
+ - benchmark
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
+ # STEM Dataset
13
+ This dataset is proposed in the ICLR 2024 paper: [Measuring Vision-Language STEM Skills of Neural Models](https://arxiv.org/abs/2402.17205). The problems in the real world often require solutions, combining knowledge from STEM (science, technology, engineering, and math). Unlike existing datasets, our dataset requires the understanding of multimodal vision-language information of STEM. Our dataset features one of the largest and most comprehensive datasets for the challenge. It includes 448 skills and 1,073,146 questions spanning all STEM subjects. Compared to existing datasets that often focus on examining expert-level ability, our dataset includes fundamental skills and questions designed based on the K-12 curriculum. We also add state-of-the-art foundation models such as CLIP and GPT-3.5-Turbo to our benchmark. Results show that the recent model advances only help master a very limited number of lower grade-level skills (2.5% in the third grade) in our dataset. In fact, these models are still well below (averaging 54.7%) the performance of elementary students, not to mention near expert-level performance. To understand and increase the performance on our dataset, we teach the models on a training split of our dataset. Even though we observe improved performance, the model performance remains relatively low compared to average elementary students. To solve STEM problems, we will need novel algorithmic innovations from the community.
14
+
15
+ ## Authors
16
+ Jianhao Shen*, Ye Yuan*, Srbuhi Mirzoyan, Ming Zhang, Chenguang Wang
17
+
18
+ ## Dataset Sources
19
+ - **Repository:** https://github.com/stemdataset/STEM
20
+ - **Paper:** https://arxiv.org/abs/2402.17205
21
+ - **Leaderboard:** To be released
22
+
23
+ ## Dataset Structure
24
+
25
+ The dataset is splitted into train, valid and test sets. The choice labels in test set are not released and everyone can submit the test set predictions to the [leaderboard](TBR). The basic statistics of the dataset are as follows:
26
+
27
+ | Subject | #Skills | #Questions | Avg. #A | #Train | #Valid | #Test |
28
+ |-------------|---------|------------|------------|----------|----------|----------|
29
+ | Science | 82 | 186,740 | 2.8 | 112,120 | 37,343 | 37,277 |
30
+ | Technology | 9 | 8,566 | 4.0 | 5,140 | 1,713 | 1,713 |
31
+ | Engineering | 6 | 18,981 | 2.5 | 12,055 | 3,440 | 3,486 |
32
+ | Math | 351 | 858,859 | 2.8 | 515,482 | 171,776 | 171,601 |
33
+ | Total | 448 | 1,073,146 | 2.8 | 644,797 | 214,272 | 214,077 |
34
+
35
+ The dataset is in the following format:
36
+ ```python
37
+ DatasetDict({
38
+ train: Dataset({
39
+ features: ['subject', 'grade', 'skill', 'pic_choice', 'pic_prob', 'problem', 'problem_pic', 'choices', 'choices_pic', 'answer_idx'],
40
+ num_rows: 644797
41
+ })
42
+ valid: Dataset({
43
+ features: ['subject', 'grade', 'skill', 'pic_choice', 'pic_prob', 'problem', 'problem_pic', 'choices', 'choices_pic', 'answer_idx'],
44
+ num_rows: 214272
45
+ })
46
+ test: Dataset({
47
+ features: ['subject', 'grade', 'skill', 'pic_choice', 'pic_prob', 'problem', 'problem_pic', 'choices', 'choices_pic', 'answer_idx'],
48
+ num_rows: 214077
49
+ })
50
+ })
51
+ ```
52
+ And the detailed description of the features are as follows:
53
+ - `subject`: `str`
54
+ - The subject of the question, one of `science`, `technology`, `engineer`, `math`.
55
+ - `grade`: `str`
56
+ - The grade of the question.
57
+ - `skill`: `str`
58
+ - The skill of the question.
59
+ - `pic_choice`: `bool`
60
+ - Whether the choices are images.
61
+ - `pic_prob`: `bool`
62
+ - Whether the problem has an image.
63
+ - `problem`: `str`
64
+ - The problem description.
65
+ - `problem_pic`: `bytes`
66
+ - The problem image.
67
+ - `choices`: `Optional[List[str]]`
68
+ - The choices of the question. If `pic_choice` is `True`, the choices are images and will be saved into `choices_pic`, and the `choices` with be set to `None`.
69
+ - `choices_pic`: `Optional[List[bytes]]`
70
+ - The choices images. If `pic_choice` is `False`, the choices are strings and will be saved into `choices`, and the `choices_pic` with be set to `None`.
71
+ - `answer_idx`: `int`
72
+ - The index of the correct answer in the `choices` or `choices_pic`. If the split is `test`, the `answer_idx` will be set to `-1`.
73
+
74
+ The bytes can be read by the following code:
75
+ ```python
76
+ from PIL import Image
77
+ def bytes_to_image(img_bytes: bytes) -> Image:
78
+ img = Image.open(io.BytesIO(img_bytes))
79
+ return img
80
+ ```
81
+
82
+ ## Dataset Example
83
+ ### Problem picture example
84
+ ***Question***: *What is the domain of this function?*
85
+
86
+ ***Picture***:
87
+ ![problem_pic](assets/example_problem_pic.png)
88
+
89
+ ***Choices***: *["{x | x <= -6}", "all real numbers", "{x | x > 3}", "{x | x >= 0}"]*
90
+
91
+ ***Answer***: *1*
92
+
93
+ ### Choices picture example
94
+ ***Question***: *The three scatter plots below show the same data set. Choose the scatter plot in which the outlier is highlighted.*
95
+
96
+ ***Choices***:
97
+ <div style="display: flex; justify-content: space-between;">
98
+ <img src="assets/example_choice_pic_0.png" style="width: 30%" />
99
+ <img src="assets/example_choice_pic_1.png" style="width: 30%" />
100
+ <img src="assets/example_choice_pic_2.png" style="width: 30%" />
101
+ </div>
102
+
103
+ ***Answer***: *1*
104
+
105
+ ## How to use
106
+ Please refer to our [code](https://github.com/stemdataset/STEM) for the usage of training and evaluation on the dataset.
107
+
108
+ ## Citation
109
+ ```bibtex
110
+ @article{shen2024measuring,
111
+ title={Measuring Vision-Language STEM Skills of Neural Models},
112
+ author={Shen, Jianhao and Yuan, Ye and Mirzoyan, Srbuhi and Zhang, Ming and Wang, Chenguang},
113
+ journal={arXiv preprint arXiv:2402.17205},
114
+ year={2024}
115
+ }
116
+ ```
117
+
118
+ ## Dataset Card Contact
119