Datasets:
Tasks:
Text Classification
Sub-tasks:
fact-checking
Languages:
Arabic
Size:
1K<n<10K
ArXiv:
Tags:
stance-detection
License:
File size: 2,919 Bytes
7fb5329 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
# Copyright 2022 Mads Kongsbak and Leon Derczynski
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""""""
import csv
import json
import os
import datasets
_CITATION = """\
"""
_DESCRIPTION = """\
"""
_HOMEPAGE = ""
_LICENSE = "cc-by-4.0"
class ANSStanceConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(ANSStanceConfig, self).__init__(**kwargs)
class ANSStance(datasets.GeneratorBasedBuilder):
""""""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
ANSStanceConfig(name="stance", version=VERSION, description=""),
]
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"s1": datasets.Value("string"),
"s2": datasets.Value("string"),
"stance": datasets.features.ClassLabel(
names=[
"disagree",
"agree",
"other"
]
)
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
train_text = dl_manager.download_and_extract("ans_train.csv")
valid_text = dl_manager.download_and_extract("ans_dev.csv")
test_text = dl_manager.download_and_extract("ans_test.csv")
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_text, "split": "train"}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_text, "split": "validation"}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_text, "split": "test"}),
]
def _generate_examples(self, filepath, split):
with open(filepath, encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter=",")
guid = 0
for instance in reader:
instance["s1"] = instance.pop("s1")
instance["s2"] = instance.pop("s2")
instance["stance"] = instance.pop("stance")
instance['id'] = str(guid)
yield guid, instance
guid += 1 |