CUB200-2011数据集介绍: 该数据集由加州理工学院再2010年提出的细粒度数据集,也是目前细粒度分类识别研究的基准图像数据集。 该数据集共有11788张鸟类图像,包含200类鸟类子类,其中训练数据集有5994张图像,测试集有5794张图像,每张图像均提供了图像类标记信息,图像中鸟的bounding box,鸟的关键part信息,以及鸟类的属性信息,数据集如下图所示。 下载的数据集中,包含了如下文件: bounding_boxes.txt;classes.txt;image_class_labels.txt; images.txt; train_test_split.txt. 其中,bounding_boxes.txt为图像中鸟类的边界框信息;classes.txt为鸟类的类别信息,共有200类; image_class_labels.txt为图像标签和所属类别标签信息;images.txt为图像的标签和图像路径信息;train_test_split.txt为训练集和测试集划分。 本博客主要是根据train_test_split.txt文件和images.txt文件将原始下载的CUB200-2011数据集划分为训练集和测试集。在深度学习Pytorch框架下采用ImageFolder和DataLoader读取数据集较为方便。相关的python代码如下: (1) CUB200-2011训练集和测试集划分代码 ```python # *_*coding: utf-8 *_* # author --liming-- """ 读取images.txt文件,获得每个图像的标签 读取train_test_split.txt文件,获取每个图像的train, test标签.其中1为训练,0为测试. """ import os import shutil import numpy as np import config import time time_start = time.time() # 文件路径 path_images = config.path + 'images.txt' path_split = config.path + 'train_test_split.txt' trian_save_path = config.path + 'dataset/train/' test_save_path = config.path + 'dataset/test/' # 读取images.txt文件 images = [] with open(path_images,'r') as f: for line in f: images.append(list(line.strip('\n').split(','))) # 读取train_test_split.txt文件 split = [] with open(path_split, 'r') as f_: for line in f_: split.append(list(line.strip('\n').split(','))) # 划分 num = len(images) # 图像的总个数 for k in range(num): file_name = images[k][0].split(' ')[1].split('/')[0] aaa = int(split[k][0][-1]) if int(split[k][0][-1]) == 1: # 划分到训练集 #判断文件夹是否存在 if os.path.isdir(trian_save_path + file_name): shutil.copy(config.path + 'images/' + images[k][0].split(' ')[1], trian_save_path+file_name+'/'+images[k][0].split(' ')[1].split('/')[1]) else: os.makedirs(trian_save_path + file_name) shutil.copy(config.path + 'images/' + images[k][0].split(' ')[1], trian_save_path + file_name + '/' + images[k][0].split(' ')[1].split('/')[1]) print('%s处理完毕!' % images[k][0].split(' ')[1].split('/')[1]) else: #判断文件夹是否存在 if os.path.isdir(test_save_path + file_name): aaaa = config.path + 'images/' + images[k][0].split(' ')[1] bbbb = test_save_path+file_name+'/'+images[k][0].split(' ')[1] shutil.copy(config.path + 'images/' + images[k][0].split(' ')[1], test_save_path+file_name+'/'+images[k][0].split(' ')[1].split('/')[1]) else: os.makedirs(test_save_path + file_name) shutil.copy(config.path + 'images/' + images[k][0].split(' ')[1], test_save_path + file_name + '/' + images[k][0].split(' ')[1].split('/')[1]) print('%s处理完毕!' % images[k][0].split(' ')[1].split('/')[1]) time_end = time.time() print('CUB200训练集和测试集划分完毕, 耗时%s!!' % (time_end - time_start)) config文件 # *_*coding: utf-8 *_* # author --liming-- path = '/media/lm/C3F680DFF08EB695/细粒度数据集/birds/CUB200/CUB_200_2011/' ROOT_TRAIN = path + 'images/train/' ROOT_TEST = path + 'images/test/' BATCH_SIZE = 16 (2) 利用Pytorch方式读取数据 # *_*coding: utf-8 *_* # author --liming-- """ 用于已下载数据集的转换,便于pytorch的读取 """ import torch import torchvision import config from torchvision import datasets, transforms data_transform = transforms.Compose([ transforms.Resize(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) def train_data_load(): # 训练集 root_train = config.ROOT_TRAIN train_dataset = torchvision.datasets.ImageFolder(root_train, transform=data_transform) CLASS = train_dataset.class_to_idx print('训练数据label与文件名的关系:', CLASS) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=config.BATCH_SIZE, shuffle=True) return CLASS, train_loader def test_data_load(): # 测试集 root_test = config.ROOT_TEST test_dataset = torchvision.datasets.ImageFolder(root_test, transform=data_transform) CLASS = test_dataset.class_to_idx print('测试数据label与文件名的关系:',CLASS) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=config.BATCH_SIZE, shuffle=True) return CLASS, test_loader if __name__ == '__main___': train_data_load() test_data_load() ```