Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
fact-checking
Languages:
English
Size:
1K - 10K
ArXiv:
Tags:
stance-detection
License:
File size: 4,475 Bytes
707668c 6278ea5 707668c 6278ea5 707668c 6278ea5 707668c 6278ea5 707668c 6278ea5 707668c 6278ea5 aec05e6 6278ea5 6dd037e 6278ea5 98d0ff2 6278ea5 6dd037e 6278ea5 2c055fc 6278ea5 2c055fc 707668c 2c055fc 6278ea5 2c055fc 6278ea5 676847f 2c055fc 6dd037e 98d0ff2 6278ea5 98d0ff2 6dd037e 98d0ff2 6278ea5 6dd037e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
# Copyright 2022 Mads Kongsbak and Leon Derczynski
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""RumourEval 2019: Stance Prediction"""
import csv
import json
import os
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{gorrell-etal-2019-semeval,
title = "{S}em{E}val-2019 Task 7: {R}umour{E}val, Determining Rumour Veracity and Support for Rumours",
author = "Gorrell, Genevieve and
Kochkina, Elena and
Liakata, Maria and
Aker, Ahmet and
Zubiaga, Arkaitz and
Bontcheva, Kalina and
Derczynski, Leon",
booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
month = jun,
year = "2019",
address = "Minneapolis, Minnesota, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/S19-2147",
doi = "10.18653/v1/S19-2147",
pages = "845--854",
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
Stance prediction task in English. The goal is to predict whether a given reply to a claim either supports, denies, questions, or simply comments on the claim. Ran as a SemEval task in 2019.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "cc-by-4.0"
class RumourEval2019Config(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(RumourEval2019Config, self).__init__(**kwargs)
class RumourEval2019(datasets.GeneratorBasedBuilder):
"""RumourEval2019 Stance Detection Dataset formatted in triples of (source_text, reply_text, label)"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
RumourEval2019Config(name="RumourEval2019", version=VERSION, description="Stance Detection Dataset"),
]
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"source_text": datasets.Value("string"),
"reply_text": datasets.Value("string"),
"label": datasets.features.ClassLabel(
names=[
"support",
"deny",
"query",
"comment"
]
)
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
train_text = dl_manager.download_and_extract("rumoureval2019_train.csv")
validation_text = dl_manager.download_and_extract("rumoureval2019_val.csv")
test_text = dl_manager.download_and_extract("rumoureval2019_test.csv")
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_text, "split": "train"}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": validation_text, "split": "validation"}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_text, "split": "test"}),
]
def _generate_examples(self, filepath, split):
with open(filepath, encoding="utf-8") as f:
reader = csv.DictReader(f, delimiter=",")
guid = 0
for instance in reader:
instance["source_text"] = instance.pop("source_text")
instance["reply_text"] = instance.pop("reply_text")
instance["label"] = instance.pop("label")
instance['id'] = str(guid)
yield guid, instance
guid += 1 |