Upload Prepare_original_data.ipynb
Browse files- Prepare_original_data.ipynb +427 -0
Prepare_original_data.ipynb
ADDED
@@ -0,0 +1,427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "1fc75ebf",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"## datasets==2.0.0 pandas==1.4.2"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": null,
|
16 |
+
"id": "c9cc126c",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"import os\n",
|
21 |
+
"import numpy as np\n",
|
22 |
+
"import pandas as pd\n",
|
23 |
+
"import re\n",
|
24 |
+
"from tqdm import tqdm\n",
|
25 |
+
"from datasets import Dataset, DatasetDict\n",
|
26 |
+
"import pickle\n",
|
27 |
+
"import json"
|
28 |
+
]
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"cell_type": "code",
|
32 |
+
"execution_count": null,
|
33 |
+
"id": "2adeaf52",
|
34 |
+
"metadata": {},
|
35 |
+
"outputs": [],
|
36 |
+
"source": [
|
37 |
+
"def get_list_values(text):\n",
|
38 |
+
" return text.split()\n",
|
39 |
+
"\n",
|
40 |
+
"def replc_t_n(text):\n",
|
41 |
+
" return re.sub(\"\\t|\\n\", \" \", text).strip()\n",
|
42 |
+
"\n",
|
43 |
+
"def read_file(filepath, readlines=False):\n",
|
44 |
+
" with open(filepath, \"r\") as f:\n",
|
45 |
+
" if readlines:\n",
|
46 |
+
" txt = f.readlines()\n",
|
47 |
+
" else:\n",
|
48 |
+
" txt = f.read()\n",
|
49 |
+
" return txt"
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "code",
|
54 |
+
"execution_count": null,
|
55 |
+
"id": "26a51547",
|
56 |
+
"metadata": {},
|
57 |
+
"outputs": [],
|
58 |
+
"source": [
|
59 |
+
"def split_text_on_labeled_tokens(text, labels):\n",
|
60 |
+
" \"\"\"\n",
|
61 |
+
" Split text on labeled token\n",
|
62 |
+
"\n",
|
63 |
+
" :param text: input text\n",
|
64 |
+
" :type text: string\n",
|
65 |
+
" :param labels: token labels with position in text \n",
|
66 |
+
" :type labels: list\n",
|
67 |
+
" :return: list of splited text on tokens, list of entity label for each token\n",
|
68 |
+
" :rtype: list, list\n",
|
69 |
+
" \"\"\"\n",
|
70 |
+
" ### inner function\n",
|
71 |
+
" def chunk_text_labeling(text, start, end, is_ner = False):\n",
|
72 |
+
" \"\"\"\n",
|
73 |
+
" Labeling part of text by text position\n",
|
74 |
+
"\n",
|
75 |
+
" :param text: input text\n",
|
76 |
+
" :type text: string\n",
|
77 |
+
" :param start: start position of entity in text \n",
|
78 |
+
" :type start: int\n",
|
79 |
+
" :param end: end position of entity in text \n",
|
80 |
+
" :type end: int\n",
|
81 |
+
" :param is_ner: part of text is named entity or not \n",
|
82 |
+
" :type is_ner: bool\n",
|
83 |
+
" \"\"\"\n",
|
84 |
+
" chunk_iter = 0\n",
|
85 |
+
" ner_chunk = text[start: end].split()\n",
|
86 |
+
" for part_of_chunk in ner_chunk:\n",
|
87 |
+
" split_text.append(part_of_chunk)\n",
|
88 |
+
" if is_ner:\n",
|
89 |
+
" if chunk_iter == 0:\n",
|
90 |
+
" ner_label.append(\"B-\"+ner)\n",
|
91 |
+
" else:\n",
|
92 |
+
" ner_label.append(\"I-\"+ner)\n",
