Datasets:

Modalities:
Text
Sub-tasks:
fact-checking
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 4,475 Bytes
707668c
6278ea5
 
 
 
 
 
 
 
 
 
 
 
 
707668c
6278ea5
 
 
 
 
 
 
 
 
 
 
 
707668c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6278ea5
707668c
6278ea5
 
 
 
 
707668c
 
6278ea5
 
 
 
 
 
707668c
6278ea5
aec05e6
 
 
 
 
6278ea5
6dd037e
6278ea5
98d0ff2
6278ea5
 
6dd037e
6278ea5
2c055fc
6278ea5
2c055fc
 
 
 
 
 
 
 
 
707668c
2c055fc
 
 
 
 
6278ea5
 
 
2c055fc
6278ea5
 
 
 
 
 
676847f
2c055fc
6dd037e
98d0ff2
6278ea5
98d0ff2
6dd037e
98d0ff2
6278ea5
 
 
6dd037e
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# Copyright 2022 Mads Kongsbak and Leon Derczynski
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""RumourEval 2019: Stance Prediction"""


import csv
import json
import os

import datasets


# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{gorrell-etal-2019-semeval,
    title = "{S}em{E}val-2019 Task 7: {R}umour{E}val, Determining Rumour Veracity and Support for Rumours",
    author = "Gorrell, Genevieve  and
      Kochkina, Elena  and
      Liakata, Maria  and
      Aker, Ahmet  and
      Zubiaga, Arkaitz  and
      Bontcheva, Kalina  and
      Derczynski, Leon",
    booktitle = "Proceedings of the 13th International Workshop on Semantic Evaluation",
    month = jun,
    year = "2019",
    address = "Minneapolis, Minnesota, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/S19-2147",
    doi = "10.18653/v1/S19-2147",
    pages = "845--854",
}

"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\

Stance prediction task in English. The goal is to predict whether a given reply to a claim either supports, denies, questions, or simply comments on the claim. Ran as a SemEval task in 2019.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "cc-by-4.0"

class RumourEval2019Config(datasets.BuilderConfig):

    def __init__(self, **kwargs):
        super(RumourEval2019Config, self).__init__(**kwargs)

class RumourEval2019(datasets.GeneratorBasedBuilder):
    """RumourEval2019 Stance Detection Dataset formatted in triples of (source_text, reply_text, label)"""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        RumourEval2019Config(name="RumourEval2019", version=VERSION, description="Stance Detection Dataset"),
    ]
    
    def _info(self):
        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "source_text": datasets.Value("string"),
                "reply_text": datasets.Value("string"),
                "label": datasets.features.ClassLabel(
                    names=[
                        "support",
                        "deny",
                        "query",
                        "comment"
                    ]
                )
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        train_text = dl_manager.download_and_extract("rumoureval2019_train.csv")
        validation_text = dl_manager.download_and_extract("rumoureval2019_val.csv")
        test_text = dl_manager.download_and_extract("rumoureval2019_test.csv")
        
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN,      gen_kwargs={"filepath": train_text, "split": "train"}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": validation_text, "split": "validation"}),
            datasets.SplitGenerator(name=datasets.Split.TEST,       gen_kwargs={"filepath": test_text, "split": "test"}),
        ]

    def _generate_examples(self, filepath, split):
        with open(filepath, encoding="utf-8") as f:
            reader = csv.DictReader(f, delimiter=",")
            guid = 0
            for instance in reader:
                instance["source_text"] = instance.pop("source_text")
                instance["reply_text"] = instance.pop("reply_text")
                instance["label"] = instance.pop("label")
                instance['id'] = str(guid)
                yield guid, instance
                guid += 1