|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""SHAJ: An abusive language dataset for Albanian""" |
|
|
|
import csv |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@article{nurce2021detecting, |
|
title={Detecting Abusive Albanian}, |
|
author={Nurce, Erida and Keci, Jorgel and Derczynski, Leon}, |
|
journal={arXiv preprint arXiv:2107.13592}, |
|
year={2021} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This is an abusive/offensive language detection dataset for Albanian. The data is formatted |
|
following the OffensEval convention, with three tasks: |
|
|
|
* Subtask A: Offensive (OFF) or not (NOT) |
|
* Subtask B: Untargeted (UNT) or targeted insult (TIN) |
|
* Subtask C: Type of target: individual (IND), group (GRP), or other (OTH) |
|
|
|
* The subtask A field should always be filled. |
|
* The subtask B field should only be filled if there's "offensive" (OFF) in A. |
|
* The subtask C field should only be filled if there's "targeted" (TIN) in B. |
|
|
|
The dataset name is a backronym, also standing for "Spoken Hate in the Albanian Jargon" |
|
|
|
See the paper [https://arxiv.org/abs/2107.13592](https://arxiv.org/abs/2107.13592) for full details. |
|
""" |
|
|
|
_URL = "full_albanian_dataset.csv" |
|
|
|
|
|
class ShajConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Shaj""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig Shaj. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(ShajConfig, self).__init__(**kwargs) |
|
|
|
|
|
class Shaj(datasets.GeneratorBasedBuilder): |
|
"""Shaj dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
ShajConfig(name="Shaj", version=datasets.Version("1.0.0"), description="Abusive language dataset in Albanian"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"subtask_a": datasets.features.ClassLabel( |
|
names=[ |
|
"OFF", |
|
"NOT", |
|
] |
|
), |
|
"subtask_b": datasets.features.ClassLabel( |
|
names=[ |
|
"TIN", |
|
"UNT", |
|
"", |
|
] |
|
), |
|
"subtask_c": datasets.features.ClassLabel( |
|
names=[ |
|
"IND", |
|
"GRP", |
|
"OTH", |
|
"", |
|
] |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://arxiv.org/abs/2107.13592", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
downloaded_file = dl_manager.download_and_extract(_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_file}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
shaj_reader = csv.DictReader(f, fieldnames=('text','subtask_a','subtask_b','subtask_c'), delimiter=";", quotechar='"') |
|
guid = 0 |
|
for instance in shaj_reader: |
|
instance["id"] = str(guid) |
|
yield guid, instance |
|
guid += 1 |
|
|