|
93 |
+
" chunk_iter += 1\n",
|
94 |
+
" else:\n",
|
95 |
+
" ner_label.append(\"O\") \n",
|
96 |
+
" ### inner function\n",
|
97 |
+
" \n",
|
98 |
+
" init_start = 0\n",
|
99 |
+
" split_text = []\n",
|
100 |
+
" ner_label = []\n",
|
101 |
+
" for ner, start, end in labels:\n",
|
102 |
+
"\n",
|
103 |
+
" if start > init_start:\n",
|
104 |
+
"\n",
|
105 |
+
" chunk_text_labeling(text, init_start, start) \n",
|
106 |
+
" chunk_text_labeling(text, start, end, True)\n",
|
107 |
+
" init_start = end\n",
|
108 |
+
" else:\n",
|
109 |
+
" chunk_text_labeling(text, start, end, True)\n",
|
110 |
+
" init_start = end\n",
|
111 |
+
" \n",
|
112 |
+
" return split_text, ner_label"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "code",
|
117 |
+
"execution_count": null,
|
118 |
+
"id": "0ba5da7e",
|
119 |
+
"metadata": {},
|
120 |
+
"outputs": [],
|
121 |
+
"source": [
|
122 |
+
"def grouped_and_sort_labeled_data(annotation_file):\n",
|
123 |
+
" \"\"\"\n",
|
124 |
+
" Get list of entities with corresponding position in text\n",
|
125 |
+
"\n",
|
126 |
+
" :param annotation_file: List of entities\n",
|
127 |
+
" :type annotation_file: list\n",
|
128 |
+
" :return: list entitiens sorted by start position in text\n",
|
129 |
+
" :rtype: list\n",
|
130 |
+
" \"\"\"\n",
|
131 |
+
" df_ann = pd.DataFrame([get_list_values(replc_t_n(i)) for i in annotation_file if \";\" not in i]) \n",
|
132 |
+
" df_ann[2] = df_ann[2].astype(\"int\")\n",
|
133 |
+
" df_ann[3] = df_ann[3].astype(\"int\")\n",
|
134 |
+
" grouped = df_ann.groupby([1, 2])[3].min().reset_index()\n",
|
135 |
+
" \n",
|
136 |
+
" return grouped.sort_values(by=2)[[1,2,3]].values"
|
137 |
+
]
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"cell_type": "code",
|
141 |
+
"execution_count": null,
|
142 |
+
"id": "46fdb74b",
|
143 |
+
"metadata": {},
|
144 |
+
"outputs": [],
|
145 |
+
"source": [
|
146 |
+
"def check_isalnum(text):\n",
|
147 |
+
" return any(i.isalnum() for i in text)\n",
|
148 |
+
"\n",
|
149 |
+
"def keep_only_alnum(text):\n",
|
150 |
+
" return \"\".join([i if i.isalnum() else \" \" for i in text]).strip()\n",
|
151 |
+
"\n",
|
152 |
+
"def drop_punct(seq, labels):\n",
|
153 |
+
" \"\"\"\n",
|
154 |
+
" Drop punctuation from labeled data\n",
|
155 |
+
"\n",
|
156 |
+
" :param seq: List of tokens\n",
|
157 |
+
" :type seq: list\n",
|
158 |
+
" :param labels: List of entities\n",
|
159 |
+
" :type labels: list\n",
|
160 |
+
" \"\"\"\n",
|
161 |
+
" new_seq = []\n",
|
162 |
+
" new_labels = []\n",
|
163 |
+
" for i in range(len(seq)):\n",
|
164 |
+
" if seq[i].isalnum():\n",
|
165 |
+
" new_seq.append(seq[i])\n",
|
166 |
+
" new_labels.append(labels[i]) \n",
|
167 |
+
" return new_seq, new_labels\n",
|
168 |
+
"\n",
|
169 |
+
"def drop_duplicate_tokens(seq, labels):\n",
|
170 |
+
" new_seq = []\n",
|
171 |
+
" new_labels = []\n",
|
172 |
+
" for i in range(len(seq)):\n",
|
173 |
+
