Datasets:
Tasks:
Text Classification
Sub-tasks:
fact-checking
Languages:
Arabic
Size:
1K<n<10K
ArXiv:
Tags:
stance-detection
License:
add dataloader
Browse files- ans-stance.py +101 -0
ans-stance.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Mads Kongsbak and Leon Derczynski
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""DataLoader for ANS, an Arabic News Stance corpus"""
|
15 |
+
|
16 |
+
|
17 |
+
import csv
|
18 |
+
import json
|
19 |
+
import os
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
|
23 |
+
_CITATION = """\
|
24 |
+
@inproceedings{,
|
25 |
+
title = "Stance Prediction and Claim Verification: An {A}rabic Perspective",
|
26 |
+
author = "Khouja, Jude",
|
27 |
+
booktitle = "Proceedings of the Third Workshop on Fact Extraction and {VER}ification ({FEVER})",
|
28 |
+
year = "2020",
|
29 |
+
address = "Seattle, USA",
|
30 |
+
publisher = "Association for Computational Linguistics",
|
31 |
+
}
|
32 |
+
"""
|
33 |
+
|
34 |
+
_DESCRIPTION = """\
|
35 |
+
The dataset is a collection of news titles in arabic along with paraphrased and corrupted titles. The stance prediction version is a 3-class classification task. Data contains three columns: s1, s2, stance.
|
36 |
+
"""
|
37 |
+
|
38 |
+
_HOMEPAGE = ""
|
39 |
+
|
40 |
+
_LICENSE = "apache-2.0"
|
41 |
+
|
42 |
+
class ANSStanceConfig(datasets.BuilderConfig):
|
43 |
+
|
44 |
+
def __init__(self, **kwargs):
|
45 |
+
super(ANSStanceConfig, self).__init__(**kwargs)
|
46 |
+
|
47 |
+
class ANSStance(datasets.GeneratorBasedBuilder):
|
48 |
+
"""ANS dataset made in triples of (s1, s2, stance)"""
|
49 |
+
|
50 |
+
VERSION = datasets.Version("1.0.0")
|
51 |
+
|
52 |
+
BUILDER_CONFIGS = [
|
53 |
+
ANSStanceConfig(name="stance", version=VERSION, description=""),
|
54 |
+
]
|
55 |
+
|
56 |
+
def _info(self):
|
57 |
+
features = datasets.Features(
|
58 |
+
{
|
59 |
+
"id": datasets.Value("string"),
|
60 |
+
"s1": datasets.Value("string"),
|
61 |
+
"s2": datasets.Value("string"),
|
62 |
+
"stance": datasets.features.ClassLabel(
|
63 |
+
names=[
|
64 |
+
"disagree",
|
65 |
+
"agree",
|
66 |
+
"other"
|
67 |
+
]
|
68 |
+
)
|
69 |
+
}
|
70 |
+
)
|
71 |
+
|
72 |
+
return datasets.DatasetInfo(
|
73 |
+
description=_DESCRIPTION,
|
74 |
+
features=features,
|
75 |
+
homepage=_HOMEPAGE,
|
76 |
+
license=_LICENSE,
|
77 |
+
citation=_CITATION,
|
78 |
+
)
|
79 |
+
|
80 |
+
def _split_generators(self, dl_manager):
|
81 |
+
train_text = dl_manager.download_and_extract("ans_train.csv")
|
82 |
+
valid_text = dl_manager.download_and_extract("ans_dev.csv")
|
83 |
+
test_text = dl_manager.download_and_extract("ans_test.csv")
|
84 |
+
|
85 |
+
return [
|
86 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_text, "split": "train"}),
|
87 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_text, "split": "validation"}),
|
88 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_text, "split": "test"}),
|
89 |
+
]
|
90 |
+
|
91 |
+
def _generate_examples(self, filepath, split):
|
92 |
+
with open(filepath, encoding="utf-8") as f:
|
93 |
+
reader = csv.DictReader(f, delimiter=",")
|
94 |
+
guid = 0
|
95 |
+
for instance in reader:
|
96 |
+
instance["s1"] = instance.pop("s1")
|
97 |
+
instance["s2"] = instance.pop("s2")
|
98 |
+
instance["stance"] = instance.pop("stance")
|
99 |
+
instance['id'] = str(guid)
|
100 |
+
yield guid, instance
|
101 |
+
guid += 1
|