" if (i != 0) & (seq[i-1] == seq[i]):\n",
|
174 |
+
" continue\n",
|
175 |
+
" else:\n",
|
176 |
+
" new_seq.append(seq[i])\n",
|
177 |
+
" new_labels.append(labels[i])\n",
|
178 |
+
" return new_seq, new_labels\n",
|
179 |
+
"\n",
|
180 |
+
"def prepare_sequences(seqs, labels):\n",
|
181 |
+
" clear_tokens = [keep_only_alnum(i) if check_isalnum(i) else i for i in seqs]\n",
|
182 |
+
" d_p_tokens, d_p_labels = drop_punct(clear_tokens, labels)\n",
|
183 |
+
" return drop_duplicate_tokens(d_p_tokens, d_p_labels)\n",
|
184 |
+
" \n",
|
185 |
+
"\n",
|
186 |
+
"def map_label_to_id(ids_dict, labels):\n",
|
187 |
+
" \"\"\"\n",
|
188 |
+
" Convert string label to corresponding id\n",
|
189 |
+
"\n",
|
190 |
+
" :param ids_dict: {\"age\": 0, \"event\": 1.....}\n",
|
191 |
+
" :type ids_dict: dict\n",
|
192 |
+
" :param labels: List of entities [\"age\", \"event\", \"O\"....]\n",
|
193 |
+
" :type labels: list\n",
|
194 |
+
" \"\"\"\n",
|
195 |
+
" return [ids_dict[i] for i in labels]"
|
196 |
+
]
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"cell_type": "markdown",
|
200 |
+
"id": "5b735210",
|
201 |
+
"metadata": {},
|
202 |
+
"source": [
|
203 |
+
"### Preparing files in folders"
|
204 |
+
]
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"cell_type": "markdown",
|
208 |
+
"id": "23ad44bb",
|
209 |
+
"metadata": {},
|
210 |
+
"source": [
|
211 |
+
"#### The data have been taken from https://github.com/dialogue-evaluation/RuNNE"
|
212 |
+
]
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"cell_type": "code",
|
216 |
+
"execution_count": null,
|
217 |
+
"id": "1c2748fa",
|
218 |
+
"metadata": {},
|
219 |
+
"outputs": [],
|
220 |
+
"source": [
|
221 |
+
"folders = [\"train\", \"test\", \"dev\"]"
|
222 |
+
]
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"cell_type": "code",
|
226 |
+
"execution_count": null,
|
227 |
+
"id": "ab65dc18",
|
228 |
+
"metadata": {},
|
229 |
+
"outputs": [],
|
230 |
+
"source": [
|
231 |
+
"for folder in folders:\n",
|
232 |
+
" base_path = f\"RuNNE/data/{folder}\"\n",
|
233 |
+
" temp_folder = os.listdir(base_path)\n",
|
234 |
+
" \n",
|
235 |
+
" ## getting list filenames of annotation\n",
|
236 |
+
" files_with_ann = [i for i in temp_folder if \".ann\" in i]\n",
|
237 |
+
"\n",
|
238 |
+
" all_sequences = []\n",
|
239 |
+
" all_labels = []\n",
|
240 |
+
" \n",
|
241 |
+
" for f_ann in tqdm(files_with_ann):\n",
|
242 |
+
" \n",
|
243 |
+
" ## getting filename for text by replaced of extension\n",
|
244 |
+
" txt_file = f_ann.replace(\".ann\", \".txt\")\n",
|
245 |
+
"\n",
|
246 |
+
" ann = read_file(base_path +\"/\"+ f_ann, readlines=True)\n",
|
247 |
+
" txt = read_file(base_path +\"/\"+ txt_file)\n",
|
248 |
+
" \n",
|
249 |
+
" ## check len, because in dev folder there are empty files\n",
|
250 |
+
" if len(ann) == 0:\n",
|
251 |
+
" continue\n",
|
252 |
+
" labels = grouped_and_sort_labeled_data(ann)\n",
|
253 |
+
" \n",
|
254 |
+
" ## splitting text on tokens and labeling each of them\n",
|
255 |
+
" split_text, ner_label = split_text_on_labeled_tokens(txt, labels)\n",
|
256 |
+
" seq_split_indexes = [i for i, v in enumerate(split_text) if v == \".\"]\n",
|
257 |
+
" \n",
|
258 |
+
" ## adding prepared data from each file to general list\n",
|
259 |
+
" prev = 0\n",
|
260 |
+
" for i in seq_split_indexes:\n",
|
261 |
+
" \n",
|
262 |
+
" short_text = split_text[prev: i]\n",
|
263 |
+
" short_label = ner_label[prev: i]\n",
|
264 |
+
" \n",
|
265 |
+
" clear_tokens, clear_label = prepare_sequences(short_text, short_label)\n",
|
266 |
+
" \n",
|
267 |
+
" all_sequences.append(clear_tokens)\n",
|
268 |
+
" all_labels.append(clear_label)\n",
|
269 |
+
" ## we don't take into account the dots in text \n",
|
270 |
+
" prev = i+1\n",
|
271 |
+
" \n",
|
272 |
+
" ## save data to file for each part of splitted dataset\n",
|
273 |
+
" df_folder = pd.DataFrame({\"sequences\": all_sequences, \"labels\": all_labels})\n",
|
274 |
+
" with open(f'{folder}_data.pickle', 'wb') as f:\n",
|
275 |
+
" pickle.dump(df_folder, f)\n",
|
276 |
+
" print(f\"For folder <{folder}> prepared <{df_folder.shape[0]}> sequences\")"
|
277 |
+
]
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"cell_type": "markdown",
|
281 |
+
"id": "cc61030b",
|
282 |
+
"metadata": {},
|
283 |
+
"source": [
|
284 |
+
"### Creating DatasetDict fro prepared data"
|
285 |
+
]
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"cell_type": "code",
|
289 |
+
"execution_count": null,
|
290 |
+
"id": "8c24ab41",
|
291 |
+
"metadata": {},
|
292 |
+
"outputs": [],
|
293 |
+
"source": [
|
294 |
+
"## load 3 dataframe and init them into transformer dataset\n",
|
295 |
+
"dsd = DatasetDict()\n",
|
296 |
+
"for folder in folders:\n",
|
297 |
+
" with open(f'{folder}_data.pickle', 'rb') as f:\n",
|
298 |
+
" data = pickle.load(f)\n",
|
299 |
+
" dsd[folder] = Dataset.from_pandas(data)"
|
300 |
+
]
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"cell_type": "markdown",
|
304 |
+
"id": "04e76e90",
|
305 |
+
"metadata": {},
|
306 |
+
"source": [
|
307 |
+
"### Creating dictionary for labels ids "
|
308 |
+
]
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"cell_type": "code",
|
312 |
+
"execution_count": null,
|
313 |
+
"id": "ce021634",
|
314 |
+
"metadata": {},
|
315 |
+
"outputs": [],
|
316 |
+
"source": [
|
317 |
+
"## get unique entyties\n",
|
318 |
+
"for_df = []\n",
|
319 |
+
"for folder in folders:\n",
|
320 |
+
" with open(f'{folder}_data.pickle', 'rb') as f:\n",
|
321 |
+
" for_df.append(pickle.load(f))\n",
|
322 |
+
"lbls = pd.concat(for_df)[\"labels\"].values\n",
|
323 |
+
"\n",
|
324 |
+
"dd = dict()\n",
|
325 |
+
"ids = 0\n",
|
326 |
+
"for ll in lbls:\n",
|
327 |
+
" for lbl in ll:\n",
|
328 |
+
" if lbl not in dd:\n",
|
329 |
+
" dd[lbl] = ids\n",
|
330 |
+
" ids += 1\n",
|
331 |
+
"\n",
|
332 |
+
" \n",
|
333 |
+
"# # count each entity\n",
|
334 |
+
"# countss = dict()\n",
|
335 |
+
"# for ll in lbls:\n",
|
336 |
+
"# for lbl in ll:\n",
|
337 |
+
"# if lbl not in countss:\n",
|
338 |
+
"# countss[lbl] = 1\n",
|
339 |
+
"# else:\n",
|
340 |
+
"# countss[lbl] += 1\n",
|
341 |
+
"\n",
|
342 |
+
"# del countss[\"O\"]\n",
|
343 |
+
"# sorted_counts = {k: v for k, v in sorted(countss.items(), key=lambda item: item[0].split(\"-\")[1])}\n",
|
344 |
+
"\n",
|
345 |
+
"# for k, v in sorted_counts.items():\n",
|
346 |
+
"# print(\"- \"+k+f\": {v}\")"
|
347 |
+
]
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"cell_type": "code",
|
351 |
+
"execution_count": null,
|
352 |
+
"id": "58000df7",
|
353 |
+
"metadata": {},
|
354 |
+
"outputs": [],
|
355 |
+
"source": [
|
356 |
+
"## sort mapper\n",
|
357 |
+
"\n",
|
358 |
+
"ll = [i for i in dd.keys() if i != \"O\"] \n",
|
359 |
+
"ll_sort = (sorted(ll, key=lambda x: x.split(\"-\")[1]))\n",
|
360 |
+
"new_dd = {k: v for v, k in enumerate([\"O\"] + ll_sort)}\n",
|
361 |
+
" \n",
|
362 |
+
" \n",
|
363 |
+
"reverse_dd = {v: k for k, v in new_dd.items()}\n",
|
364 |
+
"with open('id_to_label_map.pickle', 'wb') as f:\n",
|
365 |
+
" pickle.dump(reverse_dd, f)"
|
366 |
+
]
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"cell_type": "markdown",
|
370 |
+
"id": "b30a7098",
|
371 |
+
"metadata": {},
|
372 |
+
"source": [
|
373 |
+
"### Creating new column with numerical labels"
|
374 |
+
]
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"cell_type": "code",
|
378 |
+
"execution_count": null,
|
379 |
+
"id": "51fd6b38",
|
380 |
+
"metadata": {},
|
381 |
+
"outputs": [],
|
382 |
+
"source": [
|
383 |
+
"dsd_with_ids = dsd.map(\n",
|
384 |
+
" lambda x: {\"ids\": [map_label_to_id(new_dd, i) for i in x[\"labels\"]]}, batched=True, remove_columns = \"labels\")"
|
385 |
+
]
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"cell_type": "code",
|
389 |
+
"execution_count": null,
|
390 |
+
"id": "b7ecf94f",
|
391 |
+
"metadata": {},
|
392 |
+
"outputs": [],
|
393 |
+
"source": [
|
394 |
+
"dsd_with_ids.push_to_hub(\"\")"
|
395 |
+
]
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"cell_type": "code",
|
399 |
+
"execution_count": null,
|
400 |
+
"id": "5eb5f3fa",
|
401 |
+
"metadata": {},
|
402 |
+
"outputs": [],
|
403 |
+
"source": []
|
404 |
+
}
|
405 |
+
],
|
406 |
+
"metadata": {
|
407 |
+
"kernelspec": {
|
408 |
+
"display_name": "hf_env",
|
409 |
+
"language": "python",
|
410 |
+
"name": "hf_env"
|
411 |
+
},
|
412 |
+
"language_info": {
|
413 |
+
"codemirror_mode": {
|
414 |
+
"name": "ipython",
|
415 |
+
"version": 3
|
416 |
+
},
|
417 |
+
"file_extension": ".py",
|
418 |
+
"mimetype": "text/x-python",
|
419 |
+
"name": "python",
|
420 |
+
"nbconvert_exporter": "python",
|
421 |
+
"pygments_lexer": "ipython3",
|
422 |
+
"version": "3.8.10"
|
423 |
+
}
|
424 |
+
},
|
425 |
+
"nbformat": 4,
|
426 |
+
"nbformat_minor": 5
|
427 |
+
}
|